Review Article

苯并咪唑衍生的化合物可用于不同的阿尔茨海默氏病靶标

卷 26, 期 18, 2019

页: [3260 - 3278] 页: 19

弟呕挨: 10.2174/0929867326666190124123208

价格: $65

摘要

苯并咪唑支架已被有效地用于设计各种药理活性分子。 实际上,当今有多种苯并咪唑药物可用于治疗不同的疾病。 尽管当今临床上尚无苯并咪唑基团包含用于治疗阿尔茨海默氏病(AD)的药物,但已经设计并合成了许多苯并咪唑衍生物化合物,以对某些经过验证和未经验证的AD靶标起作用。 本文旨在综述描述这些含苯并咪唑的分子的文献,这些分子旨在靶向一些与AD的发展有关的生化级联反应。

关键词: 苯并咪唑,胆碱酯酶抑制,H3受体,PPAR,BACE,γ-分泌酶,谷氨酰胺酰环化酶。

[1]
Orhan, I.E.; Senol, F.S. Designing multi-targeted therapeutics for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem., 2016, 16(17), 1889-1896.
[http://dx.doi.org/10.2174/1568026616666160204121832] [PMID: 26845553]
[2]
Santos, M.A.; Chand, K.; Chaves, S. Recent progress in repositioning Alzheimer’s disease drugs based on a multitarget strategy. Future Med. Chem., 2016, 8(17), 2113-2142.
[http://dx.doi.org/10.4155/fmc-2016-0103] [PMID: 27774814]
[3]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[4]
Lobo, A.; Launer, L.J.; Fratiglioni, L.; Andersen, K.; Di Carlo, A.; Breteler, M.M.; Copeland, J.R.; Dartigues, J.F.; Jagger, C.; Martinez-Lage, J.; Soininen, H.; Hofman, A. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurology, 2000, 54(11)(Suppl. 5), S4-S9.
[PMID: 10854354]
[5]
Rice, D.P.; Fox, P.J.; Max, W.; Webber, P.A.; Lindeman, D.A.; Hauck, W.W.; Segura, E. The economic burden of Alzheimer’s disease care. Health Aff. (Millwood), 1993, 12(2), 164-176.
[http://dx.doi.org/10.1377/hlthaff.12.2.164] [PMID: 8375811]
[6]
Gulcan, H.O.; Orhan, I.E.; Sener, B. Chemical and molecular aspects on interactions of galanthamine and its derivatives with cholinesterases. Curr. Pharm. Biotechnol., 2015, 16(3), 252-258.
[http://dx.doi.org/10.2174/1389201015666141202105105] [PMID: 25483718]
[7]
Galimberti, D.; Scarpini, E. Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2016, 25(10), 1181-1187.
[http://dx.doi.org/10.1080/13543784.2016.1216972] [PMID: 27459153]
[8]
Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med., 2012, 2(5)006148
[http://dx.doi.org/10.1101/cshperspect.a006148] [PMID: 22553492]
[9]
Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum. Mol. Genetet, 2010. 15;19(R1), R12-20.
[http://dx.doi.org/10.1093/hmg/ddq160]
[10]
van der Cammen, T.J.; Tiemeier, H.; Engelhart, M.J.; Fekkes, D. Abnormal neurotransmitter metabolite levels in Alzheimer patients with a delirium. Int. J. Geriatr. Psychiatry, 2006, 21(9), 838-843.
[http://dx.doi.org/10.1002/gps.1569] [PMID: 16955437]
[11]
Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr., 2005, 10(11)(Suppl. 18), 6-9.
[http://dx.doi.org/10.1017/S1092852900014164] [PMID: 16273023]
[12]
Lublin, A.L.; Gandy, S. Amyloid-β oligomers: possible roles as key neurotoxins in Alzheimer’s Disease. Mt. Sinai J. Med., 2010, 77(1), 43-49.
[http://dx.doi.org/10.1002/msj.20160] [PMID: 20101723]
[13]
Rampa, A.; Gobbi, S.; Belluti, F.; Bisi, A. Emerging targets in neurodegeneration: New opportunities for Alzheimer’s disease treatment? Curr. Top. Med. Chem., 2013, 13(15), 1879-1904.
[http://dx.doi.org/10.2174/15680266113139990143] [PMID: 23931436]
[14]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[15]
Wright, J.B. The chemistry of the benzimidazoles. Chem. Rev., 1951, 48(3), 397-541.
[http://dx.doi.org/10.1021/cr60151a002] [PMID: 24541208]
[16]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97(97), 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[17]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[18]
Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem. Biol. Drug Des., 2015, 86(1), 19-65.
[http://dx.doi.org/10.1111/cbdd.12462] [PMID: 25352112]
[19]
Ingle, R.G.; Magar, D.D. Heterocyclic chemistry of benzimidazoles and potential activities of derivatives. Int. J. Drug Res. Tech., 2011, 1(1), 26-32.
[20]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76(76), 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[21]
Casey, D.A.; Antimisiaris, D.; O’Brien, J. Drugs for Alzheimer’s disease: are they effective? P&T, 2010, 35(4), 208-211.
[PMID: 20498822]
[22]
Alpan, A.S.; Parlar, S.; Carlino, L.; Tarikogullari, A.H.; Alptüzün, V.; Güneş, H.S. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2013, 21(17), 4928-4937.
[http://dx.doi.org/10.1016/j.bmc.2013.06.065] [PMID: 23891231]
[23]
Coban, G.; Carlino, L.; Tarikogullari, A.H.; Parlar, S.; Sarikaya, G.; Alptuzun, V.; Alpan, A.S.; Gunes, H.S.; Erciyas, E. 1H-benzimidazole derivatives as butyrylcholinesterase inhibitors: Synthesis and molecular modeling studies. Med. Chem. Res., 2016, 25(9), 2005-2014.
[http://dx.doi.org/10.1007/s00044-016-1648-1]
[24]
Aslam, S.; Zaib, S.; Ahmad, M.; Gardiner, J.M.; Ahmad, A.; Hameed, A.; Furtmann, N.; Gütschow, M.; Bajorath, J.; Iqbal, J. Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors. Eur. J. Med. Chem., 2014, 78, 106-117.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.035] [PMID: 24681070]
[25]
Zhu, J.; Wu, C.F.; Li, X.; Wu, G.S.; Xie, S.; Hu, Q.N.; Deng, Z.; Zhu, M.X.; Luo, H.R.; Hong, X. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem., 2013, 21(14), 4218-4224.
[http://dx.doi.org/10.1016/j.bmc.2013.05.001] [PMID: 23719283]
[26]
Luo, H.; Hong, X.; Deng, Z.; Wu, G.; Ding, A.; Zhu, J.; Zou, X. Preparation of benzimidazole derivatives useful in the treatment of neuropsychiatric disease. Faming Zhuanli Shenqing 2013.CN 103121969.
[27]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Khaw, K.Y.; Murugaiyah, V.; Osman, H.; Masand, V.H. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg. Chem., 2013, 49, 33-39.
[http://dx.doi.org/10.1016/j.bioorg.2013.06.008] [PMID: 23886696]
[28]
Rozengart, E.V.; Basova, N.E. Ammonium compounds with localized and delocalized charge as reversible inhibitors of cholinesterases of different origin. J. Evol. Biochem. Physiol., 2001, 37(6), 604-610.
[http://dx.doi.org/10.1023/A:1014414126143]
[29]
Basova, N.E.; Kormilitsyn, B.N.; Perchenok, A.Iu.; Rosengart, E.V.; Saakov, V.S.; Suvorov, A.A. Inhibitory effect of benzimidazole derivatives on cholinesterases of animals in the presence of different substrates. Ukr. Biochem. J., 2014, 86(5), 47-55.
[http://dx.doi.org/10.15407/ubj86.05.047] [PMID: 25816587]
[30]
Cedillo-Rivera, R.; Muñoz, O. In-vitro susceptibility of Giardia lamblia to albendazole, mebendazole and other chemotherapeutic agents. J. Med. Microbiol., 1992, 37(3), 221-224.
[http://dx.doi.org/10.1099/00222615-37-3-221] [PMID: 1518040]
[31]
Tekwani, B.L. Secretory cholinesterase of Ancylostoma ceylanicum: Effect of tubulin binding agents and benzimidazole anthelmintics. Life Sci., 1992, 50(10), 747-752.
[http://dx.doi.org/10.1016/0024-3205(92)90478-8] [PMID: 1738300]
[32]
Lee, D.L. Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? Int. J. Parasitol., 1996, 26(5), 499-508.
[http://dx.doi.org/[https://doi.org/10.1016/0020-7519(96)00040-9] [PMID: 8818729]
[33]
Stringer, A.; Wright, M.A. The toxicity of benomyl and some related 2-substituted benzimidazoles to the earthworm Lumbricus terrestris. Pestic. Sci., 1976, 7(5), 459-464.
[http://dx.doi.org/10.1002/ps.2780070507]
[34]
Sharma, B.K.; Singh, K.; Saxena, K.K. The effect of levamisole and albendazole on some enzymes of Ascaridia galli and Heterakis gallinae. Vet. Parasitol., 1989, 30(3), 213-222.
[35]
Tiwari, S.S.; Pandley, M.P.; Pandley, V.K. Search for new anthelmintics – Part II. Synthesis of 1,2-disubstituted benzimidazole derivatives. Acta Cienc. Indica Chem., 1980, 6(2), 108-111.
[36]
Yoon, S.S.; Jo, S.A. Mechanisms of amyloid-β peptide clearance: Potential therapeutic targets for Alzheimer’s disease. Biomol. Ther. (Seoul), 2012, 20(3), 245-255.
[http://dx.doi.org/10.4062/biomolther.2012.20.3.245] [PMID: 24130920]
[37]
De Strooper, B.; Vassar, R.; Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(2), 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218] [PMID: 20139999]
[38]
Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813.
[http://dx.doi.org/10.1039/C3CS60460H] [PMID: 24691405]
[39]
Panza, F.; Frisardi, V.; Imbimbo, B.P.; Capurso, C.; Logroscino, G.; Sancarlo, D.; Seripa, D.; Vendemiale, G.; Pilotto, A.; Solfrizzi, V. REVIEW: γ-Secretase inhibitors for the treatment of Alzheimer’s disease: The current state. CNS Neurosci. Ther., 2010, 16(5), 272-284.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00164.x] [PMID: 20560993]
[40]
Roussel, C.; Andreoli, F.; Vanthuyne, N.D.P. Process to prepare new substituted 1H-benzo[d]imidazol-2(3H)-ones, new intermediates and their use as BACE 1 inhibitors. PCT Int. Appl, WO, 2010052670, A1. >2010
[41]
Takahashi, T.; Hijikuro, I.; Sugimoto, H.; Kihara, T.; Shimmoyo, Y.; Niidome, T. Preparation of novel curcumin derivatives as β-secretase inhibitors. PCT Int Appl, WO, 2008066151, A1. 2008
[42]
Mjalli, A.M.; Jones, D.; Gohimmukkula, D.R.; Huang, G.; Zhu, J.; Rao, M.; Andrews, R.C.; Ren, T. Benzazole derivatives and their preparation, compositions, and methods of use as β-secretase inhibitors. PCT Int Appl. WO, 2006099379 A2 2006
[43]
Bischoff, F.; Berthelot, D.; De Cleyn, M.; Macdonald, G.; Minne, G.; Oehlrich, D.; Pieters, S.; Surkyn, M.; Trabanco, A.A.; Tresadern, G.; Van Brandt, S.; Velter, I.; Zaja, M.; Borghys, H.; Masungi, C.; Mercken, M.; Gijsen, H.J. Design and synthesis of a novel series of bicyclic heterocycles as potent γ-secretase modulators. J. Med. Chem., 2012, 55(21), 9089-9106.
[http://dx.doi.org/10.1021/jm201710f] [PMID: 22650177]
[44]
Gijsen, H.J.M.; Bischoff, F.P. Substituted benzoxazole, benzimidazole, oxazolopyridine and imidazopyridine derivatives as γ-secretase modulators and their preparation and use for the treatment of diseases. PCT Int. Appl, 2010. WO 2010094647 A1.
[45]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1)a006189
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[46]
Saji, H.; Ono, M.; Ihara, M.; Seki, I. Preparation of radioactive iodine labeled pyrido[1,2-a] benzimidazole derivative compounds. PCT Int. Appl, 2016. WO 2016140118 A1.
[47]
Matsumura, K.; Ono, M.; Kitada, A.; Watanabe, H.; Yoshimura, M.; Iikuni, S.; Kimura, H.; Okamoto, Y.; Ihara, M.; Saji, H. Structure activity relationship study of heterocyclic phenylethenyl and pyridinylethenyl derivatives as tau-imaging agents that selectively detect neurofibrillary tangles in Alzheimer’s Disease brains. J. Med. Chem., 2015, 58(18), 7241-7257.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00440] [PMID: 26327138]
[48]
Matsumura, K.; Ono, M.; Yoshimura, M.; Kimura, H.; Watanabe, H.; Okamoto, Y.; Ihara, M.; Takahashi, R.; Saji, H. Synthesis and biological evaluation of novel styryl benzimidazole derivatives as probes for imaging of neurofibrillary tangles in Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(11), 3356-3362.
[http://dx.doi.org/10.1016/j.bmc.2013.02.054] [PMID: 23601814]
[49]
Rojo, L.E.; Alzate-Morales, J.; Saavedra, I.N.; Davies, P.; Maccioni, R.B. Selective interaction of lansoprazole and astemizole with tau polymers: potential new clinical use in diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2010, 19(2), 573-589.
[http://dx.doi.org/10.3233/JAD-2010-1262] [PMID: 20110603]
[50]
Maccioni, B.R.; Rojo, L.; Kuljis, A.R. Benzimidazole-derived compounds used as markers in the case of neurodegenerative diseases., 2010.WO2010013127A1.
[51]
Pickhardt, M.; Larbig, G.; Khlistunova, I.; Coksezen, A.; Meyer, B. Mandelkow, Eva-Maria; Schmidt, B.; Mandelkow, E. Phenylthiazolyl-hydrazide and its derivatives are potent inhibitors of T aggregation and toxicity in vitro and in cells. Biochemistry, 2007, 46(35), 10016-10023.
[http://dx.doi.org/10.1021/bi700878g] [PMID: 17685560]
[52]
Okamura, N.; Suemoto, T.; Furumoto, S.; Suzuki, M.; Shimadzu, H.; Akatsu, H.; Yamamoto, T.; Fujiwara, H.; Nemoto, M.; Maruyama, M.; Arai, H.; Yanai, K.; Sawada, T.; Kudo, Y. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J. Neurosci., 2005, 25(47), 10857-10862.
[http://dx.doi.org/10.1523/JNEUROSCI.1738-05.2005] [PMID: 16306398]
[53]
Ando, R.; Aritomo, K.; Shoda, A.; Watanabe, K.; Uehara, F.; Saito, K. Preparation of N-phenyl-1H-benzimidazole-1- carboxamides for treating a disease caused by tau protein kinase 1 hyperactivity. PCT Int. Appl,, 2001. WO 2001042224 A1.
[54]
Harada, R.; Okamura, N.; Furumoto, S.; Yoshikawa, T.; Arai, H.; Yanai, K.; Kudo, Y. Use of a benzimidazole derivative BF-188 in fluorescence multispectral imaging for selective visualization of tau protein fibrils in the Alzheimer’s disease brain. Mol. Imaging Biol., 2014, 16(1), 19-27.
[http://dx.doi.org/10.1007/s11307-013-0667-2] [PMID: 23868612 ]
[55]
Vohora, D.; Bhowmik, M. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: Relevance to Alzheimer’s disease, ADHD, schizophrenia, and drug abuse. Front. Syst. Neurosci., 2012, 6(6), 72.
[http://dx.doi.org/10.3389/fnsys.2012.00072] [PMID: 23109919]
[56]
Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H3 receptor: An attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181.
[http://dx.doi.org/10.1038/bjp.2008.147] [PMID: 18469850]
[57]
Kubo, M.; Kishi, T.; Matsunaga, S.; Iwata, N. Histamine H3 receptor antagonists for Alzheimer’s disease: A systematic review and meta-analysis of randomized placebo-controlled trials. J. Alzheimers Dis., 2015, 48(3), 667-671.
[http://dx.doi.org/10.3233/JAD-150393] [PMID: 26402104]
[58]
Brioni, J.D.; Esbenshade, T.A.; Garrison, T.R.; Bitner, S.R.; Cowart, M.D. Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2011, 336(1), 38-46.
[http://dx.doi.org/10.1124/jpet.110.166876] [PMID: 20864505]
[59]
Rivara, M.; Zuliani, V.; Cocconcelli, G.; Morini, G.; Comini, M.; Rivara, S.; Mor, M.; Bordi, F.; Barocelli, E.; Ballabeni, V.; Bertoni, S.; Plazzi, P.V. Synthesis and biological evaluation of new non-imidazole H3-receptor antagonists of the 2-aminobenzimidazole series. Bioorg. Med. Chem., 2006, 14(5), 1413-1424.
[http://dx.doi.org/10.1016/j.bmc.2005.09.063] [PMID: 16263297]
[60]
Czechtizky, W.; Gao, Z.; Hurst, W.J.; Schwink, L.; Stengelin, S. Preparation of substituted N-phenylpyrrolidinylmethylpyrrolidine amides as H3 receptors modulators. PCT Int. Appl, 2009.WO 2009052063 A1.
[61]
Wager, T.T.; Mente, S.R.; Butler, T.W. Preparation of benzimidazole antagonists of the H-3 receptor. PCT Int. Appl, 2007. WO 2007069053 A1.
[62]
Aslanian, R.; Zhu, X.; Vaccaro, H.A.; Shih, N.Y.; Piwinski, J.J.; Williams, S.M.; West, R.E. Jr Benzimidazole-substituted (3-phenoxypropyl)amines as histamine H3 receptor ligands. Bioorg. Med. Chem. Lett., 2008, 18(18), 5032-5036.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.008] [PMID: 18752952]
[63]
Aslanian, R.G.; Tom, W.C.; Zhu, X. Preparation of imidazole and benzimidazole derivatives as histamine H3 antagonists., 2006. WO 2006078775 A1.
[64]
Gross, J.L.; Robichaud, A.J.; Mazzacani, A.; Williams, M.J. Preparation of aminoalkylazole derivatives as histamine-3 antagonists., 2009.WO 2009012252 A1.
[65]
Nakamura, T.; Masuda, S.; Fujino, A. Preparation of nitrogen-containing heterocyclic derivatives as histamine H3 receptor antagonists., 2010.JP 2010090067 A.
[66]
Auberson, Y.P.; Troxler, T.; Zhang, X.; Yang, C.R.; Feuerbach, D.; Liu, Y.C.; Lagu, B.; Perrone, M.; Lei, L.; Shen, X.; Zhang, D.; Wang, C.; Wang, T.L.; Briner, K.; Bock, M.G. From ergolines to indoles: improved inhibitors of the human H3 receptor for the treatment of narcolepsy. ChemMedChem, 2015, 10(2), 266-275.
[http://dx.doi.org/10.1002/cmdc.201402418] [PMID: 25394333]
[67]
Cole, D.C.; Gross, J.L.; Comery, T.A.; Aschmies, S.; Hirst, W.D.; Kelley, C.; Kim, J.I.; Kubek, K.; Ning, X.; Platt, B.J.; Robichaud, A.J.; Solvibile, W.R.; Stock, J.R.; Tawa, G.; Williams, M.J.; Ellingboe, J.W. Benzimidazole- and indole-substituted 1,3′-bipyrrolidine benzamides as histamine H3 receptor antagonists. Bioorg. Med. Chem. Lett., 2010, 20(3), 1237-1240.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.122] [PMID: 20042333]
[68]
Tang, L.; Zhao, L.; Hong, L.; Yang, F.; Sheng, R.; Chen, J.; Shi, Y.; Zhou, N.; Hu, Y. Design and synthesis of novel 3-substituted-indole derivatives as selective H3 receptor antagonists and potent free radical scavengers. Bioorg. Med. Chem., 2013, 21(19), 5936-5944.
[http://dx.doi.org/10.1016/j.bmc.2013.07.051] [PMID: 23978359]
[69]
Solas, M.; Puerta, E.; Ramirez, M.J. Treatment options in Alzheimer’s disease: The GABA story. Curr. Pharm. Des., 2015, 21(34), 4960-4971.
[http://dx.doi.org/10.2174/1381612821666150914121149] [PMID: 26365140]
[70]
Carlsen, J. New perspectives on the functional anatomical organization of the basolateral amygdala. Acta Neurol. Scand. Suppl., 1989, 122, 1-27.
[http://dx.doi.org/10.1111/j.1600-0404.1989.tb08018.x] [PMID: 2763796]
[71]
Seidl, R.; Cairns, N.; Singewald, N.; Kaehler, S.T.; Lubec, G. Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology. Naunyn Schmiedebergs Arch. Pharmacol., 2001, 363(2), 139-145.
[http://dx.doi.org/10.1007/s002100000346] [PMID: 11218066]
[72]
Rissman, R.A.; Mobley, W.C. Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer’s disease. J. Neurochem., 2011, 117(4), 613-622.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07237.x] [PMID: 21388375]
[73]
Larsen, J.S.; Teuber, L.; Ahring, P.K.; Nielsen, E.O.; Mirza, N. Benzimidazole derivatives and their use for modulating the GABAA receptor complex useful in the treatment of anxiety and related diseases and their preparation., 2007.WO 2007110374 A1.
[74]
Teuber, L.; Larsen, J.S.; Ahring, P.K.; Nielsen, E.O.; Mirza, N. Preparation of benzimidazole derivatives and their use for modulating the GABAA receptor complex., 2006.WO 2006108800 A1.
[75]
Teuber, L.; Larsen, J.S. Preparation of arylbenzimidazole derivatives and their use for modulating the GABA-a receptor complex to combat anxiety and related diseases. PCT Int. Appl, 2004. WO 2004087690 A2..
[76]
Teuber, L.; Larsen, J.S. A preparation of benzimidazole derivatives and their use for modulating GABAA receptor complex., 2004.WO2004087137 A1..
[77]
Teuber, L.; Watjen, F.; Fukuda, Y.; Ichimaru, Y. Preparation of benzimidazole compounds as GABAA receptor complex modulators., 1999. WO 9919323 A1.
[78]
Larsen, J.S.; Teuber, L. Preparation of benzimidazole modulators of GABAA receptor complex., 2004.WO 2004089912 A1.
[79]
Teuber, L.; Larsen, J.S.; Ahring, P.K.; Nielsen, E.O.; Mirza, N. Preparation of benzimidazole derivatives and their use for modulating the GABAA receptor complex., 2006. WO 2006111517 A1..
[80]
Teuber, L.; Larsen, J.S.; Ahring, P.K.; Nielsen, E.O.; Mirza, N. Preparation of benzimidazole derivatives and their use for modulating the GABAA receptor complex., 2006.WO 2006111516 A1.
[81]
Hamilton, N.M.; Napier, S.E.; Easson, M.A.M.; Cooke, A.J.; Teuber, L.; Mirza, N.; Waetjen, F. A preparation of 1,5,7-trisubstituted benzimidazole derivatives, useful as modulator of GABAA receptor. PCT Int. Appl, 2005.WO 2005040131 A1..
[82]
Desimone, R.W.; Hutchison, A.; Shaw, K.; Rosewater, D.L. Preparation of aryl and heteroaryl fused aminoalkyl-imidazole derivatives as selective modulators of GABAA receptors., 2000.WO 2000059905 A1.
[83]
Morawski, M.; Schilling, S.; Kreuzberger, M.; Waniek, A.; Jäger, C.; Koch, B.; Cynis, H.; Kehlen, A.; Arendt, T.; Hartlage-Rübsamen, M.; Demuth, H.U.; Roßner, S. Glutaminyl cyclase in human cortex: correlation with (pGlu)-amyloid-β load and cognitive decline in Alzheimer’s disease. J. Alzheimers Dis., 2014, 39(2), 385-400.
[http://dx.doi.org/10.3233/JAD-131535] [PMID: 24164736]
[84]
Hartlage-Rübsamen, M.; Morawski, M.; Waniek, A.; Jäger, C.; Zeitschel, U.; Koch, B.; Cynis, H.; Schilling, S.; Schliebs, R.; Demuth, H.U.; Rossner, S. Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathol., 2011, 121(6), 705-719.
[http://dx.doi.org/10.1007/s00401-011-0806-2] [PMID: 21301857]
[85]
Perez-Garmendia, R.; Gevorkian, G. Pyroglutamate-modified amyloid beta peptides: Emerging targets for Alzheimer’s disease immunotherapy. Curr. Neuropharmacol., 2013, 11(5), 491-498.
[http://dx.doi.org/10.2174/1570159X11311050004] [PMID: 24403873]
[86]
Hennekens, C.H.; Bensadon, B.A.; Zivin, R.; Gaziano, J.M. Hypothesis: glutaminyl cyclase inhibitors decrease risks of Alzheimer’s disease and related dementias. Expert Rev. Neurother., 2015, 15(11), 1245-1248.
[http://dx.doi.org/10.1586/14737175.2015.1088784] [PMID: 26450764]
[87]
Ramsbeck, D.; Buchholz, M.; Koch, B.; Böhme, L.; Hoffmann, T.; Demuth, H.U.; Heiser, U. Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold. J. Med. Chem., 2013, 56(17), 6613-6625.
[http://dx.doi.org/10.1021/jm4001709] [PMID: 23886302]
[88]
Heiser, U.; Ramsbeck, D.; Hoffmann, T.; Boehme, L.; Demuth, H.U. Preparation of heterocyclic derivatives as glutaminyl cyclase inhibitors., 2011.WO 2011107530 A2..
[89]
Heiser, U.; Sommer, R.; Ramsbeck, D.; Meyer, A.; Hoffmann, T.; Boehme, L.; Demuth, H.U. Preparation of heterocyclic imidazole derivatives as therapeutic inhibitors of glutaminyl cyclase., 2011.WO 2011029920 A1..
[90]
Buchholz, M.; Niestroj, A.J.; Heiser, U.; Ramsbeck, D.; Schilling, S. Preparation of benzo[d]imidazolyl-1,3,4- oxadiazoles as glutaminyl cyclase inhibitors useful in prophylaxis and combination therapy of diseases. PCT Int. Appl, 2008.WO 2008065141 A1.
[91]
Heiser, U.; Ramsbeck, D. Preparation of benzimidazole derivatives as inhibitors of glutaminyl cyclase., 2012.WO 2012123563 A1..
[92]
Heiser, U.; Ramsbeck, D.; Hoffmann, T.; Boehme, L. Benzimidazole derivatives as inhibitors of glutaminyl cyclase, 2011.WO2011131748A3.
[93]
Buchholz, M.; Heiser, U.; Niestroj, A.J. Novel urea inhibitors of glutaminyl cyclase and their therapeutic uses. U.S. Pat. Appl. Publ, 2008.US 20080262063 A1.
[94]
Heiser, U.; Ramsbeck, D.; Demuth, H.U. Preparation of radiolabelled glutaminyl cyclase (qc) inhibitors for use as imaging agents. U.S. Pat. Appl. Publ, 2012. US 20120301398 A1..
[95]
Kummer, M.P.; Heneka, M.T. PPARs in Alzheimer’s Disease. PPAR Res., 2008.2008403896
[http://dx.doi.org/10.1155/2008/403896] [PMID: 18645613]
[96]
Mandard, S.; Patsouris, D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res., 2013.2013613864
[http://dx.doi.org/10.1155/2013/613864] [PMID: 23577023]
[97]
Gasparini, L.; Ongini, E.; Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02743.x] [PMID: 15485484]
[98]
Moore, A.H.; Bigbee, M.J.; Boynton, G.E.; Wakeham, C.M.; Rosenheim, H.M.; Staral, C.J.; Morrissey, J.L.; Hund, A.K. Non-Steroidal Anti-Inflammatory Drugs in Alzheimer’s Disease and Parkinson’s Disease: Reconsidering the Role of Neuroinflammation. Pharmaceuticals (Basel), 2010, 3(6), 1812-1841.
[http://dx.doi.org/10.3390/ph3061812] [PMID: 27713331]
[99]
Darwish, K.M.; Salama, I.; Mostafa, S.; Gomaa, M.S.; Helal, M.A. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur. J. Med. Chem., 2016, 109, 157-172.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.049] [PMID: 26774923]
[100]
Sime, M.; Allan, A.C.; Chapman, P.; Fieldhouse, C.; Giblin, G.M.P.; Healy, M.P.; Lambert, M.H.; Leesnitzer, L.M.; Lewis, A.; Merrihew, R.V.; Rutter, R.A.; Sasse, R.; Shearer, B.G.; Willson, T.M.; Xu, R.X.; Virley, D.J. Discovery of GSK1997132B a novel centrally penetrant benzimidazole PPARγ partial agonist. Bioorg. Med. Chem. Lett., 2011, 21(18), 5568-5572.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.088] [PMID: 21798739]
[101]
Ushiroda, K.; Maruta, K.; Takazawa, T.; Nagano, T.; Taiji, M.; Kohno, T.; Sato, Y.; Horai, S.; Yanagi, K.; Nagata, R. Synthesis and pharmacological evaluation of novel benzoylazole-based PPAR α/γ activators. Bioorg. Med. Chem. Lett., 2011, 21(7), 1978-1982.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.032] [PMID: 21377875]
[102]
Goebel, M.; Staels, B.; Unger, T.; Kintscher, U.; Gust, R. Characterization of new PPARgamma agonists: benzimidazole derivatives - the importance of position 2. ChemMedChem, 2009, 4(7), 1136-1142.
[http://dx.doi.org/10.1002/cmdc.200900067] [PMID: 19504532]
[103]
Ripka, A.S.; Saunders, J.O.; Kamenecka, T.M.; Griffin, P.R. Preparation of N-biphenylmethylbenzimidazole modulators of PPARG. PCT Int. Appl, 2013. WO 2013078240 A1.
[104]
Ripka, A.S.; Saunders, J.O.; Kamenecka, T.M. Griffin, P.R. -benzylbenzimidazole modulators of PPARγ. . PCT Int. Appl, 2013.WO 2013078233 A1.
[105]
Yanagisawa, A.; Uehara, K.; Matsubara, M.; Ueno, K.; Suzuki, M.; Kuboyama, T.; Yamamoto, K.; Tamura, T. Preparation of tricyclic compounds as PPARγ agonists., 2010. WO 2010016549 aff1.
[106]
Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Perry, G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2000, 1502(1), 139-144.
[http://dx.doi.org/10.1016/S0925-4439(00)00040-5]
[107]
Dumont, M.; Beal, M.F. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med., 2011, 51(5), 1014-1026.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.11.026] [PMID: 21130159]
[108]
Carocho, M.; Ferreira, I.C. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[109]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214.
[http://dx.doi.org/10.1038/nrd1330] [PMID: 15031734]
[110]
Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Domínguez, H.; Parajó, J.C. Natural antioxidants from residual sources. Food Chem., 2001, 72(2), 145-171.
[http://dx.doi.org/10.1016/S0308-8146(00)00223-5]
[111]
Pokorný, J. Are natural antioxidants better–and safer–than synthetic antioxidants? Eur. J. Lipid Sci. Technol., 2007, 109(6), 629-642.
[http://dx.doi.org/10.1002/ejlt.200700064]
[112]
Kim, T.; Yang, H.Y.; Park, B.G.; Jung, S.Y.; Park, J.H.; Park, K.D.; Min, S.J.; Tae, J.; Yang, H.; Cho, S.; Cho, S.J.; Song, H.; Mook-Jung, I.; Lee, J.; Pae, A.N. Discovery of benzimidazole derivatives as modulators of mitochondrial function: A potential treatment for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 1172-1192.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.017] [PMID: 27855359]
[113]
Vangavaragu, J.R.; Valasani, K.R.; Gan, X.; Yan, S.S. Identification of human presequence protease (hPreP) agonists for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 76, 506-516.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.046] [PMID: 24602793]
[114]
Alpan, A.S.; Sarıkaya, G.; Çoban, G.; Parlar, S.; Armagan, G.; Alptüzün, V. Mannich-benzimidazole derivatives as antioxidant and anticholinesterase inhibitors: Synthesis, biological evaluations, and molecular docking study. Arch. Pharm. (Weinheim), 2017, 350(7)e1600351
[http://dx.doi.org/10.1002/ardp.201600351] [PMID: 28379621]
[115]
Chaves, S.; Hiremathad, A.; Tomás, D.; Keri, R.S.; Piemontese, L.; Santos, M.A. Exploring the chelating capacity of 2-hydroxyphenyl-benzimidazole based hybrids with multi-target ability as anti-Alzheimer’s agents. New J. Chem., 2018, 42(20), 16503-16515.
[http://dx.doi.org/10.1039/C8NJ00117K]
[116]
Ozadali-Sari, K.; Tüylü Küçükkılınç, T.; Ayazgok, B.; Balkan, A.; Unsal-Tan, O. Novel multi-targeted agents for Alzheimer’s disease: Synthesis, biological evaluation, and molecular modeling of novel 2-[4-(4-substitutedpiperazin-1-yl)phenyl]benzimidazoles. Bioorg. Chem., 2017, 72, 208-214.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.018] [PMID: 28478328]
[117]
Sarıkaya, G.; Çoban, G.; Parlar, S.; Tarikogullari, A.H.; Armagan, G.; Erdoğan, M.A.; Alptüzün, V.; Alpan, A.S. Multifunctional cholinesterase inhibitors for Alzheimer’s disease: Synthesis, biological evaluations, and docking studies of o/p-propoxyphenylsubstituted-1H-benzimidazole derivatives. Arch. Pharm. (Weinheim), 2018, 351(8)1800076
[http://dx.doi.org/10.1002/ardp.201800076] [PMID: 29984517]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy