[2]
Woollard KJ. Immunological aspects of atherosclerosis Clin Sci Lond Engl 1979 . 2013. 125(5): 221-35
[3]
Lippi G, Franchini M, Favaloro EJ, Targher G. Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox.”. Semin Thromb Hemost 2010; 36(1): 59-70.
[4]
Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet Lond Engl 1992; 339(8808): 1523-6.
[5]
Renaud SC, Guéguen R, Conard P, Lanzmann-Petithory D, Orgogozo J-M, Henry O. Moderate wine drinkers have lower hypertension-related mortality: a prospective cohort study in French men. Am J Clin Nutr 2004; 80(3): 621-5.
[6]
McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 2012; 95(2): 454-64.
[7]
Sarr M, Chataigneau M, Martins S, et al. Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovasc Res 2006; 71(4): 794-802.
[8]
Agouni A, Lagrue-Lak-Hal A-H, Mostefai HA, et al. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa). PLoS One 2009; 4(5): e5557.
[9]
Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, Andriantsitohaina R. Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 1997; 120(6): 1053-8.
[10]
Andriambeloson E, Magnier C, Haan-Archipoff G, et al. Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J Nutr 1998; 128(12): 2324-33.
[11]
Duarte J, Andriambeloson E, Diebolt M, Andriantsitohaina R. Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation. Physiol Res 2004; 53(6): 595-602.
[12]
Ndiaye M, Chataigneau T, Andriantsitohaina R, Stoclet J-C, Schini-Kerth VB. Red wine polyphenols cause endothelium-dependent EDHF-mediated relaxations in porcine coronary arteries via a redox-sensitive mechanism. Biochem Biophys Res Commun 2003; 310(2): 371-7.
[13]
Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol 2002; 135(6): 1579-87.
[14]
Chalopin M, Tesse A, Martínez MC, Rognan D, Arnal J-F, Andriantsitohaina R. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS One 2010; 5(1): e8554.
[15]
Lazzè MC, Pizzala R, Perucca P, et al. Anthocyanidins decrease endothelin-1 production and increase endothelial nitric oxide synthase in human endothelial cells. Mol Nutr Food Res 2006; 50(1): 44-51.
[16]
Keravis T, Favot L, Abusnina AA, et al. Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells. PLoS One 2015; 10(12): e0145291.
[17]
Abusnina A, Lugnier C. Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell Signal 2017; 39: 55-65.
[18]
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81(1)(Suppl.): 230S-42S.
[19]
Domitrovic R. The molecular basis for the pharmacological activity of anthocyans. Curr Med Chem 2011; 18(29): 4454-69.
[20]
Loypimai P, Moongngarm A, Chottanom P. Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. J Food Sci Technol 2016; 53(1): 461-70.
[21]
Fleschhut J, Kratzer F, Rechkemmer G, Kulling SE. Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr 2006; 45(1): 7-18.
[22]
Bruneton J. Pharmacognosy, Phytochemistry, Medicinal Plants. 2nd ed. Londres: Lavoisier 1999. 1136 p 1136 p
[24]
Selenski C, Pettus TRR. (±)-Diinsininone: made nature’s way. Tetrahedron 2006; 62(22): 5298-307.
[25]
Mas T. A New and Convenient One-StepSynthesis of the Natural 3-Deoxyanthocyanidins Apigeninidinand Luteolinidin Chlorides from 2,4,6-Triacetoxybenzaldehyde. Synthesis 2003; 2003(12): 1878-80.
[26]
Schmidt B, Riemer M. Synthesis of Allyl- and Prenylcoumarins via Microwave-Promoted Tandem Claisen Rearrangement/Wittig Olefination. Synthesis 2016; 48(01): 141-9.
[27]
Dong Y, Du N, Li X, Zheng L, Liu G. Tandem Chloropalladation/Cyclization and Dearomative Cyclization toward Functionalized Tricyclic Bridged [3.2.1] Skeleton Compounds. Org Lett 2015; 17(16): 4110-3.
[28]
Gudipudi G, Sagurthi SR, Perugu S, Achaiah G, Krupadanam GLD. Rational design and synthesis of novel 2-(substituted-2H-chromen-3-yl)-5-aryl-1H-imidazole derivatives as an anti-angiogenesis and anti-cancer agent. RSC Advances 2014; 4(99): 56489-501.
[29]
Kraus M, Biskup E, Richling E, Schreier P. Synthesis of [4-14C]-pelargonidin chloride and [4-14C]-delphinidin chloride. J Labelled Comp Radiopharm 2006; 49(13): 1151-62.
[30]
Lan W, Lu F, Regner M, et al. Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 2015; 167(4): 1284-95.
[32]
Kuhnert N, Clifford MN, Radenac A-G. Boron trifluoride-etherate mediated synthesis of 3-desoxyanthocyanidins including a total synthesis of tricetanidin from black tea. Tetrahedron Lett 2001; 42(52): 9261-3.
[33]
Sousa A, Mateus N, de Freitas V. A novel reaction mechanism for the formation of deoxyanthocyanidins. Tetrahedron Lett 2012; 53(10): 1300-3.
[34]
Tetko IV, Gasteiger J, Todeschini R, et al. Virtual computational chemistry laboratory--design and description. J Comput Aided Mol Des 2005; 19(6): 453-63.
[35]
Lugnier C, Schoeffter P, Le Bec A, Strouthou E, Stoclet JC. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol 1986; 35(10): 1743-51.
[36]
Kameni Tcheudji JF, Lebeau L, Virmaux N, et al. Molecular organization of bovine rod cGMP-phosphodiesterase 6. J Mol Biol 2001; 310(4): 781-91.
[37]
Keravis T, Thaseldar-Roumié R, Lugnier C. Assessment of phosphodiesterase isozyme contribution in cell and tissue extracts. Methods Mol BiolClifton NJ 2005; 307: 63-74.
[38]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[39]
Yi W, Akoh CC, Fischer J, Krewer G. Absorption of anthocyanins from blueberry extracts by caco-2 human intestinal cell monolayers. J Agric Food Chem 2006; 54(15): 5651-8.
[40]
Barcena HS, Chen P, Tuachi A. Synthetic anthocyanidins and their antioxidant properties. Springerplus 2015; 4: 499.
[42]
Chan S, Yan C. PDE1 isozymes, key regulators of pathological vascular remodeling. Curr Opin Pharmacol 2011 Dec; 11(6): 720-4.
[43]
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13(4): 290-314.
[44]
Lugnier C. PDE inhibitors: a new approach to treat metabolic syndrome? Curr Opin Pharmacol 2011; 11(6): 698-706.
[45]
Lugnier C, Keravis T, Eckly-Michel A. Cross talk between NO and cyclic nucleotide phosphodiesterases in the modulation of signal transduction in blood vessel. J Physiol Pharmacol Off J Pol Physiol Soc 1999; 50(4): 639-52.
[46]
Kessler T, Lugnier C. Rolipram increases cyclic GMP content in L-arginine-treated cultured bovine aortic endothelial cells. Eur J Pharmacol 1995; 290(2): 163-7.
[47]
Liu G, Sun X, Dai Y, et al. Chronic administration of sildenafil modified the impaired VEGF system and improved the erectile function in rats with diabetic erectile dysfunction. J Sex Med 2010; 7(12): 3868-78.