Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Effect of Boswellia serrata on Rat Trachea Contractility In Vitro

Author(s): Wafaa Ahmed Hewedy*

Volume 10, Issue 1, 2020

Page: [33 - 43] Pages: 11

DOI: 10.2174/2210315509666190206122050

Price: $65

Abstract

Background: Boswellia serrata (family Burseraceae) has been traditionally used for the treatment of a wide variety of diseases as arthritis, inflammatory bowel diseases, and airway diseases. However, the direct bronchodilator efficacy of Boswellia serrata hasn’t been explored yet.

Objective: We aimed at the present study to evaluate the direct effect of Boswellia serrata extract (BSE) on isolated rat tracheal preparations precontracted with either Acetylcholine (ACh) or potassium chloride (KCl).

Methods: Tracheal rings were prepared from male Wistar rats (200-250 g). BSE (1-200 μg/ml) was added to tracheal strips precontracted with either ACh or KCl and the response was observed. We also investigated the consequences of epithelial denudation, indomethacin, and N-Nitro-L-arginine on the relaxant effect of BSE as compared to that of the β-adrenoceptor agonist isoprenaline, or the bitter taste receptor (TAS2R) agonist denatonium benzoate. Finally, the possible additive effects of BSE to isoprenaline or denatonium-induced relaxation were evaluated.

Results: By using a set of serial dosing and washout experiments with tracheal rings, results showed that exposure to BSE resulted into a significant and concentration-dependent inhibitory effect on airway smooth muscle contractions precontracted with either ACh or KCl. Epithelial denudation, indomethacin, or N-Nitro-L-arginine had no significant effect on the obtained relaxation. Furthermore, BSE potentiated the relaxant effect of isoprenaline on rat trachea.

Conclusion: BSE exerts a direct concentration-dependent relaxant effect on precontracted tracheal strips. These results could contribute towards validation of the traditional use of BSE in the treatment of airway diseases.

Keywords: Airway diseases, asthma, Boswellia serrata, bronchodilation, denatonium, tracheal contraction.

