[1]
Johnson, N.R.; Wang, Y.D. Drug delivery systems for wound healing. Curr. Pharm. Biotechnol., 2015, 16, 621-629.
[2]
Sanjay, S.T.; Dou, M.W.; Fu, G.L.; Xu, F.; Li, X.J. Controlled drug delivery using microdevices. Curr. Pharm. Biotechnol., 2016, 17, 772-787.
[3]
Dinda, S.C.; Pattnaik, G. Nanobiotechnology-based drug delivery in brain targeting. Curr. Pharm. Biotechnol., 2013, 14, 1264-1274.
[4]
Helary, C.; Desimone, M.F. Recent advances in biomaterials for tissue engineering and controlled drug delivery. Curr. Pharm. Biotechnol., 2015, 16, 635-645.
[5]
Schoubben, A.; Blasi, P.; Giovagnoli, S.; Perioli, L.; Rossi, C.; Ricci, M. Novel composite microparticles for protein stabilization and delivery. Eur. J. Pharm. Sci., 2009, 36, 226-234.
[6]
Shi, M.; Yang, Y.Y.; Chaw, C.S.; Goh, S.H.; Moochhala, S.M.; Ng, S.; Heller, J. Double walled POE/PLGA microspheres: Encapsulation of water-soluble and water-insoluble proteins and their release properties. J. Control. Release, 2003, 89, 167-177.
[7]
Mohtaram, N.K.; Montgomery, A.; Willerth, S.M. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed. Mater., 2013, 8(2), 022001.
[8]
Freiberg, S.; Zhu, X. Polymer microspheres for controlled drug release. Int. J. Pharm., 2004, 282, 1-18.
[9]
Rui, J.; Dadsetan, M.; Runge, M.B.; Spinner, R.J.; Yaszemski, M.J.; Windebank, A.J.; Wang, H. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: In vitro characterization and application in polycaprolactone fumarate nerve conduits. Acta Biomater., 2012, 8, 511-518.
[10]
de Boer, R.; Knight, A.M.; Spinner, R.J.; Malessy, M.J.A.; Yaszemski, M.J.; Windebank, A.J. In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres. J. Biomed. Mater. Res. A, 2010, 95A, 1067-1073.
[11]
Stevanovic, M.; Uskokovic, D. Poly(lactide-co-glycolide)-based Micro and nanoparticles for the controlled drug delivery of vitamins. Curr. Nanosci., 2009, 5, 1-14.
[12]
Patel, M.M.; Zeles, M.G.; Manning, M.C.; Randolph, T.W.; Anchordoquy, T.J. Degradation kinetics of high molecular weight
poly (L-lactide) microspheres and release mechanism of lipid:
DNA complexes. J. Pharm. Sci.-US, 2004, 93, 2573-2584.
[13]
Seyednejad, H.; Ghassemi, A.H.; van Nostrum, C.F.; Vermonden, T.; Hennink, W.E. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Control. Release, 2011, 152, 168-176.
[14]
Ikada, Y.; Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun., 2000, 21, 117-132.
[15]
Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci., 2007, 32, 762-798.
[16]
Alexis, F. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym. Int., 2005, 54, 36-46.
[17]
Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-A review. Int. J. Pharm., 2011, 415, 34-52.
[18]
Perale, G.; Hilborn, J. Bioresorbable polymers for biomedical applications; Woodhead Publishing, 2017.
[19]
Li, S.M. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomed. Mater. Res., 1999, 48, 342-353.
[20]
von Burkersroda, F.; Schedl, L.; Gopferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002, 23, 4221-4231.
[21]
Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials, 1995, 16, 305-311.
[22]
Grassi, M. Understanding drug release and absorption mechanisms: A physical and mathematical approach; CRC Press: Boca Raton, 2007.
[23]
Lee, W.L.; She, Y.C.; Widjaja, E.; Chong, H.C.; Tan, N.S.; Loo, S.C.J. Fabrication and drug release study of double-layered microparticles of various sizes. J. Pharm. Sci-US., 2012, 101, 2787-2797.
[24]
Lee, W.L.; Shi, W.X.; Low, Z.Y.; Li, S.Z.; Loo, S.C.J. Modeling of drug release from biodegradable triple-layered microparticles. J. Biomed. Mater. Res. A, 2012, 100A, 3353-3362.
[25]
Lao, L.L.; Peppas, N.A.; Boey, F.Y.C.; Venkatraman, S.S. Modeling of drug release from bulk-degrading polymers. Int. J. Pharm., 2011, 418, 28-41.
[26]
Sackett, C.K.; Narasimhan, B. Mathematical modeling of polymer erosion: Consequences for drug delivery. Int. J. Pharm., 2011, 418, 104-114.
[27]
Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J. Control. Release, 2014, 190, 75-81.
[28]
Rothstein, S.N.; Federspiel, W.J.; Little, S.R. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials, 2009, 30, 1657-1664.
[29]
Nuti, S.; Ruimi, A.; Reddy, J.N. Modeling the dynamics of filaments for medical applications. Int. J. Nonlin. Mech., 2014, 66, 139-148.
[30]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm., 2008, 364, 328-343.
[31]
Siepmann, J.; Siepmann, F. Modeling of diffusion controlled drug delivery. J. Control. Release, 2012, 161, 351-362.
[32]
Casalini, T.; Rossi, F.; Lazzari, S.; Perale, G.; Masi, M. mathematical modeling of PLGA microparticles: From polymer degradation to drug release. Mol. Pharm., 2014, 11, 4036-4048.
[33]
Casalini, T.; Masi, M.; Perale, G. Drug eluting sutures: A model for in vivo estimations. Int. J. Pharm., 2012, 429, 148-157.
[34]
Perale, G.; Casalini, T.; Barri, V.; Muller, M.; Maccagnan, S.; Masi, M. Lidocaine release from polycaprolactone threads. J. Appl. Polym. Sci., 2010, 117, 3610-3614.
[35]
Marucci, M.; Ragnarsson, G.; von Corswant, C.; Welinder, A.; Jarke, A.; Iselau, F.; Axelsson, A. Polymer leaching from film coating: Effects on the coating transport properties. Int. J. Pharm., 2011, 411, 43-48.
[36]
Frenning, G. Modelling drug release from inert matrix systems: From moving-boundary to continuous-field descriptions. Int. J. Pharm., 2011, 418, 88-99.
[37]
Bertrand, N.; Leclair, G.; Hildgen, P. Modeling drug release from bioerodible microspheres using a cellular automaton. Int. J. Pharm., 2007, 343, 196-207.
[38]
Gopferich, A.; Langer, R. Modeling of polymer erosion. Macromolecules, 1993, 26, 4105-4112.
[39]
Gopferich, A. Erosion of composite polymer matrices. Biomaterials, 1997, 18, 397-403.
[40]
Gopferich, A. Bioerodible implants with programmable drug release. J. Control. Release, 1997, 44, 271-281.
[41]
Siepmann, J.; Gopferich, A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev., 2001, 48, 229-247.
[42]
Versypt, A.N.F.; Pack, D.W.; Braatz, R.D. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres - A review. J. Control. Release, 2013, 165, 29-37.
[43]
Ahmad, Z.; Zhang, H.B.; Farook, U.; Edirisinghe, M.; Stride, E.; Colombo, P. Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. J. R. Soc. Interface, 2008, 5, 1255-1261.
[44]
Pekarek, K.J.; Jacob, J.S.; Mathiowitz, E. Double-walled polymer microspheres for controlled drug-release. Nature, 1994, 367, 258-260.
[45]
Pekarek, K.J.; Dyrud, M.J.; Ferrer, K.; Jong, Y.S.; Mathiowitz, E. In vitro and in vivo degradation of double-walled polymer microspheres. J. Control. Release, 1996, 40, 169-178.
[46]
Nie, H.M.; Fu, Y.L.; Wang, C.H. Paclitaxel and suramin-loaded core/shell microspheres in the treatment of brain tumors. Biomaterials, 2010, 31, 8732-8740.
[47]
Wang, X.T.; Venkatraman, S.S.; Boey, F.Y.C.; Loo, J.S.C.; Tan, L.P. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials, 2006, 27, 5588-5595.
[48]
Champeau, M.; Thomassin, J.M.; Tassaing, T.; Jerome, C. Current manufacturing processes of drug-eluting sutures. Expert Opin. Drug Deliv., 2017, 14, 1293-1303.
[49]
Joseph, B.; George, A.; Gopi, S.; Kalarikkal, N.; Thomas, S. Polymer sutures for simultaneous wound healing and drug delivery - A review. Int. J. Pharm., 2017, 524, 454-466.
[50]
Ramkrishna, D. Population balances: Theory and applications to particulate systems in engineering; Academic Press: San Diego, CA, 2000.
[51]
Perale, G.; Casalini, T.; Masi, M. A new model of resorbable device degradation and drug release: Transient 1-dimension diffusional mode (vol 136, pg 196, 2009). J. Control. Release, 2010, 142, 490-490.
[52]
Rossi, F.; Casalini, T.; Raffa, E.; Masi, M.; Perale, G. Bioresorbable polymer coated drug eluting stent: A model study. Mol. Pharm., 2012, 9, 1898-1910.
[53]
Masaro, L.; Zhu, X.X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci., 1999, 24, 731-775.
[54]
Siepmann, J.; Elkharraz, K.; Siepmann, F.; Klose, D. How autocatalysis accelerates drug release from PLGA-based microparticles: A quantitative treatment. Biomacromolecules, 2005, 6, 2312-2319.
[55]
Bramfeldt, H.; Sarazin, P.; Vermette, P. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone). J. Biomed. Mater. Res. A, 2007, 83A, 503-511.
[56]
Billon, A.; Chabaud, L.; Gouyette, A.; Bouler, J.M.; Merle, C. Vancomycin biodegradable poly(lactide-co-glycolide) microparticles for bone implantation. Influence of the formulation parameters on the size, morphology, drug loading and in vitro release. J. Microencapsul., 2005, 22, 841-852.
[57]
Brouneus, F.; Karami, K.; Beronius, P.; Sundelof, L.O. Diffusive transport properties of some local anesthetics applicable for iontophoretic formulation of the drugs. Int. J. Pharm., 2001, 218, 57-62.
[58]
Veyries, M.L.; Couarraze, G.; Geiger, S.; Agnely, F.; Massias, L.; Kunzli, B.; Faurisson, F.; Rouveix, B. Controlled release of vancomycin from Poloxamer 407 gels. Int. J. Pharm., 1999, 192, 183-193.
[59]
Goodman, L.S.; Brunton, L.L.; Chabner, B.; Knollmann, B.C. Goodman & Gilman’s pharmacological basis of therapeutics; McGraw-Hill: New York, 2011.
[60]
Rybak, M.J.; Lomaestro, B.M.; Rotschafer, J.C.; Moellering, R.C.; Craig, W.A.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Vancomycin therapeutic guidelines: A Summary of Consensus Recommendations from the Infectious Diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis., 2009, 49, 325-327.
[61]
Holy, C.E.; Dang, S.M.; Davies, J.E.; Shoichet, M.S. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials, 1999, 20, 1177-1185.
[62]
Ding, A.G.; Shenderova, A.; Schwendeman, S.P. Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. J. Am. Chem. Soc., 2006, 128, 5384-5390.
[63]
Powell, M.F. Stability of Lidocaine in Aqueous-Solution - Effect of Temperature, Ph, Buffer, and Metal-Ions on Amide Hydrolysis. Pharm Res-Dordr, 1987, 4, 42-45.
[64]
Sjoberg, H.; Karami, K.; Beronius, P.; Sundelof, L.O. Ionization conditions for iontophoretic drug delivery. A revised pK(a) of lidocaine hydrochloride in aqueous solution at 25 degrees C established by precision conductometry. Int. J. Pharm., 1996, 141, 63-70.
[65]
Holgado, M.A.; Arias, J.L.; Cozar, M.J.; Alvarez-Fuentes, J.; Ganan-Calvo, A.M.; Fernandez-Arevalo, M. Synthesis of lidocaine-loaded PLGA microparticles by flow focusing - Effects on drug loading and release properties. Int. J. Pharm., 2008, 358, 27-35.