[1]
Shi, C.; Klimstra, D.S. Pancreatic neuroendocrine tumors: Pathologic and molecular characteristics. Semin. Diagn. Pathol., 2014, 6, 498-511.
[2]
Liu, I.H.; Kunz, P.L. Biologics in gastrointestinal and pancreatic neuroendocrine tumors. J. Gastrointest. Oncol., 2017, 3, 457-465.
[3]
Rindi, G.; Petrone, G.; Inzani, F. The 2010 WHO classification of digestive neuroendocrine neoplasms: A critical appraisal four years after its introduction. Endocr. Pathol., 2014, 2, 186-192.
[4]
Reid, M.D.; Balci, S.; Saka, B.; Adsay, N.V. Neuroendocrine tumors of the pancreas: Current concepts and controversies. Endocr. Pathol., 2014, 1, 65-79.
[5]
Sundin, A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract. Res. Clin. Gastroenterol., 2012, 6(26), 803-818.
[6]
Janson, E.T.; Sorbye, H.; Welin, S.; Federspiel, B.; Gronbaek, H.; Hellman, P.; Ladekarl, M.; Langer, S.W.; Mortensen, J.; Schalin-Jantti, C.; Sundin, A.; Sundlov, A.; Thiis-Evensen, E.; Knigge, U. Nordic guidelines 2014 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. Acta Oncologica, 2014, 53, 1284-1297.
[7]
Jacobs, M.A.; Weinstein, S.; Hope, T.A.; Aslam, R.; Yee, J.; Coakley, F. Neuroendocrine tumors: Beyond the abdomen. J. Comput. Assist. Tomogr., 2014, 38, 898-8914.
[8]
Cloyd, J.M.; Poultsides, G.A. Non-functional neuroendocrine tumors of the pancreas: Advances in diagnosis and management. World J. Gastroenterol., 2015, 21, 9512-9525.
[9]
Toumpanakis, C.; Kim, M.K.; Rinke, A.; Bergestuen, D.S.; Thirlwell, C.; Khan, M.S.; Salazar, R.; Oberg, K. Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology, 2014, 99, 63-74.
[10]
de Herder, W.W. GEP-NETS update: Functional localisation and scintigraphy in neuroendocrine tumours of the gastrointestinal tract and pancreas (GEP-NETs). Eur. J. Endocrinol., 2014, 170, R173-R183.
[11]
Cuccurullo, V.; Faggiano, A.; Scialpi, M.; Cascini, G.L.; Piunno, A.; Catalano, O.; Colao, A.; Mansi, L. Questions and answers: What can be said by diagnostic imaging in neuroendocrine tumors? Minerva Endocrinol., 2012, 37, 367-377.
[12]
Cascini, G.L.; Cuccurullo, V.; Tamburrini, O.; Rotondo, A.; Mansi, L. Peptide imaging with somatostatin analogues: More than cancer probes. Curr. Radiopharm., 2013, 6, 36-40.
[13]
Patel, Y.E. Somatostatin and its receptor family. Front. Neuroendocrinol., 1999, 20, 157-198.
[14]
Reubi, J.C.; Waser, B.; Laissue, J.A.; Gebbers, J-O. Somatostatin and vasoactive intestinal peptide receptors in human mesenchymal tumors: in vitro identification. Cancer Res., 1996, 56, 1922-19231.
[15]
Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev., 2003, 24, 389-427.
[16]
Mansi, L.; Cuccurullo, V. Diagnostic imaging in neuroendocrine tumors. J. Nucl. Med.: Official publication. Soc. Nucl. Med., 2014, 55, 1576-1577.
[17]
Reubi, J.C.; Waser, B.; Schaer, J.C.; Laissue, J.A. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med., 2001, 28, 836-846.
[18]
Reubi, J.C.; Laissue, J.A.; Waser, B.; Steffen, D.L.; Hipkin, R.W.; Schonbrunn, A. Immunohistochemical detection of somatostatin sst2a receptors in the lymphatic, smooth muscular, and peripheral nervous systems of the human gastrointestinal tract: Facts and artifacts. J. Clin. Endocrinol. Metab., 1999, 84, 2942-2950.
[19]
Reubi, J.C.; Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptortumour targeting. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30, 781-793.
[20]
Barnett, P. Somatostatin and somatostatin receptor physiology. Endocrine, 2003, 20, 255-264.
[21]
Cascini, G.L.; Cuccurullo, V.; Mansi, L. The non tumour uptake of (111)In-octreotide creates new clinical indications in benign diseases, but also in oncology. Q. J. Nucl. Med. Mol. Imaging, 2010, 54, 24-36.
[22]
Vezzosi, D.; Bennet, A.; Rochaix, P.; Courbon, F.; Selves, J.; Pradere, B.; Buscail, L.; Susini, C.; Caron, P. Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. Eur. J. Endocrinol., 2005, 152, 757-767.
[23]
Reubi, J.C.; Schar, J.C.; Waser, B.; Wenger, S.; Heppeler, A.; Schmitt, J.S. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med., 2000, 27, 273-282.
[24]
Lesche, S.; Lehmann, D.; Nagel, F.; Schmid, H.A.; Schulz, S. Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J. Clin. Endocrinol. Metab., 2009, 94, 654-661.
[25]
Baum, R.P.; Kulkarni, H.R.; Carreras, C. Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Seminars Nucl. Med., 2012, 42, 190-207.
[26]
Kwekkeboom, D.J.; Kam, B.L.; van Essen, M.; Teunissen, J.J.; van Eijck, C.H.; Valkema, R.; de Jong, M.; de Herder, W.W.; Krenning, E.P. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr. Relat. Cancer, 2010, 17, R53-R573.
[27]
Krenning, E.P.; de Jong, M.; Kooij, P.P.; Breeman, W.A.; Bakker, W.H.; de Herder, W.W.; van Eijck, C.H.; Kwekkeboom, D.J.; Jamar, F.; Pauwels, S.; Valkema, R. Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann. Oncol., 1999, 10(Suppl. 2), S23-S239.
[28]
Cescato, R.; Schulz, S.; Waser, B.; Eltschinger, V.; Rivier, J.E.; Wester, H.J.; Culler, M.; Ginj, M. Liu. Q.; Schonbrunn, A.; Reubi, J.C. Internalization of sst2, sst3 and sst5 recep- tors: effects of somatostatin agonists and antagonists. J. Nucl. Med., 2006, 47, 502-511.
[29]
Bodei, L.; Ferone, D.; Grana, C.M.; Cremonesi, M.; Signore, A.; Dierckx, R.A.; Paganelli, G. Peptide receptortherapies in Neuroendocrine tumors. J. Endocrinol. Invest., 2009, 32, 360-369.
[30]
Kitson, S.L.; Cuccurullo, V.; Moody, T.S.; Mansi, L. Radionuclide antibody-conjugates, a targeted therapy towards cancer. Curr. Radiopharm., 2013, 6, 57-71.
[31]
Fani, M.; Nicolas, G.P.; Wild, D. Somatostatin receptor antagonists for imaging and therapy. J. Nucl. Med., 2017, 58, 61S-66S.
[32]
Kliewer, A.; Reinscheid, R.K.; Schulz, S. Emerging paradigms of G protein-coupled receptor dephosphorylation. Trends Pharmacol. Sci., 2017, 38, 621-636.
[33]
Lee, M.H.; Appleton, K.M.; Strungs, E.G.; Kwon, J.Y.; Morinelli, T.A.; Peterson, Y.K.; Laporte, S.A.; Luttrell, L.M. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature, 2016, 31, 665-668.
[34]
O’Toole, D.; Saveanu, A.; Couvelard, A.; Gunz, G.; Enjalbert, A.; Jaquet, P.; Ruszniewski, P.; Barlier, A. The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies. Eur. J. Endocrinol., 2006, 155(6), 849-857.
[35]
Smit Duijzentkunst, D.A.; Kwekkeboom, D.J.; Bodei, L. Somatostatin Receptor 2-Targeting Compounds. J. Nucl. Med., 2017, 58(Suppl. 2), 54S-60S.
[36]
Tornesello, A.L.; Buonaguro, L.; Tornesello, M.L.; Buonaguro, F.M. New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules, 2017, 2, 22-28.
[37]
Cuccurullo, V.; Prisco, M.R.; Di Stasio, G.D.; Mansi, L. Nuclear medicine in patients with net: Radiolabeled somatostatin analogues and their brothers. Curr. Radiopharm., 2017, 10(2), 74-84.
[38]
Van der Lely, A.J.; de Herder, W.W.; Krenning, E.P.; Kwekkeboom, D.J. Octreoscan radioreceptor imaging. Endocrine, 2003, 20, 307-311.
[39]
Kwekkeboom, D.J.; Kam, B.L.; van Essen, M.; Teunissen, J.J.; van Eijck, C.H.; Valkema, R.; de Jong, M.; de Herder, W.W.; Krenning, E.P. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr. Relat. Cancer, 2010, 29, R53-R73.
[40]
Rambaldi, P.F.; Cuccurullo, V.; Briganti, V.; Mansi, L. The present and future role of (111)Inpentetreotide in the PET era. Q. J. Nucl. Med. Mol. Imaging, 2005, 49, 225-235.
[41]
Cuccurullo, V.; Mansi, L. Toward tailored medicine (and beyond): the phaeochromocytoma and paraganglioma model. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(8), 1262-1265.
[42]
Upadhyay, B.; Lu, S.J.; Navalkissoor, S.; Gnanasegaran, G.; Buscombe, J. The imaging of neuroendocrine tumors using single photon emission computed tomography/computed tomography. Q. J. Nucl. Med. Mol. Imaging, 2015, 59, 140-151.
[43]
Rufini, V.; Calcagni, M.L.; Baum, R.P. Imaging of neuroendocrine tumors. Semin. Nucl. Med., 2006, 36, 228-247.
[44]
Briganti, V.; Matteini, M.; Ferri, P.; Vaggelli, L.; Castagnoli, A.; Pieroni, C. Octreoscan SPET evaluation in the diagnosis of pancreas neuroendocrine tumors. Cancer Biother. Radiopharm., 2001, 16, 515-524.
[45]
Rambaldi, P.F.; Cuccurullo, V.; Cascini, G.L.; Mansi, L. Our experience in thymic hyperplasia using 67Ga-citrate, 111In-pentetreotide and 201Tl-chloride. Eur. J. Nucl. Med. Imaging, 2010, 37(8), 1616.
[46]
Cascini, G.L.; Cuccurullo, V.; Tamburrini, O.; Mansi, L.; Rotondo, A. Nuclear medicine in multiple myeloma - more thandiagnosis. Nucl. Med. Review, 2010, 13(1), 32-38.
[47]
Cuccurullo, V.; Mansi, L. Toward tailored medicine (and beyond): the phaeochromocytoma and paraganglioma model. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39, 1262-1265.
[48]
Binderup, T.; Knigge, U.; Loft, A.; Mortensen, J.; Pfeifer, A.; Federspiel, B.; Hansen, C.P.; Hojgaard, L.; Kjaer, A. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J. Nucl. Med., 2010, 51, 704-712.
[49]
Mansi, L.; Cuccurullo, V.; Ciarmiello, A. From Homo sapiens to Homo in nexu (connected man): Could functional imaging redefine the brain of a “new human species”? Eur. J. Nucl. Med. Mol. Imaging, 2014, 41, 1385-1387.
[50]
Cuccurullo, V.; Cascini, G.L.; Tamburrini, O.; Rotondo, A.; Mansi, L. Bone metastasesradiopharmaceuticals: An overview. Curr. Radiopharm., 2013, 6, 41-47.
[51]
Cuccurullo, V.; Cascini, G.L.; Tamburrini, O.; Mansi, L.; Rotondo, A. Less frequent requests for In-111 pentreotide and its brothers of endocrinological interest. Minerva Endocrinol., 2011, 36, 41-52.
[52]
Mikołajczak, R.; Maecke, H.R. Radiopharmaceuticals for somatostatin receptor imaging. Nucl. Med. Rev. Cent. East. Eur., 2016, 19, 126-132.
[53]
Kitson, S.L.; Cuccurullo, V.; Ciarmiello, A.; Mansi, L. Targeted Therapy Towards Cancer-A Perspective. Anticancer. Agents Med. Chem., 2017, 17(3), 311-317.
[54]
Cuccurullo, V.; Di Stasio, G.D.; Evangelista, L.; Castoria, G.; Mansi, L. Biochemical and pathophysiological premises to positron emission tomography with choline radiotracers. J. Cell. Physiol., 2017, 232(2), 270-275.
[55]
Cuccurullo, V.; Di Stasio, G.D.; Schillirò, M.L.; Mansi, L. Small-animal molecular imaging for preclinical cancer research: PET and SPECT. Curr. Radiopharm., 2016, 9(2), 102-113.
[56]
Velikyan, I. 68Ga-Based radiopharmaceuticals: Production and application relationship. Molecules, 2015, 20, 12913-12943.
[57]
Kulkarni, H.R.; Baum, R.P. Theranostics with Ga-68 somatostatin receptor PET/CT: monitoring response to peptide receptor radionuclide therapy. PET Clin., 2014, 9, 91-97.
[58]
Eberlein, U.; Lassmann, M. Dosimetry of [(6)(8)Ga]-labeled compounds. Applied Radiation and Isotopes: Including data, instrumentation
and methods for use in agriculture, industry and medicine 2013, 76, 70-74.
[59]
Ambrosini, V.; Morigi, J.J.; Nanni, C.; Castellucci, P.; Fanti, S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q. J. Nucl. Med. Mol. Imaging, 2015, 59(1), 58-69.
[60]
Win, Z.; Al-Nahhas, A.; Rubello, D.; Gross, M.D. Somatostatin receptor PET imaging with Gallium-68 labeled peptides. Q. J. Nucl. Med. Mol. Imaging, 2007, 51, 244-250.
[61]
Ambrosini, V.; Nanni, C.; Fanti, S. The use of gallium-68 labeled somatostatin receptors in PET/CT imaging. PET Clin., 2014, 9, 323-329.
[62]
Kayani, I.; Conry, B.G.; Groves, A.M.; Win, T.; Dickson, J.; Caplin, M.; Bomanji, J.B. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J. Nucl. Med., 2009, 50(12), 1927-1932.
[63]
Prasad, V.; Ambrosini, V.; Hommann, M.; Hoersch, D.; Fanti, S.; Baum, R.P. Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(1), 67-77.
[64]
Goldsmith, S.J. Update on nuclear medicine imaging of neuroendocrine tumors. Future Oncol., 2009, 5(1), 75-84.
[65]
Ginj, M.; Chen, J.; Walter, M.A.; Eltschinger, V.; Reubi, J.C.; Maecke, H.R. Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin. Cancer Res., 2005, 11, 1136-1145.
[66]
Ginj, M.; Zhang, H.; Eisenwiener, K.P.; Wild, D.; Schulz, S.; Rink, H.; Cescato, R.; Reubi, J.C.; Maecke, H.R. New pansomatostatin ligands and their chelated versions: affinity profile, agonist activity, internalization, and tumor targeting. Clin. Cancer Res., 2008, 14(7), 2019-2027.
[67]
Beyer, T.; Hacker, M.; Schubiger, A.; Virgolini, I.; Wester, H.J. Nuclear medicine 2013: From status quo to status go. European journal of nuclear medicine and molecular imaging, 2013, 40, 1794-1796.
[68]
Virgolini, I.; Innsbruck, T. Peptide receptor radionuclide therapy (PRRT): clinical significance of re-treatment? Eur. J. Nucl. Med. Mol. Imaging, 2015, 42, 1949-1954.
[69]
Bodei, L.; Cremonesi, M.; Kidd, M.; Grana, C.M.; Severi, S.; Modlin, I.M.; Paganelli, G. Peptide receptor radionuclide therapy for advanced neuroendocrine tumors. Thorac. Surg. Clin., 2014, 24(3), 333-349.
[70]
Sowa-Staszczak, A.; Hubalewska-Dydejczyk, A.; Tomaszuk, M. PRRT as neoadjuvant treatment in NET. Recent Results Cancer Res., 2013, 194, 479-485.
[71]
Del Gobbo, A.; Pellegrinelli, A.; Gaudioso, G.; Castellani, M.; Zito Marino, F.; Franco, R.; Palleschi, A.; Nosotti, M.; Bosari, S.; Vaira, V.; Ferrero, S. Analysis of NSCLC tumourheterogeneity, proliferative and 18F-FDG PET indices reveals Ki67 prognostic role in adenocarcinomas. Histopathology, 2016, 68, 746-751.
[72]
Bakker, W.H.; Breeman, W.A.; Kwekkeboom, D.J.; De Jong, L.C.; Krenning, E.P. Practical aspects of peptide receptor radionuclide therapy with [177Lu][DOTA0, Tyr3]octreotate. Q. J. Nucl. Med. Mol. Imaging, 2006, 50, 265-2671.
[73]
Taieb, D.; Garrigue, P.; Bardies, M.; Abdullah, A.E.; Pacak, K. Application and dosimetric requirements for gallium-68-labeled somatostatin analogues in targeted radionuclide therapy for gastroenteropancreatic neuroendocrine tumors. PET Clin., 2015, 10, 477-486.
[74]
Fani, M.; Mueller, A.; Tamma, M.L.; Nicolas, G.; Rink, H.R.; Cescato, R.; Reubi, J.C.; Maecke, H.R. Radiolabeled bicyclic somatostatin-based analogs: A novel class of potential radiotracers for SPECT/PET of neuroendocrine tumors. J. Nucl. Med., 2010, 51(11), 1771-1779.
[75]
Tatsi, A.; Maina, T.; Cescato, R.; Waser, B.; Krenning, E.P.; de Jong, M.; Cordopatis, P.; Reubi, J.C.; Nock, B.A. 111In-DOTA-Somatostatin-14 analogs as potential pansomatostatin-like radiotracers - first results of a preclinical study. EJNMMI Res., 2012, 2(1), 25-28.
[76]
Maina, T.; Cescato, R.; Waser, B.; Tatsi, A.; Kaloudi, A.; Krenning, E.P.; de Jong, M.; Nock, B.A.; Reubi, J.C. [111In-DOTA]LTT-SS28, a first pansomatostatin radioligand for in vivo targeting of somatostatin receptor-positive tumors. J. Med. Chem., 2014, 57(15), 6564-6571.
[77]
Tatsi, A.; Maina, T.; Cescato, R.; Waser, B.; Krenning, E.P.; de Jong, M.; Cordopatis, P.; Reubi, J.C.; Nock, B.A. [DOTA]Somatostatin-14 analogs and their (111)In-radioligands: effects of decreasing ring-size on sst1-5 profile, stability and tumor targeting. Eur. J. Med. Chem., 2014, 12, 30-37.
[78]
Schillaci, O.; Massa, R.; Scopinaro, F. 111In-pentetreotide scintigraphy in the detection of insulinomas: Importance of SPECT imaging. J. Nucl. Med., 2000, 41, 459-462.
[79]
Prasad, V.; Sainz-Esteban, A.; Arsenic, R.; Plöckinger, U.; Denecke, T.; Pape, U.F.; Pascher, A.; Kühnen, P.; Pavel, M.; Blankenstein, O. Role of (68)Ga somatostatin receptor PET/CT in the detection of endogenous hyperinsulinaemic focus: An explorative study. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43, 1593-1600.
[80]
Sowa-Staszczak, A.; Pach, D.; Mikołajczak, R.; Mäcke, H.; Jabrocka-Hybel, A.; Stefańska, A.; Tomaszuk, M.; Janota, B.; Gilis-Januszewska, A.; Małecki, M.; Kamiński, G.; Kowalska, A.; Kulig, J.; Matyja, A.; Osuch, C.; Hubalewska-Dydejczyk, A. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC- 99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40, 524-531.