Graphical Abstract

[1]
Simpson, J.L.; Phipps, S.; Gibson, P.G. Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis. Pharmacol. Ther., 2009, 124, 86-95.
[2]
Cazzola, M.; Page, C.P.; Calzetta, L.; Matera, M.G. Pharmacology and Therapeutics of Bronchodilators. Pharmacol. Rev., 2012, 64, 450-504.
[3]
Spina, D. Current and novel bronchodilators in respiratory disease. Curr. Opin. Pulm. Med., 2014, 20, 73-86.
[4]
Dockrell, M.; Partridge, M.R.; Valovirta, E. The limitations of severe asthma: the results of a European survey. Allergy, 2007, 62(2), 134-141.
[5]
Sears, M.R. Adverse effects of β-agonists. J. Allergy Clin. Immunol., 2002, 110, S322-S328.
[6]
Mainardi, T.; Kapoor, S.; Bielory, L. Complementary and alternative medicine: Herbs, phytochemicals and vitamins and their immunologic effects. J. Allergy Clin. Immunol., 2009, 123(2), 283-294.
[7]
Houssen, M.E.; Ragab, A.; Mesbah, A.; El-Samanoudy, A.Z.; Othman, G.; Moustafa, A.; Badria, F.A. Natural anti-inflammatory products and leukotriene inhibitors as complementary therapy for bronchial asthma. Clin. Biochem., 2010, 43, 887-890.
[8]
Aggarwal, B.B.; Prasad, S.; Reuter, S.; Kannappan, R.; Yadev, V.R.; Park, B.; Kim, J.H.; Gupta, S.C.; Phromnoi, K.; Sundaram, C.; Prasad, S.; Chaturvedi, M.M.; Sung, B. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “Reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets, 2011, 12, 1595-1653.
[9]
Siddiqui, M.Z. Boswellia serrata, a potential antiinflammatory agent: an overview. Ind. J. Pharm. Sci., 2011, 73, 255-261.
[10]
Safayhi, H.; Mack, T.; Sabieraj, J.; Anazodo, M.I.; Subramanian, L.R.; Ammon, H.P. Boswellic acids: Novel, specific, nonredox inhibitors of 5-lipoxygenase. J. Pharmacol. Exp. Ther., 1992, 261, 1143-1146.
[11]
Takada, Y.; Ichikawa, H.; Badmaev, V.; Aggarwal, B.B. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J. Immunol., 2006, 176, 3127-3140.
[12]
Gupta, I.; Gupta, V.; Parihar, A.; Gupta, S.; Lüdtke, R.; Safayhi, H.; Ammon, H.P. Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, 6-week clinical study. Eur. J. Med. Res., 1998, 3, 511-514.
[13]
Liu, Z.; Liu, X.; Sang, L.; Liu, H.; Xu, Q.; Liu, Z. Boswellic acid attenuates asthma phenotypes by downregulation of GATA3 via pstat6 inhibition in a murine model of asthma. Int. J. Clin. Exp. Pathol., 2015, 8, 236-243.
[14]
Behrens, M.; Meyerhof, W. Oral and extraoral bitter taste receptors. Results Probl. Cell Differ., 2010, 52, 87-99.
[15]
Liggett, S.B. Bitter taste receptors on airway smooth muscle as targets for novel bronchodilators. Expert Opin. Ther. Targets, 2013, 17, 721-731.
[16]
Deshpande, D.A.; Wang, W.C.H.; McIlmoyle, E.L.; Robinett, K.S.; Schillinger, R.M.; An, S.S.; Sham, J.S.K.; Liggett, S.B. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med., 2010, 16, 1299-1304.
[17]
Capasso, R.; Aviello, G.; Romano, B.; Atorino, G.; Pagano, E.; Borrelli, F. Inhibitory effect of quercetin on rat trachea contractility in vitro. J. Pharm. Pharmacol., 2009, 61, 115-119.
[18]
Bean, B.P. Nitrendipine block of cardiac calcium channels: High-affinity binding to the inactivated state. Proc. Natl. Acad. Sci. USA, 1984, 81, 6388-6392.
[19]
Worley, J.F.; Kotlikoff, M.I. Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells. Am. J. Physiol., 1990, 259, 468-480.
[20]
Kimmatkar, N.; Thawani, V.; Hingorani, L.; Khiyani, R. Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee - A randomized double blind placebo controlled trial. Phytomedicine, 2003, 10, 3-7.
[21]
Anthoni, C. Mechanisms underlying the anti-inflammatory actions of boswellic acid derivatives in experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(6), G1131-G1137.
[22]
Furtado, N.A.; Pirson, L.; Edelberg, H.; Miranda, L.M.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules, 2017, 22(3), 400.
[23]
Ammon, H.P.T. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine, 2010, 17, 862-867.
[24]
Gayathri, B.; Manjula, N.; Vinaykumar, K.S.; Lakshmi, B.S.; Balakrishnan, A. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO and MAP kinases. Int. Immunopharmacol., 2007, 7, 473-482.
[25]
Sakai, H.; Sato, K.; Kai, Y.; Chiba, Y.; Narita, M. Denatonium and 6-n-Propyl-2-thiouracil, agonists of bitter taste receptor, inhibit contraction of various types of smooth muscles in the rat and mouse. Biol. Pharm. Bull., 2016, 39, 33-41.
[26]
Karaki, H.; Weiss, G.B. Calcium release in smooth muscle. Life Sci., 1988, 42, 111-122.
[27]
Somlyo, A.P.; Somlyo, A.V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and Myosin phosphatase. Physiol. Rev., 2003, 83, 1325-1358.
[28]
Gosens, R.; Zaagsma, J.; Meurs, H.; Halayko, A.J. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir. Res., 2006, 7, 73.
[29]
Dongmo, A.B.; Azebaze, A.G.B.; Donfack, F.M.; Dimo, T.; Nkeng-Efouet, P.A.; Devkota, K.P.; Sontia, B.; Wagner, H.; Sewald, N.; Vierling, W. Pentacyclic triterpenoids and ceramide mediate the vasorelaxant activity of Vitex cienkowskii via involvement of NO/cGMP pathway in isolated rat aortic rings. J. Ethnopharmacol., 2011, 133, 204-212.
[30]
Rodríguez-Rodríguez, R.; Herrera, M.D.; Perona, J.S.; Ruiz-Gutiérrez, V. Potential vasorelaxant effects of oleanolic acid and erythrodiol, two triterpenoids contained in ‘orujo’ olive oil, on rat aorta. Br. J. Nutr., 2004, 92, 635.
[31]
Channa, S.; Dar, A.; Yaqoob, M.; Anjum, S.; Sultani, Z.; Rahman, A.U. Broncho-vasodilatory activity of fractions and pure constituents isolated from Bacopa monniera. J. Ethnopharmacol., 2003, 86, 27-35.
[32]
Shang, P.; Liu, W.; Liu, T.; Zhang, Y.; Mu, F.; Zhu, Z.; Liang, L.; Zhai, X.; Ding, Y.; Li, Y.; Wen, A. Acetyl-11-keto-β-boswellic acid attenuates prooxidant and profibrotic mechanisms involving transforming growth factor-β1, and improves vascular remodeling in spontaneously hypertensive rats. Sci. Rep., 2016, 6, 39809.
[33]
Borrelli, F.; Capasso, F.; Capasso, R.; Ascione, V.; Aviello, G.; Longo, R.; Izzo, A. Effect of Boswellia serrata on intestinal motility in rodents: Inhibition of diarrhoea without constipation. Br. J. Pharmacol., 2006, 148, 553-560.
[34]
McFadzean, I.; Gibson, A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br. J. Pharmacol., 2002, 135, 1-13.
[35]
Kamishima, T.; Nelson, M.T.; Patlak, J.B. Carbachol modulates voltage sensitivity of calcium channels in bronchial smooth muscle of rats. Am. J. Physiol., 1992, 263, C69-C77.
[36]
Zhang, C.H.; Lifshitz, L.M.; Uy, K.F.; Ikebe, M.; Fogarty, K.E. ZhuGe, R. The Cellular and Molecular Basis of Bitter Tastant-Induced Bronchodilation. PLoS Biol., 2013, 11e1001501
[37]
Zhuge, R.; Bao, R.; Fogarty, K.E.; Lifshitz, L.M. Ca2+ sparks act as potent regulators of excitation-contraction coupling in airway smooth muscle. J. Biol. Chem., 2010, 285, 2203-2210.
[38]
Delmotte, P.; Ressmeyer, A-R.; Bai, Y.; Sanderson, M.J. Mechanisms of airway smooth muscle relaxation induced by beta2-adrenergic agonists. Front. Biosci., 2010, 15, 750-764.
[39]
Hatziefthimiou, A.A.; Karetsi, E.; Pratzoudis, E.; Gourgoulianis, K.I.; Molyvdas, P.A. Resting tension effect on airway smooth muscle: The involvement of epithelium. Respir. Physiol. Neurobiol., 2005, 145, 201-208.
[40]
Shakeri, F.; Boskabady, M.H. A review of the relaxant effect of various medicinal plants on tracheal smooth muscle, their possible mechanism(s) and potency. J. Ethnopharmacol., 2015, 175, 528-548.
[41]
Robinett, K.S.; Koziol-White, C.J.; Akoluk, A.; An, S.S.; Panettieri, R.A.; Liggett, S.B. Bitter taste receptor function in asthmatic and nonasthmatic human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol., 2014, 50, 678-683.
[42]
Lam, M.; Royce, S.G.; Donovan, C.; Jelinic, M.; Parry, L.J.; Samuel, C.S.; Bourke, J.E. Serelaxin elicits bronchodilation and enhances β-adrenoceptor-mediated airway relaxation. Front. Pharmacol., 2016, 7, 406.
[43]
Montalvo, F.; Cantres-Fonseca, O.; Santos, G.; Vega, M.; Torres, I.; Carmona, J.; Dexter, D.; Santacana, G. Nitric oxide is involved in the response of the isolated intact and epithelium-denuded rat trachea to the β2 adrenergic receptor agonist salbutamol. Respiration, 2010, 80, 426-432.
[44]
Manson, M.L.; Säfholm, J.; Al-Ameri, M.; Bergman, P.; Orre, A.C.; Swärd, K.; James, A.; Dahlén, S.E.; Adner, M. Bitter taste receptor agonists mediate relaxation of human and rodent vascular smooth muscle. Eur. J. Pharmacol., 2014, 740, 302-311.
[45]
Pulkkinen, V.; Manson, M.L.; Safholm, J.; Adner, M.; Dahlen, S-E. The bitter Taste Receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the guinea pig trachea. AJP Lung Cell. Mol. Physiol., 2012, 303, L956-L966.
[46]
Säfholm, J.; Dahlén, S.E.; Delin, I.; Maxey, K.; Stark, K.; Cardell, L.O.; Adner, M. PGE2maintains the tone of the guinea pig trachea through a balance between activation of contractile EP1 receptors and relaxant EP2receptors. Br. J. Pharmacol., 2013, 168, 794-806.
[47]
Abdel-Tawab, M.; Werz, O.; Schubert-Zsilavecz, M. Boswellia serrata: An overall assessment of in vitro, preclinical, pharmacokinetic and clinical data. Clin. Pharmacokinet., 2011, 50, 349-369.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy