Research Article

IKZF1基因的遗传变异与儿童急性淋巴细胞白血病的发病风险相关c

卷 19, 期 1, 2019

页: [32 - 39] 页: 8

弟呕挨: 10.2174/1566524019666190219123900

价格: $65

摘要

背景:锌指蛋白IKAROS(IKZF1)是造血功能中必不可少的转录因子,主要参与淋巴组织分化。许多研究表明,IKZF1的改变可能与急性淋巴细胞白血病有关,但结果仍存在争议。目的:我们旨在研究rs4132601 T / G和rs10272724 T / C IKZF1基因多态性与儿童急性淋巴细胞白血病风险的关系,并确定这些遗传变异是否影响这些儿童队列的临床参数和铁谱。 方法:本病例对照研究对170名埃及儿童进行,包括两组:第一组包括90名被诊断患有急性淋巴细胞白血病的儿童和组(II)包括80岁和性别匹配的健康对照儿童。使用PCR限制性片段长度多态性(PCR-RFLP)对研究的多态性进行基因分型。 结果:患者组中rs4132601的突变GG基因型和G等位基因频率高于对照组。结果还显示rs10272724基因型之间存在显着差异,患者中突变CC基因型和C等位基因的频率高于对照。与其他基因型相比,rs4132601的突变GG基因型和rs10272724的突变CC基因型与更高的血清铁蛋白水平和转铁蛋白饱和度以及诊断为急性淋巴细胞白血病的年龄相关。 结论:IKZF1 rs4132601和rs10272724可被认为是儿童急性淋巴细胞白血病的重要危险因素,并可能影响这些儿童的铁质。

关键词: 埃及,铁蛋白,IKZF1,Lukemia,淋巴母细胞,PCR-RFLP。

[1]
Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 2016; 101: 407-16.
[2]
Esparza SD, Sakamoto KM. Topics in pediatric leukemia-acute lymphoblastic leukemia. MedGenMed 2005; 7: 53.
[3]
Chiarella P, Summa V, De Santis S, et al. BCR/ABL1 fusion transcripts generated from alternative splicing: Implications for future targeted therapies in Ph+ leukaemias. Curr Mol Med 2012; 12: 547-65.
[4]
Li S, Chen D, Pei R, et al. L-tetrahydropalmatine induces apoptosis in Eu-4 leukemia cells by down-regulating x-linked inhibitor of apoptosis protein and increases the sensitivity towards doxorubicin. Curr Mol Med 2017; 17: 236-45.
[5]
Ezzat S, Rashed WM, Salem S, et al. Environmental, maternal, and reproductive risk factors for childhood acute lymphoblastic leukemia in Egypt: A case-control study. BMC Cancer 2016; 16: 662.
[6]
Eng J, Fish JD. Insidious iron burden in pediatric patients with acute lymphoblastic leukemia. Pediatr Blood Cancer 2011; 56: 368-71.
[7]
Collotta M, Bertazzi PA, Bollati V. Epigenetics and pesticides. Toxicology 2013; 307: 35-41.
[8]
Georgopoulos K, Moore DD, Derfler B. Ikaros. An early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 1992; 258: 808-12.
[9]
Payne KJ, Huang G, Sahakian E, et al. Ikaros isoform x is selectively expressed in myeloid differentiation. J Immunol 2003; 170: 3091-8.
[10]
Francis OL, Payne JL, Su RJ, Payne KJ. Regulator of myeloid differentiation and function: The secret life of Ikaros. World J Biol Chem 2011; 2: 119-25.
[11]
Gurel Z, Ronni T, Ho S, et al. Recruitment of ikaros to pericentromeric heterochromatin is regulated by phosphorylation. J Biol Chem 2008; 283: 8291-300.
[12]
Joshi I, Yoshida T, Jena N, et al. Loss of ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol 2014; 15: 294-304.
[13]
Wang H, Ouyang H, Lai L, et al. Pathogenesis and regulation of cellular proliferation in acute lymphoblastic leukemia- the role of ikaros. J BUON 2014; 19: 22-8.
[14]
Pui C, Sandlund J, Pei D. Improved outcome for children with acute lymphoblastic leukemia: Results of total therapy study xiiib at st jude children’s research hospital. Blood 2004; 104: 2690-6.
[15]
Kamer B, Dolka E, Pasowska R, Świątkowska E. The usefulness of soluble transferrin receptor (stfr) in differentiating anemia occurring in young children. Folia Histochem Cytobiol 2012; 50: 473-9.
[16]
Solis-Herruzo JA. Strategy for diagnosis and management in iron overload. Rev Esp Enferm Dig 2003. 95: 351-7, 343- 509.
[17]
Papaemmanuil E, Hosking FJ, Vijayakrishnan J, et al. Locion7 p12.2, 10q21.2 and14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 2009; 41: 1006-10.
[18]
Prasad RB, Hosking FJ, Vijayakrishnan J, et al. Verifcation of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 2010; 115: 1765-7.
[19]
Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110-4.
[20]
Pastorczak A, Gorniak P, Sherborne A, et al. Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population. Leuk Res 2011; 35: 1534-6.
[21]
Chokkalingam AP, Hsu LI, Metayer C, et al. Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. Cancer Causes Control 2013; 24: 1789-95.
[22]
Orsi L, Rudant J, Bonaventure A, et al. Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE). Leukemia 2012; 26: 2561-4.
[23]
Bahari G, Hashemi M, Naderi M, Taheri M. IKZF1 gene polymorphisms increased the risk of childhood acute lymphoblastic leukemia in an Iranian population. Tumour Biol 2016; 37: 9579-86.
[24]
Vijayakrishnan J, Sherborne AL, Sawangpanich R, et al. Variation at 7p12.2 and 10q21.2 infuences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence. Leuk Lymphoma 2010; 51: 1870-4.
[25]
Healy J, Richer C, Bourgey M, et al. Replication analysis confrms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia. Haematologica 2010; 95: 1608-11.
[26]
Wang Y, Chen J, Li J, et al. Association of three polymorphisms in ARID5B, IKZF1and CEBPE with the risk of childhood acute lymphoblastic leukemia in a Chinese population. Gene 2013; 524: 203-7.
[27]
Lin C-Y, Li M-J, Chang J-G, et al. High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis 2014; 52: 140-5.
[28]
Bhandari P, Ahmad F, Mandava S, Das BR. association of genetic variants in arid5b, ikzf1 and cebpe with risk of childhood de novo b-lineage acute lymphoblastic leukemia in india. Asian Pac J Cancer Prev 2016; 17: 3989-95.
[29]
Fletcher O, Houlston RS. Architecture of inherited susceptibility to common cancer. Nat Rev Cancer 2010; 10: 353-61.
[30]
Georgopoulos K, Bigby M, Wang J-H, et al. The ikaros gene is required for the development of all lymphoid lineages. Cell 1994; 79: 143-56.
[31]
Burmeister T, Bartels G. Gr€ oger D, Germline variants in IKZF1, ARID5B, and CEBPE as risk factors for adult-onset acute lymphoblastic leukemia: annalysis from the GMALL study group. Haematologica 2014; 99: e23-5.
[32]
Dai YE, Tang L, Healy J, Sinnett D. Contribution of polymor-phisms in ikzf1 gene to childhood acute leukemia: A metaanalysis of 33 case-control studies. PLoS One 2014; 9: e113748.
[33]
Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470-80.
[34]
Jain P, Casteel K, Allen CE, et al. Elevated ferritin predicts for inferior survival in patients with acute leukemia and may be an early marker of a underlying systemic pathologic inflammation. Blood 2016; 128: 2791.
[35]
Walsh KM, deSmith AJ, Welch TC, et al. Genomic ancestry and somatic alterations correlate with age at diagnosis in hispanic children with b-cell acute lymphoblastic leukemia. Am J Hematol 2014; 89: 721-5.
[36]
Gorniak P, Pastorczak A, Zalewska-Szewczyk B, et al. Polish pediatric leukemia / Lymphoma study G: Polymorphism in ikzf1 gene affects age at onset of childhood acute lymphoblastic leukemia. Leuk Lymphoma 2014; 55: 2174-8.
[37]
Oh HL, Lee JA, Kim DH, Lim JS. Reference values for serum ferritin and percentage of transferrin saturation in Korean children and adolescents. Blood Res 2018; 53: 18-24.
[38]
Eissa HM, Zhou Y, Panetta JC, et al. The effect of body mass index at diagnosis on clinical outcome in children with newly diagnosed acute lymphoblastic leukemia. Blood Cancer J 2017; 7: e531.
[39]
Rudant J, Orsi L, Bonaventure A, et al. ARID5B, IKZF1 and non-genetic factors in the etiology of childhood acute lymphoblastic leukemia: The ESCALE study. PLoS One 2015; 10: e0121348.
[40]
Orgel E, Genkinger JM, Aggarwal D, Sung L, Nieder M, Ladas EJ. Association of body mass index and survival in pediatric leukemia: A meta-analysis. Am J Clin Nutr 2016; 103: 808-17.
[41]
Sun S, Wang Y, Chen H, et al. STIP Regulates ERK1/2 signaling pathway involved in interaction with pp1γ in lymphoblastic leukemia. Curr Mol Med 2016; 16: 767-75.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy