Review Article

神经系统肿瘤中的硫氧还蛋白,谷胱甘肽和相关分子

卷 27, 期 12, 2020

页: [1878 - 1900] 页: 23

弟呕挨: 10.2174/0929867326666190201113004

价格: $65

摘要

背景:中枢神经系统(CNS)肿瘤由于具有侵袭性和异质性,而且对多种治疗方法均耐药,因此其生存预后较差。 目的:本文综述了脑肿瘤生物学和发病机制的主要方面,包括脑原发性肿瘤(神经胶质瘤)以及其他恶性肿瘤(包括肺癌,乳腺癌和恶性黑色素瘤)的转移整体恶性脑肿瘤的比例很高。我们回顾了抗氧化系统,即硫氧还蛋白和谷胱甘肽系统,在脑肿瘤的发生和/或进展中的作用。 方法:尽管硫氧还蛋白还原酶(TrxR)和硫氧还蛋白(Trx)的过表达通常与脑肿瘤的恶性程度增加有关,而谷胱甘肽(GSH)和谷胱甘肽S-转移酶(GST)的高表达与治疗耐药性相关,关于例如过氧化物酶(Prx)和戊二醛(Grx)的作用,知识差距仍然存在。 结论:由于氧化还原系统在氧化还原稳态和ROS清除中起着重要作用,因此它们是新型抗肿瘤药物的潜在靶标,并讨论了旨在提高脑肿瘤治疗成功率的创新疗法的实例。

关键词: 脑肿瘤,硫氧还蛋白,谷胱甘肽,神经胶质瘤,抗氧化剂系统,中枢神经系统。

[1]
Schmidt-Hansen, M.; Berendse, S.; Hamilton, W. Symptomatic diagnosis of cancer of the brain and central nervous system in primary care: a systematic review. Fam. Pract., 2015, 32(6), 618-623.
[http://dx.doi.org/10.1093/fampra/cmv075] [PMID: 26467645]
[2]
Jemal, A.; Bray, F.; Forman, D.; O’Brien, M.; Ferlay, J.; Center, M.; Parkin, D.M. Cancer burden in Africa and opportunities for prevention. Cancer, 2012, 118(18), 4372-4384.
[http://dx.doi.org/10.1002/cncr.27410] [PMID: 22252462]
[3]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[4]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[5]
Backos, D.S.; Franklin, C.C.; Reigan, P. The role of glutathione in brain tumor drug resistance. Biochem. Pharmacol., 2012, 83(8), 1005-1012.
[http://dx.doi.org/10.1016/j.bcp.2011.11.016] [PMID: 22138445]
[6]
Bhatia, M.; McGrath, K.L.; Di Trapani, G.; Charoentong, P.; Shah, F.; King, M.M.; Clarke, F.M.; Tonissen, K.F. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol., 2016, 8, 68-78.
[http://dx.doi.org/10.1016/j.redox.2015.12.004] [PMID: 26760912]
[7]
Zhang, P.; Gao, J.; Wang, X.; Wen, W.; Yang, H.; Tian, Y.; Liu, N.; Wang, Z.; Liu, H.; Zhang, Y.; Tu, Y. A novel indication of thioredoxin-interacting protein as a tumor suppressor gene in malignant glioma. Oncol. Lett., 2017, 14(2), 2053-2058.
[http://dx.doi.org/10.3892/ol.2017.6397] [PMID: 28781647]
[8]
McNeill, K.A. Epidemiology of Brain Tumors. Neurol. Clin., 2016, 34(4), 981-998.
[http://dx.doi.org/10.1016/j.ncl.2016.06.014] [PMID: 27720005]
[9]
Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wollinsky, Y.; Kruchko, C. Barnholtz,-Sloan, J. CBTRUS nUnited States in 2007-2011. Neuro-oncol., 2014, 16, 3-18.
[10]
Walsh, K.M.; Ohgaki, H.; Wrensch, M.R. Epidemiology. Handb. Clin. Neurol., 2016, 134, 3-18.
[http://dx.doi.org/10.1016/B978-0-12-802997-8.00001-3] [PMID: 26948345]
[11]
Louis, D.N.; Ohgaki, H.; Wiestler, O.; Cavanee, W.K.; Ellison, D.W.; Figarella-Branger, D.; Perry, A. WHO Classification of Tumours of the Central Nervous System, 2016.
[http://dx.doi.org/10.1007/s00401-016-1545-1]
[12]
Kleinschmidt-DeMasters, B.K.; Aisner, D.L.; Birks, D.K.; Foreman, N.K. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am. J. Surg. Pathol., 2013, 37(5), 685-698.
[http://dx.doi.org/10.1097/PAS.0b013e31827f9c5e] [PMID: 23552385]
[13]
Perry, A.; Miller, C.R.; Gujrati, M.; Scheithauer, B.W.; Zambrano, S.C.; Jost, S.C.; Raghavan, R.; Qian, J.; Cochran, E.J.; Huse, J.T.; Holland, E.C.; Burger, P.C.; Rosenblum, M.K. Malignant gliomas with primitive neuroectodermal tumor-like components: a clinicopathologic and genetic study of 53 cases. Brain Pathol., 2009, 19(1), 81-90.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00167.x] [PMID: 18452568]
[14]
Reni, M.; Mazza, E.; Zanon, S.; Gatta, G.; Vecht, C.J. Central nervous system gliomas. Crit. Rev. Oncol. Hematol., 2017, 113, 213-234.
[http://dx.doi.org/10.1016/j.critrevonc.2017.03.021] [PMID: 28427510]
[15]
Claus, E.B. Neurosurgical management of metastases in the central nervous system. Nat. Rev. Clin. Oncol., 2011, 9(2), 79-86.
[http://dx.doi.org/10.1038/nrclinonc.2011.179] [PMID: 22143137]
[16]
Bollig-Fischer, A.; Michelhaugh, S.; Ali-Fehmi, R.; Mittal, S. The molecular genomics of metastatic brain tumours. OA Mol. Oncol., 2013, 1(1), 1.
[http://dx.doi.org/10.13172/2052-9635-1-1-759] [PMID: 25400938]
[17]
Lowery, F.J.; Yu, D. Brain metastasis: Unique challenges and open opportunities. Biochim. Biophys. Acta Rev. Cancer, 2017, 1867(1), 49-57.
[http://dx.doi.org/10.1016/j.bbcan.2016.12.001] [PMID: 27939792]
[18]
Parrish, K.E.; Sarkaria, J.N.; Elmquist, W.F. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clin. Pharmacol. Ther., 2015, 97(4), 336-346.
[http://dx.doi.org/10.1002/cpt.71] [PMID: 25669487]
[19]
Wen, P.B.; Loeffler, J. Metastatic brain cancer. Cancer: Principles and Practice of Oncology., 2001, 1947-1956.
[20]
Fink, K.R.; Fink, J.R. Imaging of brain metastases. Surg. Neurol. Int., 2013, 4(Suppl. 4), S209-S219.
[http://dx.doi.org/10.4103/2152-7806.111298] [PMID: 23717792]
[21]
Obenauf, A.C.; Massagué, J. Surviving at a distance: organ-specific metastasis. Trends Cancer, 2015, 1(1), 76-91.
[http://dx.doi.org/10.1016/j.trecan.2015.07.009] [PMID: 28741564]
[22]
Massagué, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature, 2016, 529(7586), 298-306.
[http://dx.doi.org/10.1038/nature17038] [PMID: 26791720]
[23]
Custódio-Santos, T.; Videira, M.; Brito, M.A. Brain metastasization of breast cancer. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 132-147.
[http://dx.doi.org/10.1016/j.bbcan.2017.03.004] [PMID: 28341420]
[24]
Neman, J.; Termini, J.; Wilczynski, S.; Vaidehi, N.; Choy, C.; Kowolik, C.M.; Li, H.; Hambrecht, A.C.; Roberts, E.; Jandial, R. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc. Natl. Acad. Sci. USA, 2014, 111(3), 984-989.
[http://dx.doi.org/10.1073/pnas.1322098111] [PMID: 24395782]
[25]
Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez-Soto, A.; Jacob, L.; Patwa, R.; Shah, H.; Xu, K.; Cross, J.R.; Massagué, J. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 2016, 533(7604), 493-498.
[http://dx.doi.org/10.1038/nature18268] [PMID: 27225120]
[26]
Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res., 2017, 7(5), 1016-1036.
[PMID: 28560055]
[27]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[28]
Smith, J.S.; Chang, E.F.; Lamborn, K.R.; Chang, S.M.; Prados, M.D.; Cha, S.; Tihan, T.; Vandenberg, S.; McDermott, M.W.; Berger, M.S. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J. Clin. Oncol., 2008, 26(8), 1338-1345.
[http://dx.doi.org/10.1200/JCO.2007.13.9337] [PMID: 18323558]
[29]
Soffietti, R.; Baumert, B.C.; Bello, L.; von Deimling, A.; Duffau, H.; Frénay, M.; Grisold, W.; Grant, F.; Hoang-Xuan, K.; Klein, M.; Melin, B.; Rees, J.; Siegal, T.; Smits, A.; Stupp, R.; Wick, W. European Federation of Neurological Societis. Guidelines on management of low-grade gliomas: report of an EFNS-EANG task force. Eur. J. Neurol., 2010, 17, 1124-1133.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03151.x] [PMID: 20718851]
[30]
van den Bent, M.J.; Taphoorn, M.J.; Brandes, A.A.; Menten, J.; Stupp, R.; Frenay, M.; Chinot, O.; Kros, J.M.; van der Rijt, C.C.; Vecht, ChJ.; Allgeier, A.; Gorlia, T. Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: the European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971. J. Clin. Oncol., 2003, 21(13), 2525-2528.
[http://dx.doi.org/10.1200/JCO.2003.12.015] [PMID: 12829671]
[31]
Chen, Y.; Hu, F.; Zhou, Y.; Chen, W.; Shao, H.; Zhang, Y. MGMT promoter methylation and glioblastoma prognosis: a systematic review and meta-analysis. Arch. Med. Res., 2013, 44(4), 281-290.
[http://dx.doi.org/10.1016/j.arcmed.2013.04.004] [PMID: 23608672]
[32]
Marko, N.F.; Weil, R.J.; Schroeder, J.L.; Lang, F.F.; Suki, D.; Sawaya, R.E. Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J. Clin. Oncol., 2014, 32(8), 774-782.
[http://dx.doi.org/10.1200/JCO.2013.51.8886] [PMID: 24516010]
[33]
Stupp, R.; Hegi, M.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[34]
Ostrom, Q.T.; Gittleman, H.; Stetson, L.; Virk, S.M.; Barnholtz-Sloan, J.S. Epidemiology of gliomas. Cancer Treat. Res., 2015, 163, 1-14.
[http://dx.doi.org/10.1007/978-3-319-12048-5_1]
[35]
Smith, J.S.; Perry, A.; Borell, T.J.; Lee, H.K.; O’Fallon, J.; Hosek, S.M.; Kimmel, D.; Yates, A.; Burger, P.C.; Scheithauer, B.W.; Jenkins, R.B. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J. Clin. Oncol., 2000, 18(3), 636-645.
[http://dx.doi.org/10.1200/JCO.2000.18.3.636] [PMID: 10653879]
[36]
Eckel-Passow, J.E.; Lachance, D.H.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Sicotte, H.; Pekmezci, M.; Rice, T.; Kosel, M.L.; Smirnov, I.V.; Sarkar, G.; Caron, A.A.; Kollmeyer, T.M.; Praska, C.E.; Chada, A.R.; Halder, C.; Hansen, H.M.; McCoy, L.S.; Bracci, P.M.; Marshall, R.; Zheng, S.; Reis, G.F.; Pico, A.R.; O’Neill, B.P.; Buckner, J.C.; Giannini, C.; Huse, J.T.; Perry, A.; Tihan, T.; Berger, M.S.; Chang, S.M.; Prados, M.D.; Wiemels, J.; Wiencke, J.K.; Wrensch, M.R.; Jenkins, R.B. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N. Engl. J. Med., 2015, 372(26), 2499-2508.
[http://dx.doi.org/10.1056/NEJMoa1407279] [PMID: 26061753]
[37]
Bauchet, L.; Mathieu-Daudé, H.; Fabbro-Peray, P.; Rigau, V.; Fabbro, M.; Chinot, O.; Pallusseau, L.; Carnin, C.; Lainé, K.; Schlama, A.; Thiebaut, A.; Patru, M.C.; Bauchet, F.; Lionnet, M.; Wager, M.; Faillot, T.; Taillandier, L.; Figarella-Branger, D.; Capelle, L.; Loiseau, H.; Frappaz, D.; Campello, C.; Kerr, C.; Duffau, H.; Reme-Saumon, M.; Trétarre, B.; Daures, J.P.; Henin, D.; Labrousse, F.; Menei, P.; Honnorat, J. ociété Française de Neurochirurgie (SFNC); Club de Neuro-Oncologie of the Société Française de Neurochirurgie (CNO-SFNC); Société Française de Neuropathologie (SFNP); Association des Neuro- Oncologues d’Expression Française (ANOCEF). Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004 Neuro-oncol., 2010, 12(7), 725-735.
[http://dx.doi.org/10.1093/neuonc/noq030] [PMID: 20364023]
[38]
Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; Hess, K.; Michael, C.; Miller, D.; Sawaya, R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg., 2001, 95(2), 190-198.
[http://dx.doi.org/10.3171/jns.2001.95.2.0190] [PMID: 11780887]
[39]
Sá-Pereira, I.; Brites, D.; Brito, M.A. Neurovascular unit: a focus on pericytes. Mol. Neurobiol., 2012, 45(2), 327-347.
[http://dx.doi.org/10.1007/s12035-012-8244-2] [PMID: 22371274]
[40]
Cardoso, F.L.; Brites, D.; Brito, M.A. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res. Brain Res. Rev., 2010, 64(2), 328-363.
[http://dx.doi.org/10.1016/j.brainresrev.2010.05.003] [PMID: 20685221]
[41]
Eichler, A.F.; Kuter, I.; Ryan, P.; Schapira, L.; Younger, J.; Henson, J.W. Survival in patients with brain metastases from breast cancer: the importance of HER-2 status. Cancer, 2008, 112(11), 2359-2367.
[http://dx.doi.org/10.1002/cncr.23468] [PMID: 18361426]
[42]
Ali, A.; Goffin, J.R.; Arnold, A.; Ellis, P.M. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr. Oncol., 2013, 20(4), e300-e306.
[http://dx.doi.org/10.3747/co.20.1481] [PMID: 23904768]
[43]
Bottoni, U.; Clerico, R.; Paolino, G.; Ambrifi, M.; Corsetti, P.; Calvieri, S. Predictors and survival in patients with melanoma brain metastases. Med. Oncol., 2013, 30(1), 466.
[http://dx.doi.org/10.1007/s12032-013-0466-2] [PMID: 23377924]
[44]
Qian, M.; Ma, M.W.; Fleming, N.H.; Lackaye, D.J.; Hernando, E.; Osman, I.; Shao, Y. Clinicopathological characteristics at primary melanoma diagnosis as risk factors for brain metastasis. Melanoma Res., 2013, 23(6), 461-467.
[http://dx.doi.org/10.1097/CMR.0000000000000015] [PMID: 24165034]
[45]
Holmgren, A. Thioredoxin. Annu. Rev. Biochem., 1985, 54, 237-271.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.001321] [PMID: 3896121]
[46]
Nakamura, H.; Nakamura, K.; Yodoi, J. Redox regulation of cellular activation. Annu. Rev. Immunol., 1997, 15(1), 351-369.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.351] [PMID: 9143692]
[47]
Lillig, C.H.; Holmgren, A. Thioredoxin and related molecules--from biology to health and disease. Antioxid. Redox Signal., 2007, 9(1), 25-47.
[http://dx.doi.org/10.1089/ars.2007.9.25] [PMID: 17115886]
[48]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[49]
Joshi, D.; Kumar, M.D.; Kumar, S.A.; Sangeeta, S. Reversal of methylmercury-induced oxidative stress, lipid peroxidation, and DNA damage by the treatment of N-acetyl cysteine: a protective approach. J. Environ. Pathol. Toxicol. Oncol., 2014, 33(2), 167-182.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2014010291] [PMID: 24941299]
[50]
Mustacich, D.; Powis, G. Thioredoxin reductase. Biochem. J., 2000, 346(Pt 1), 1-8.
[http://dx.doi.org/10.1042/bj3460001] [PMID: 10657232]
[51]
Sandalova, T.; Zhong, L.; Lindqvist, Y.; Holmgren, A.; Schneider, G. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9533-9538.
[http://dx.doi.org/10.1073/pnas.171178698] [PMID: 11481439]
[52]
Zhong, L.; Arnér, E.S.J.; Ljung, J.; Åslund, F.; Holmgren, A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J. Biol. Chem., 1998, 273(15), 8581-8591.
[http://dx.doi.org/10.1074/jbc.273.15.8581] [PMID: 9535831]
[53]
Zhong, L.; Arnér, E.S.; Holmgren, A. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 5854-5859.
[http://dx.doi.org/10.1073/pnas.100114897] [PMID: 10801974]
[54]
Arnér, E.S.J.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem., 2000, 267(20), 6102-6109.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01701.x] [PMID: 11012661]
[55]
Smeets, A.; Evrard, C.; Landtmeters, M.; Marchand, C.; Knoops, B.; Declercq, J-P. Crystal structures of oxidized and reduced forms of human mitochondrial thioredoxin 2. Protein Sci., 2005, 14(10), 2610-2621.
[http://dx.doi.org/10.1110/ps.051632905] [PMID: 16195549]
[56]
Dixit, D.; Sharma, V.; Ghosh, S.; Koul, N.; Mishra, P.K.; Sen, E. Manumycin inhibits STAT3, telomerase activity, and growth of glioma cells by elevating intracellular reactive oxygen species generation. Free Radic. Biol. Med., 2009, 47(4), 364-374.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.04.031] [PMID: 19409983]
[57]
Järvelä, S.; Nordfors, K.; Jansson, M.; Haapasalo, J.; Helén, P.; Paljärvi, L.; Kalimo, H.; Kinnula, V.; Soini, Y.; Haapasalo, H. Decreased expression of antioxidant enzymes is associated with aggressive features in ependymomas. J. Neurooncol., 2008, 90(3), 283-291.
[http://dx.doi.org/10.1007/s11060-008-9658-6] [PMID: 18682894]
[58]
Horecker, B.L. The pentose phosphate pathway. J. Biol. Chem., 2002, 277(50), 47965-47971.
[http://dx.doi.org/10.1074/jbc.X200007200] [PMID: 12403765]
[59]
Rhee, S.G.; Chae, H.Z.; Kim, K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med., 2005, 38(12), 1543-1552.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.02.026] [PMID: 15917183]
[60]
Lu, J.; Chew, E-H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 2007, 104(30), 12288-12293.
[http://dx.doi.org/10.1073/pnas.0701549104] [PMID: 17640917]
[61]
Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol., 2000, 62(6), 649-671.
[http://dx.doi.org/10.1016/S0301-0082(99)00060-X] [PMID: 10880854]
[62]
Lopert, P.; Day, B.J.; Patel, M. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One, 2012, 7(11)e50683
[http://dx.doi.org/10.1371/journal.pone.0050683] [PMID: 23226354]
[63]
Ren, X.; Zou, L.; Zhang, X.; Branco, V.; Wang, J.; Carvalho, C.; Holmgren, A.; Lu, J. Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid. Redox Signal., 2017, 27(13), 989-1010.
[http://dx.doi.org/10.1089/ars.2016.6925] [PMID: 28443683]
[64]
Dringen, R.; Hirrlinger, J. Glutathione pathways in the brain. Biol. Chem., 2003, 384(4), 505-516.
[http://dx.doi.org/10.1515/BC.2003.059] [PMID: 12751781]
[65]
Meister, A. Metabolism and functions of glutathione. Trends Biochem. Sci., 1981, 6, 231-234.
[http://dx.doi.org/10.1016/0968-0004(81)90084-0]
[66]
Aoyama, K.; Watabe, M.; Nakaki, T. Regulation of neuronal glutathione synthesis. J. Pharmacol. Sci., 2008, 108(3), 227-238.
[http://dx.doi.org/10.1254/jphs.08R01CR] [PMID: 19008644]
[67]
Giustarini, D.; Colombo, G.; Garavaglia, M.L.; Astori, E.; Portinaro, N.M.; Reggiani, F.; Badalamenti, S.; Aloisi, A.M.; Santucci, A.; Rossi, R.; Milzani, A.; Dalle-Donne, I. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic. Biol. Med., 2017, 112, 360-375.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.008] [PMID: 28807817]
[68]
Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J., 2001, 360(Pt 1), 1-16.
[http://dx.doi.org/10.1042/bj3600001] [PMID: 11695986]
[69]
Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857] [PMID: 15822171]
[70]
Pinarbasi, H.; Silig, Y.; Gurelik, M. Genetic Polymorphisms of GSTs and Their Association with Primary Brain Tumor Incidence., 2005, 156, 144-149.
[71]
Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta, 2013, 1830(5), 3289-3303.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.020] [PMID: 23201771]
[72]
Lillig, C.H.; Berndt, C.; Holmgren, A. Glutaredoxin systems. Biochim. Biophys. Acta, 2008, 1780(11), 1304-1317.
[http://dx.doi.org/10.1016/j.bbagen.2008.06.003] [PMID: 18621099]
[73]
Arnér, E.S.; Holmgren, A. The thioredoxin system in cancer. Semin. Cancer Biol., 2006, 16(6), 420-426.
[http://dx.doi.org/10.1016/j.semcancer.2006.10.009] [PMID: 17092741]
[74]
Haapasalo, H.; Kyläniemi, M.; Paunul, N.; Kinnula, V.L.; Soini, Y. Expression of antioxidant enzymes in astrocytic brain tumors. Brain Pathol., 2003, 13(2), 155-164.
[http://dx.doi.org/10.1111/j.1750-3639.2003.tb00015.x] [PMID: 12744469]
[75]
Urig, S.; Becker, K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol., 2006, 16(6), 452-465.
[http://dx.doi.org/10.1016/j.semcancer.2006.09.004] [PMID: 17056271]
[76]
Yokomizo, A.; Ono, M.; Nanri, H.; Makino, Y.; Ohga, T.; Wada, M.; Okamoto, T.; Yodoi, J.; Kuwano, M.; Kohno, K. Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res., 1995, 55(19), 4293-4296.
[PMID: 7671238]
[77]
Kemerdere, R.; Kacira, T.; Hanimoglu, H.; Kucur, M.; Tanriverdi, T.; Canbaz, B. Tissue and plasma thioredoxin reductase expressions in patients with glioblastoma multiforme. J. Neurol. Surg. A Cent. Eur. Neurosurg., 2013, 74(4), 234-238.
[http://dx.doi.org/10.1055/s-0032-1333422] [PMID: 23512591]
[78]
Esen, H.; Erdi, F.; Kaya, B.; Feyzioglu, B.; Keskin, F.; Demir, L.S. Tissue thioredoxin reductase-1 expression in astrocytomas of different grades. J. Neurooncol., 2015, 121(3), 451-458.
[http://dx.doi.org/10.1007/s11060-014-1661-5] [PMID: 25391969]
[79]
Esen, H.; Feyzioglu, B.; Erdi, F.; Keskin, F.; Kaya, B.; Demir, L.S. High thioredoxin reductase 1 expression in meningiomas undergoing malignant progression. Brain Tumor Pathol., 2015, 32(3), 195-201.
[http://dx.doi.org/10.1007/s10014-015-0212-x] [PMID: 25592259]
[80]
Witte, A.B.; Anestål, K.; Jerremalm, E.; Ehrsson, H.; Arnér, E.S.J. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radic. Biol. Med., 2005, 39(5), 696-703.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.025] [PMID: 16085187]
[81]
Wen, P.Y.; Kesari, S. Malignant gliomas. Curr. Neurol. Neurosci. Rep., 2004, 4(3), 218-227.
[http://dx.doi.org/10.1007/s11910-004-0042-4] [PMID: 15102348]
[82]
Parney, I.F.; Chang, S.M. Current chemotherapy for glioblastoma. Cancer J., 2003, 9(3), 149-156.
[http://dx.doi.org/10.1097/00130404-200305000-00003] [PMID: 12952300]
[83]
Rigobello, M. P.; Messori, L.; Marcon, G.; Agostina Cinellu, M.; Bragadin, M.; Folda, A.; Scutari, G.; Bindoli, A. Gold complexes inhibit mitochondrial thioredoxin reductase: consequences on mitochondrial functions. J. Inorg., Biochem., 2004, 98(10 SPEC. ISS.), 1634-1641
[84]
Carvalho, C.M.L.; Chew, E.H.; Hashemy, S.I.; Lu, J.; Holmgren, A. Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. J. Biol. Chem., 2008, 283(18), 11913-11923.
[http://dx.doi.org/10.1074/jbc.M710133200] [PMID: 18321861]
[85]
Hansen, J.M.; Zhang, H.; Jones, D.P. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic. Biol. Med., 2006, 40(1), 138-145.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.023] [PMID: 16337887]
[86]
Branco, V.; Caito, S.; Farina, M.; Teixeira da Rocha, J.; Aschner, M.; Carvalho, C. Biomarkers of mercury toxicity: Past, present, and future trends. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(3), 119-154.
[http://dx.doi.org/10.1080/10937404.2017.1289834] [PMID: 28379072]
[87]
Deponte, M.; Urig, S.; Arscott, L.D.; Fritz-Wolf, K.; Réau, R.; Herold-Mende, C.; Koncarevic, S.; Meyer, M.; Davioud-Charvet, E.; Ballou, D.P.; Williams, C.H., Jr; Becker, K. Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase. J. Biol. Chem., 2005, 280(21), 20628-20637.
[http://dx.doi.org/10.1074/jbc.M412519200] [PMID: 15792952]
[88]
Jortzik, E.; Farhadi, M.; Ahmadi, R.; Tóth, K.; Lohr, J.; Helmke, B.M.; Kehr, S.; Unterberg, A.; Ott, I.; Gust, R.; Deborde, V.; Davioud-Charvet, E.; Réau, R.; Becker, K.; Herold-Mende, C. Antiglioma activity of GoPI-sugar, a novel gold(I)-phosphole inhibitor: chemical synthesis, mechanistic studies, and effectiveness in vivo. Biochim. Biophys. Acta, 2014, 1844(8), 1415-1426.
[http://dx.doi.org/10.1016/j.bbapap.2014.01.006] [PMID: 24440405]
[89]
Ferraz, K.S.O.; Da Silva, J.G.; Costa, F.M.; Mendes, B.M.; Rodrigues, B.L.; dos Santos, R.G.; Beraldo, H. N(4)-tolyl-2-acetylpyridine thiosemicarbazones and their platinum(II,IV) and gold(III) complexes: cytotoxicity against human glioma cells and studies on the mode of action. Biometals, 2013, 26(5), 677-691.
[http://dx.doi.org/10.1007/s10534-013-9639-x] [PMID: 23749148]
[90]
Becker, K.; Herold-Mende, C.; Park, J.J.; Lowe, G.; Schirmer, R.H. Human thioredoxin reductase is efficiently inhibited by (2,2‘:6‘,2‘ ‘-terpyridine)platinum(ii) complexes. Possible implications for a novel antitumor strategy. J. Med. Chem., 2001, 44(17), 2784-2792.
[http://dx.doi.org/10.1021/jm001014i] [PMID: 11495589]
[91]
Koncarevic, S.; Urig, S.; Steiner, K.; Rahlfs, S.; Herold-Mende, C.; Sueltmann, H.; Becker, K. Differential genomic and proteomic profiling of glioblastoma cells exposed to terpyridineplatinum(II) complexes. Free Radic. Biol. Med., 2009, 46(8), 1096-1108.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.013] [PMID: 19439228]
[92]
Ahmadi, R.; Urig, S.; Hartmann, M.; Helmke, B.M.; Koncarevic, S.; Allenberger, B.; Kienhoefer, C.; Neher, M.; Steiner, H.H.; Unterberg, A.; Herold-Mende, C.; Becker, K. Antiglioma activity of 2,2′:6′,2"-terpyridineplatinum(II) complexes in a rat model--effects on cellular redox metabolism. Free Radic. Biol. Med., 2006, 40(5), 763-778.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.031] [PMID: 16520229]
[93]
Beauchamp, E.M.; Uren, A. A new era for an ancient drug: arsenic trioxide and Hedgehog signaling. Vitam. Horm., 2012, 88, 333-354.
[http://dx.doi.org/10.1016/B978-0-12-394622-5.00015-8] [PMID: 22391311]
[94]
Hashemy, S.I.; Ungerstedt, J.S.; Zahedi Avval, F.; Holmgren, A. Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J. Biol. Chem., 2006, 281(16), 10691-10697.
[http://dx.doi.org/10.1074/jbc.M511373200] [PMID: 16481328]
[95]
Miklossy, G.; Youn, U.J.; Yue, P.; Zhang, M.; Chen, C-H.; Hilliard, T.S.; Paladino, D.; Li, Y.; Choi, J.; Sarkaria, J.N.; Kawakami, J.K.; Wongwiwatthananukit, S.; Chen, Y.; Sun, D.; Chang, L.C.; Turkson, J. Hirsutinolide Series Inhibit Stat3 Activity, Alter GCN1, MAP1B, Hsp105, G6PD, Vimentin, TrxR1, and Importin α-2 Expression, and Induce Antitumor Effects against Human Glioma. J. Med. Chem., 2015, 58(19), 7734-7748.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00686] [PMID: 26331426]
[96]
Zhang, J.; Yao, J.; Peng, S.; Li, X.; Fang, J. Securinine disturbs redox homeostasis and elicits oxidative stress-mediated apoptosis via targeting thioredoxin reductase. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(1), 129-138.
[http://dx.doi.org/10.1016/j.bbadis.2016.10.019] [PMID: 27777067]
[97]
Chen, Y-C.; Prabhu, K.S.; Mastro, A.M. Is selenium a potential treatment for cancer metastasis? Nutrients, 2013, 5(4), 1149-1168.
[http://dx.doi.org/10.3390/nu5041149] [PMID: 23567478]
[98]
Rooprai, H.K.; Kyriazis, I.; Nuttall, R.K.; Edwards, D.R.; Zicha, D.; Aubyn, D.; Davies, D.; Gullan, R.; Pilkington, G.J. Inhibition of invasion and induction of apoptosis by selenium in human malignant brain tumour cells in vitro. Int. J. Oncol., 2007, 30(5), 1263-1271.
[http://dx.doi.org/10.3892/ijo.30.5.1263] [PMID: 17390030]
[99]
Ramis, G.; Thomàs-Moyà, E.; Fernández de Mattos, S.; Rodríguez, J.; Villalonga, P. EGFR inhibition in glioma cells modulates Rho signaling to inhibit cell motility and invasion and cooperates with temozolomide to reduce cell growth. PLoS One, 2012, 7(6)e38770
[http://dx.doi.org/10.1371/journal.pone.0038770] [PMID: 22701710]
[100]
Fan, C.D.; Fu, X.Y.; Zhang, Z.Y.; Cao, M.Z.; Sun, J.Y.; Yang, M.F.; Fu, X.T.; Zhao, S.J.; Shao, L.R.; Zhang, H.F.; Yang, X.Y.; Sun, B.L. Selenocysteine induces apoptosis in human glioma cells: evidence for TrxR1-targeted inhibition and signaling crosstalk. Sci. Rep., 2017, 7(1), 6465.
[http://dx.doi.org/10.1038/s41598-017-06979-2] [PMID: 28743999]
[101]
Järvelä, S.; Bragge, H.; Paunu, N.; Järvelä, T.; Paljärvi, L.; Kalimo, H.; Helén, P.; Kinnula, V.; Soini, Y.; Haapasalo, H. Antioxidant enzymes in oligodendroglial brain tumors: association with proliferation, apoptotic activity and survival. J. Neurooncol., 2006, 77(2), 131-140.
[http://dx.doi.org/10.1007/s11060-006-9118-0] [PMID: 16292483]
[102]
Sharma, V.; Joseph, C.; Ghosh, S.; Agarwal, A.; Mishra, M.K.; Sen, E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol. Cancer Ther., 2007, 6(9), 2544-2553.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0788] [PMID: 17876051]
[103]
Agarwal, A.; Sharma, V.; Tewari, R.; Koul, N.; Joseph, C.; Sen, E. Molecular Med. Rep. Mol. Med. Rep., 2008, 1(4), 511-515.
[PMID: 21479441]
[104]
Yacoub, A.; Hamed, H.A.; Allegood, J.; Mitchell, C.; Spiegel, S.; Lesniak, M.S.; Ogretmen, B.; Dash, R.; Sarkar, D.; Broaddus, W.C.; Grant, S.; Curiel, D.T.; Fisher, P.B.; Dent, P. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res., 2010, 70(3), 1120-1129.
[105]
Tanaka, T.; Hosoi, F.; Yamaguchi-Iwai, Y.; Nakamura, H.; Masutani, H.; Ueda, S.; Nishiyama, A.; Takeda, S.; Wada, H.; Spyrou, G.; Yodoi, J. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J., 2002, 21(7), 1695-1703.
[http://dx.doi.org/10.1093/emboj/21.7.1695] [PMID: 11927553]
[106]
Choksi, S.; Lin, Y.; Pobezinskaya, Y.; Chen, L.; Park, C.; Morgan, M.; Li, T.; Jitkaew, S.; Cao, X.; Kim, Y-S.; Kim, H-S.; Levitt, P.; Shih, G.; Birre, M.; Deng, C-X.; Liu, Z.G.A.A. A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2. Mol. Cell, 2011, 42(5), 597-609.
[http://dx.doi.org/10.1016/j.molcel.2011.03.030] [PMID: 21658601]
[107]
Shen, X.; Burguillos, M.A.; Osman, A.M.; Frijhoff, J.; Carrillo-Jiménez, A.; Kanatani, S.; Augsten, M.; Saidi, D.; Rodhe, J.; Kavanagh, E.; Rongvaux, A.; Rraklli, V.; Nyman, U.; Holmberg, J.; Östman, A.; Flavell, R.A.; Barragan, A.; Venero, J.L.; Blomgren, K.; Joseph, B. Glioma-induced inhibition of caspase-3 in microglia promotes a tumor-supportive phenotype. Nat. Immunol., 2016, 17(11), 1282-1290.
[http://dx.doi.org/10.1038/ni.3545] [PMID: 27618552]
[108]
Shen, X.; Burguillos, M.A.; Joseph, B. Guilt by association, caspase-3 regulates microglia polarization. Cell Cycle, 2017, 16(4), 306-307.
[http://dx.doi.org/10.1080/15384101.2016.1254979] [PMID: 27830972]
[109]
Zhang, H.; Gu, C.; Yu, J.; Wang, Z.; Yuan, X.; Yang, L.; Wang, J.; Jia, Y.; Liu, J.; Liu, F. Radiosensitization of glioma cells by TP53-induced glycolysis and apoptosis regulator knockdown is dependent on thioredoxin-1 nuclear translocation. Free Radic. Biol. Med., 2014, 69, 239-248.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.034] [PMID: 24509157]
[110]
Zhang, Y.; Chen, F.; Tai, G.; Wang, J.; Shang, J.; Zhang, B.; Wang, P.; Huang, B.; Du, J.; Yu, J.; Zhang, H.; Liu, F. TIGAR knockdown radiosensitizes TrxR1-overexpressing glioma in vitro and in vivo via inhibiting Trx1 nuclear transport. Sci. Rep., 2017, 7, 42928.
[http://dx.doi.org/10.1038/srep42928] [PMID: 28338004]
[111]
Nordfors, K.; Haapasalo, J.; Helén, P.; Paetau, A.; Paljärvi, L.; Kalimo, H.; Kinnula, V.L.; Soini, Y.; Haapasalo, H. Peroxiredoxins and antioxidant enzymes in pilocytic astrocytomas. Clin. Neuropathol., 2007, 26(5), 210-218.
[http://dx.doi.org/10.5414/NPP26210] [PMID: 17907597]
[112]
Gamcsik, M.P.; Kasibhatla, M.S.; Teeter, S.D.; Colvin, O.M. Glutathione levels in human tumors. Biomarkers, 2012, 17(8), 671-691.
[http://dx.doi.org/10.3109/1354750X.2012.715672] [PMID: 22900535]
[113]
Bogosavljević, V.; Bajčetić, M.; Spasojević, I. Comparative analysis of antioxidative systems in malignant and benign brain tumours. Redox Rep., 2015, 20(2), 69-74.
[http://dx.doi.org/10.1179/1351000214Y.0000000106] [PMID: 25247681]
[114]
Shen, K.K.; Ji, L.L.; Chen, Y.; Yu, Q.M.; Wang, Z.T. Influence of glutathione levels and activity of glutathione-related enzymes in the brains of tumor-bearing mice. Biosci. Trends, 2011, 5(1), 30-37.
[http://dx.doi.org/10.5582/bst.2011.v5.1.30] [PMID: 21422598]
[115]
Najim, N.; Podmore, I.D.; McGown, A.; Estlin, E.J. Methionine restriction reduces the chemosensitivity of central nervous system tumour cell lines. Anticancer Res., 2009, 29(8), 3103-3108.
[PMID: 19661322]
[116]
Dukhande, V.V.; Kawikova, I.; Bothwell, A.L.M.; Lai, J.C.K. Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis, 2013, 18(6), 702-712.
[http://dx.doi.org/10.1007/s10495-013-0836-4] [PMID: 23494481]
[117]
Friedman, H.S.; Colvin, O.M.; Kaufmann, S.H.; Ludeman, S.M.; Bullock, N.; Bigner, D.D.; Griffith, O.W. Cyclophosphamide resistance in medulloblastoma. Cancer Res., 1992, 52(19), 5373-5378.
[PMID: 1356617]
[118]
Kohsaka, S.; Takahashi, K.; Wang, L.; Tanino, M.; Kimura, T.; Nishihara, H.; Tanaka, S. Inhibition of GSH synthesis potentiates temozolomide-induced bystander effect in glioblastoma. Cancer Lett., 2013, 331(1), 68-75.
[http://dx.doi.org/10.1016/j.canlet.2012.12.005] [PMID: 23246370]
[119]
Sontheimer, H. A role for glutamate in growth and invasion of primary brain tumors. J. Neurochem., 2008, 105(2), 287-295.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05301.x] [PMID: 18284616]
[120]
Robert, S.M.; Ogunrinu-Babarinde, T.; Holt, K.T.; Sontheimer, H. Role of glutamate transporters in redox homeostasis of the brain. Neurochem. Int., 2014, 73(1), 181-191.
[http://dx.doi.org/10.1016/j.neuint.2014.01.001] [PMID: 24418113]
[121]
Neuwelt, A.J.; Nguyen, T.; Wu, Y.J.; Donson, A.M.; Vibhakar, R.; Venkatamaran, S.; Amani, V.; Neuwelt, E.A.; Rapkin, L.B.; Foreman, N.K. Preclinical high-dose acetaminophen with N-acetylcysteine rescue enhances the efficacy of cisplatin chemotherapy in atypical teratoid rhabdoid tumors. Pediatr. Blood Cancer, 2014, 61(1), 120-127.
[http://dx.doi.org/10.1002/pbc.24602] [PMID: 23956023]
[122]
Dalle-Donne, I.; Rossi, R.; Colombo, G.; Giustarini, D.; Milzani, A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem. Sci., 2009, 34(2), 85-96.
[http://dx.doi.org/10.1016/j.tibs.2008.11.002] [PMID: 19135374]
[123]
Seo, M.; Lee, Y.H. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. J. Mol. Biol., 2014, 426(4), 830-842.
[http://dx.doi.org/10.1016/j.jmb.2013.11.021] [PMID: 24295899]
[124]
Butturini, E.; Carcereri de Prati, A.; Chiavegato, G.; Rigo, A.; Cavalieri, E.; Darra, E.; Mariotto, S. Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs. Free Radic. Biol. Med., 2013, 65, 1322-1330.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.09.015] [PMID: 24095958]
[125]
Landi, S. Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat. Res., 2000, 463(3), 247-283.
[http://dx.doi.org/10.1016/S1383-5742(00)00050-8] [PMID: 11018744]
[126]
Lo, H.W.; Ali-Osman, F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr. Opin. Pharmacol., 2007, 7(4), 367-374.
[http://dx.doi.org/10.1016/j.coph.2007.06.009] [PMID: 17681492]
[127]
Calatozzolo, C.; Pollo, B.; Botturi, A.; Dinapoli, L.; Carosi, M.; Salmaggi, A.; Maschio, M. Multidrug resistance proteins expression in glioma patients with epilepsy. J. Neurooncol., 2012, 110(1), 129-135.
[http://dx.doi.org/10.1007/s11060-012-0946-9] [PMID: 22832898]
[128]
Calatozzolo, C.; Gelati, M.; Ciusani, E.; Sciacca, F.L.; Pollo, B.; Cajola, L.; Marras, C.; Silvani, A.; Vitellaro-Zuccarello, L.; Croci, D.; Boiardi, A.; Salmaggi, A. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J. Neurooncol., 2005, 74(2), 113-121.
[http://dx.doi.org/10.1007/s11060-004-6152-7] [PMID: 16193381]
[129]
Wahid, M.; Mahjabeen, I.; Baig, R. M.; Akhtar, M. Expression of CYP1A1 and GSTP1 in human brain tumor tissues in pakistan. . 2013, 14, 7187-7191.,
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7187]
[130]
Nielsen, S. S.; Mueller, B. A.; Preston-martin, S.; Farin, F. M.; Holly, E. A.; Mckean-cowdin, R. Childhood brain tumors and maternal cured meat consumption in pregnancy: differential effect by glutathione s -Transferases. 2011, 2413-2420.
[http://dx.doi.org//10.1158/1055-9965.EPI-11-01] [PMID: 21914837]
[131]
Schwartzbaum, J.A.; Ahlbom, A.; Lönn, S.; Warholm, M.; Rannug, A.; Auvinen, A.; Christensen, H.C.; Henriksson, R.; Johansen, C.; Lindholm, C.; Malmer, B.; Salminen, T.; Schoemaker, M.J.; Swerdlow, A.J.; Feychting, M. An international case-control study of glutathione transferase and functionally related polymorphisms and risk of primary adult brain tumors. Cancer Epidemiol. Biomarkers Prev., 2007, 16(3), 559-565.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0918] [PMID: 17372252]
[132]
Barahmani, N.; Carpentieri, S.; Li, X.N.; Wang, T.; Cao, Y.; Howe, L.; Kilburn, L.; Chintagumpala, M.; Lau, C.; Okcu, M.F. Glutathione S-transferase M1 and T1 polymorphisms may predict adverse effects after therapy in children with medulloblastoma. Neuro-oncol., 2009, 11(3), 292-300.
[http://dx.doi.org/10.1215/15228517-2008-089] [PMID: 18952980]
[133]
De Roos, A.J.; Rothman, N.; Inskip, P.D.; Linet, M.S.; Shapiro, W.R.; Selker, R.G.; Fine, H.A.; Black, P.M.; Pittman, G.S.; Bell, D.A. Genetic polymorphisms in GSTM1, -P1, -T1, and CYP2E1 and the risk of adult brain tumors. Cancer Epidemiol. Biomarkers Prev., 2003, 12(1), 14-22.
[PMID: 12540498]
[134]
Ezer, R.; Alonso, M.; Pereira, E.; Kim, M.; Allen, J.C.; Miller, D.C.; Newcomb, E.W. Identification of Glutathione S-Transferase; GST, 2002, pp. 123-134.
[135]
Kilburn, L.; Okcu, M. F.; Wang, T.; Cao, Y.; Renfro-spelman, A. Glutathione S-Transferase polymorphisms are associated with survival in anaplastic glioma patients., 2010, 2242-2249.
[http://dx.doi.org/10.1002/cncr.25006] [PMID: 20187096]
[136]
Okcu, M. F.; Selvan, M.; Wang, L.; Stout, L.; Erana, R.; Airewele, G.; Adatto, P.; Hess, K.; Ali-osman, F.; Groves, M.; Yung, A. W. K.; Levin, V. A.; Wei, Q.; Bondy, M. Glutathione S -Transferase polymorphisms and survival in primary malignant glioma. 2004, 10(713), 2618-2625
[137]
Wrensch, M.; Kelsey, K.T.; Liu, M.; Miike, R.; Moghadassi, M.; Aldape, K.; McMillan, A.; Wiencke, J.K. Glutathione-S-transferase variants and adult glioma. Cancer Epidemiol. Biomarkers Prev., 2004, 13(3), 461-467.
[PMID: 15006924]
[138]
Sima, X.; Zhong, W.; Liu, J.; You, C. Lack of association between GSTM1 and GSTT1 polymorphisms and brain tumour risk. 2012, 13, 325-328,
[http://dx.doi.org/10.7314/APJCP.2012.13.1.325] [PMID: 22502694]
[139]
Fan, Z.; Wu, Y.; Shen, J.; Zhan, R. Glutathione S-transferase M1, T1, and P1 polymorphisms and risk of glioma: a meta-analysis. Mol. Biol. Rep., 2013, 40(2), 1641-1650.
[http://dx.doi.org/10.1007/s11033-012-2213-8] [PMID: 23079710]
[140]
Yao, L.; Ji, G.; Gu, A.; Zhao, P.; Liu, N. An updated pooled analysis of glutathione S-transferase genotype polymorphisms and risk of adult gliomas. Asian Pac. J. Cancer Prev., 2012, 13(1), 157-163.
[http://dx.doi.org/10.7314/APJCP.2012.13.1.157] [PMID: 22502660]
[141]
Zhang, B.; Wang, J.; Niu, H.; Li, Y.; Yuan, F.; Tian, Y.; Zhou, F.; Hao, Z.; Zheng, Y.; Li, Q.; Wang, W. Association between glutathione S-transferase T1 null genotype and glioma susceptibility: a meta-analysis. Tumour Biol., 2014, 35(3), 2081-2086.
[http://dx.doi.org/10.1007/s13277-013-1276-z] [PMID: 24122206]
[142]
Geng, P.; Li, J.; Wang, N.; Ou, J. Genetic contribution of polymorphisms in glutathione s-transferases to brain tumor risk., 2016, 1730-1740.
[http://dx.doi.org/10.1007/s12035-015-9097-2]
[143]
Ding, H.; Liu, W.; Yu, X.; Wang, L.; Shao, L.; Yi, W. Risk association of meningiomas with MTHFR C677T and GSTs polymorphisms : A Meta-Analysis., 2014. 7(11) 3904-3914
[144]
Diedrich, A.; Bock, H.C.; König, F.; Schulz, T.G.; Ludwig, H.C.; Herken, R.; Quondamatteo, F. Expression of glutathione S-transferase T1 (GSTT1) in human brain tumours. Histol. Histopathol., 2006, 21(11), 1199-1207.
[PMID: 16874663]
[145]
Mousseau, M.; Chauvin, C.; Nissou, M.F.; Chaffanet, M.; Plantaz, D.; Pasquier, B.; Schaerer, R.; Benabid, A. A study of the expression of four chemoresistance-related genes in human primary and metastatic brain tumours. Eur. J. Cancer, 1993, 29A(5), 753-759.
[http://dx.doi.org/10.1016/S0959-8049(05)80361-2] [PMID: 8385972]
[146]
Schipper, D.; Wagenmans, M.; Wagener, D.; Peters, W. Glutathione S-transferases and cancer. Int. J. Oncol., 1997, 10(6), 1261-1264.
[PMID: 21533514]
[147]
Jedlitschky, G.; Leier, I.; Buchholz, U.; Center, M.; Keppler, D. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res., 1994, 54(18), 4833-4836.
[PMID: 7915193]
[148]
Kogias, E.; Osterberg, N.; Baumer, B.; Psarras, N.; Koentges, C.; Papazoglou, A.; Saavedra, J.E.; Keefer, L.K.; Weyerbrock, A. Growth-inhibitory and chemosensitizing effects of the glutathione-S-transferase-π-activated nitric oxide donor PABA/NO in malignant gliomas. Int. J. Cancer, 2012, 130(5), 1184-1194.
[http://dx.doi.org/10.1002/ijc.26106] [PMID: 21455987]
[149]
Winter, S.; Strik, H.; Rieger, J.; Beck, J.; Meyermann, R.; Weller, M. Glutathione S-transferase and drug sensitivity in malignant glioma., J. Neurol. Sci., 2000, 179((S 1-2)), 115-121,
[150]
Bhatti, P.; Stewart, P.A.; Hutchinson, A.; Rothman, N.; Linet, M.S.; Inskip, P.D.; Rajaraman, P. Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer Epidemiol. Biomarkers Prev., 2009, 18(6), 1841-1848.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0197] [PMID: 19505917]
[151]
Hu, Y.J.; Diamond, A.M. Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res., 2003, 63(12), 3347-3351.
[PMID: 12810669]
[152]
Zhang, Z.H.; Kimura, M.; Itokawa, Y. Inhibitory effect of selenium and change of glutathione peroxidase activity on rat glioma. Biol. Trace Elem. Res., 1996, 55(1-2), 31-38.
[http://dx.doi.org/10.1007/BF02784166] [PMID: 8971352]
[153]
Tanriverdi, T.; Hanimoglu, H.; Kacira, T.; Sanus, G.Z.; Kemerdere, R.; Atukeren, P.; Gumustas, K.; Canbaz, B.; Kaynar, M.Y. Glutathione peroxidase, glutathione reductase and protein oxidation in patients with glioblastoma multiforme and transitional meningioma. J. Cancer Res. Clin. Oncol., 2007, 133(9), 627-633.
[http://dx.doi.org/10.1007/s00432-007-0212-2] [PMID: 17457608]
[154]
Aggarwal, S.; Subberwal, M.; Kumar, S.; Sharma, M. Brain tumor and role of β-carotene, a-tocopherol, superoxide dismutase and glutathione peroxidase. J. Cancer Res. Ther., 2006, 2(1), 24-27.
[http://dx.doi.org/10.4103/0973-1482.19771] [PMID: 17998669]
[155]
Yílmaz, N.; Dulger, H.; Kíymaz, N.; Yílmaz, C.; Bayram, I.; Ragip, B.; Oğer, M. Lipid peroxidation in patients with brain tumor. Int. J. Neurosci., 2006, 116(8), 937-943.
[http://dx.doi.org/10.1080/00207450600553141] [PMID: 16861159]
[156]
Pu, P.Y.; Lan, J.; Shan, S.B.; Huang, E.Q.; Bai, Y.; Guo, Y.; Jiang, D.H. Study of the antioxidant enzymes in human brain tumors. J. Neurooncol., 1996, 29(2), 121-128.
[http://dx.doi.org/10.1007/BF00182134] [PMID: 8858516]
[157]
Dokic, I.; Hartmann, C.; Herold-Mende, C.; Régnier-Vigouroux, A. Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia, 2012, 60(11), 1785-1800.
[http://dx.doi.org/10.1002/glia.22397] [PMID: 22951908]
[158]
Lee, H-C.; Kim, D-W.; Jung, K-Y.; Park, I-C.; Park, M-J.; Kim, M-S.; Woo, S-H.; Rhee, C-H.; Yoo, H.; Lee, S-H.; Hong, S-I. Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line. Int. J. Mol. Med., 2004, 13(6), 883-887.
[http://dx.doi.org/10.3892/ijmm.13.6.883] [PMID: 15138630]
[159]
Yang, W.; Shen, Y.; Wei, J.; Liu, F. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species. Oncotarget, 2015, 6(26), 22006-22027.
[http://dx.doi.org/10.18632/oncotarget.4292] [PMID: 26124081]
[160]
Li, Y.; Piao, F.; Liu, X. Protective effect of taurine on triorthocresyl phosphate (TOCP)-induced cytotoxicity in C6 glioma cells. Adv. Exp. Med. Biol., 2013, 776, 231-240.
[http://dx.doi.org/10.1007/978-1-4614-6093-0_22] [PMID: 23392886]
[161]
Zhao, H.; Ji, B.; Chen, J.; Huang, Q.; Lu, X. Gpx 4 is involved in the proliferation, migration and apoptosis of glioma cells. Pathol. Res. Pract., 2017, 213(6), 626-633.
[http://dx.doi.org/10.1016/j.prp.2017.04.025] [PMID: 28552540]
[162]
Meyer, E.B.; Wells, W.W. Thioltransferase overexpression increases resistance of MCF-7 cells to adriamycin. Free Radic. Biol. Med., 1999, 26(5-6), 770-776.
[http://dx.doi.org/10.1016/S0891-5849(98)00247-0] [PMID: 10218667]
[163]
Nakamura, H.; Bai, J.; Nishinaka, Y.; Ueda, S.; Sasada, T.; Ohshio, G.; Imamura, M.; Takabayashi, A.; Yamaoka, Y.; Yodoi, J. Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect. Prev., 2000, 24(1), 53-60.
[PMID: 10757123]
[164]
He, F.; Wei, L.; Luo, W.; Liao, Z.; Li, B.; Zhou, X.; Xiao, X.; You, J.; Chen, Y.; Zheng, S.; Li, P.; Murata, M.; Huang, G.; Zhang, Z. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget, 2016, 7(24), 37000-37012.
[http://dx.doi.org/10.18632/oncotarget.9454] [PMID: 27203742]
[165]
Fernandes, A.P.; Capitanio, A.; Selenius, M.; Brodin, O.; Rundlöf, A.K.; Björnstedt, M. Expression profiles of thioredoxin family proteins in human lung cancer tissue: correlation with proliferation and differentiation. Histopathology, 2009, 55(3), 313-320.
[http://dx.doi.org/10.1111/j.1365-2559.2009.03381.x] [PMID: 19723146]
[166]
Branco, V.; Coppo, L.; Solá, S.; Lu, J.; Rodrigues, C.M.P.; Holmgren, A.; Carvalho, C. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol., 2017, 13, 278-287.
[http://dx.doi.org/10.1016/j.redox.2017.05.024] [PMID: 28600984]
[167]
Du, Y.; Zhang, H.; Lu, J.; Holmgren, A. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J. Biol. Chem., 2012, 287(45), 38210-38219.
[http://dx.doi.org/10.1074/jbc.M112.392225] [PMID: 22977247]
[168]
Zhang, H.; Du, Y.; Zhang, X.; Lu, J.; Holmgren, A. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid. Redox Signal., 2014, 21(5), 669-681.
[http://dx.doi.org/10.1089/ars.2013.5499] [PMID: 24295294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy