Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Nano-engineered Adsorbent for the Removal of Dyes from Water: A Review

Author(s): Nusrat Tara, Sharf Ilahi Siddiqui, Geetanjali Rathi, Saif Ali Chaudhry, Inamuddin* and Abdullah M. Asiri

Volume 16, Issue 1, 2020

Page: [14 - 40] Pages: 27

DOI: 10.2174/1573411015666190117124344

Price: $65

Abstract

Background: The huge quantity of wastewater, containing poisonous and hazardous dyes, is released by various industries which pollute water in direct and indirect ways. Most of the dyes are a dangerous class of water contaminants which have affected the environment drastically. Some dyes such as congo red, rhodamine B, methylene blue, methyl violet, and crystal violet are a serious threat to human beings.

Remediation Method: Numerous methods are available for the removal of dyes from water. Adsorption, being a superior and eco-friendly technique, has advantage of eliminating organic dyes because of the availability of materials as adsorbents. The inexpensive nanomaterials are a more attractive choice for remediation of various dyes due to their unique properties and offer an adequate pathway to adsorb any organic dye from water to overcome its hazardous effects on human health.

Results: In this review, we have discussed the latest literature related to various types of synthesis, characterization and uses as adsorbent for highly adsorptive removal capacity of nanoparticles for organic dyes.

Conclusion: Adsorption technology provides an attractive pathway for further research and improvement in more efficient nanoparticles, with higher adsorption capacity, for numerous dyes to eliminate the dyes discharged from various industries and thus reduce the contamination of water. Therefore, nanocomposites may contribute to future prospective water treatment process.

Keywords: Adsorption, composites, dye pollution, dye remediation, dyes, nanoparticles.

Graphical Abstract

[1]
Ahmad, R.; Kumar, R. Conducting Polyaniline/iron oxide composite: A novel adsorbent for the removal of Amido black 10 B. J. Chem. Eng. Data, 2010, 55, 3489-3493.
[http://dx.doi.org/10.1021/je1001686]
[2]
Ansari, R.; Mosayebzadeh, Z. Application of polyaniline as an efficient and novel adsorbent for azodyes removal from textile waste waters. Chem. Pap., 2011, 65, 1-8.
[http://dx.doi.org/10.2478/s11696-010-0083-x]
[3]
Janaki, V.; Vijayaraghavan, K.; Oh, B.T.; Lee, K.J.; Muthuchelian, K.; Ramasamy, A.K.; Kamala-Kannan, S. Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr. Polym., 2012, 90(4), 1437-1444.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.012] [PMID: 22944400]
[4]
Mahanta, D.; Madras, G.; Radhakrishnan, S.; Patil, S. Adsorption and desorption kinetics of anionic dyes on doped polyaniline. J. Phys. Chem. B, 2009, 113(8), 2293-2299.
[http://dx.doi.org/10.1021/jp809796e] [PMID: 19195986]
[5]
Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. J. Colloid Interface Sci., 2010, 342(2), 518-527.
[http://dx.doi.org/10.1016/j.jcis.2009.10.046] [PMID: 19939404]
[6]
Siddiqui, S.I.; Rathi, G.; Chaudhry, S.A. Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: Thermodynamic, kinetic and isotherm studies. J. Mol. Liq., 2018, 264, 275-284.
[http://dx.doi.org/10.1016/j.molliq.2018.05.065]
[7]
Fang, L.; Jiahui, H.; Qin, X.; Mengmeng, L.; Yanbiao, L. Direct contact membrane distillation for the treatment of industrial dyeing wastewater and characteristic pollutants. Separ. Purif. Tech., 2018, 195, 83-91.
[http://dx.doi.org/10.1016/j.seppur.2017.11.058]
[8]
Nidheesh, P.V.; Zhou, M.; Oturan, M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 2018, 197, 210-227.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.195] [PMID: 29366952]
[9]
Sajid, M.; Basheer, C.; Narasimhan, K.; Buhmeida, A.; Qahtani, A.; Al-ahwal, M.S. Persistent and endocrine disrupting organic pollutants: advancements and challenges in the analysis, health concerns and clinical correlates. Nat. Environ. Pollut. Technol., 2016, 15, 733-746.
[10]
Sajid, M.; Mazen, K.N.; Ihsanullah Nadeem, B.; Abdalghaffar, M.O. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review. Separ. Purif. Tech., 2018, 191, 400-423.
[http://dx.doi.org/10.1016/j.seppur.2017.09.011]
[11]
Hussaini, F.H.; Halbus, A.F. Rapid decolorization of cobalamin. Int. J. Photoenergy, 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/495435]
[12]
Natarajan, S.; Bajaj, H.C.; Tayade, R.J. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. (China), 2018, 65, 201-222.
[http://dx.doi.org/10.1016/j.jes.2017.03.011] [PMID: 29548392]
[13]
Christie, R.M. Environmental aspects of textile dyeing, Wood head Publishing; ISBN: Cambridge, 2017, p. 1845691156.
[14]
Sen, T.K.; Afroze, S.; Ang, H. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinusradiate. Water Air Soil Pollut., 2011, 218, 499-515.
[http://dx.doi.org/10.1007/s11270-010-0663-y]
[15]
Geetha, P.; Latha, M.S.; Mathew, K. Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: Equilibrium study. J. Mol. Liq., 2015, 212, 723-730.
[http://dx.doi.org/10.1016/j.molliq.2015.10.035]
[16]
Dod, R.; Banerjee, G.; Saini, S. Adsorption of methylene blue using green pea peels (Pisum sativum): A cost-effective option for dye-based waste water treatment. Biotechnol. Bioprocess Eng.; BBE, 2012, 17, 862-874.
[http://dx.doi.org/10.1007/s12257-011-0614-5]
[17]
Akanksha, N.; Sanjeev, R.S. Silver nanoparticles catalyzed reductive decolorization of spent dye bath containing acid dye and its reuse in dyeing. J. Water Process Eng., 2018, 22, 276-285.
[http://dx.doi.org/10.1016/j.jwpe.2018.02.014]
[18]
Wu, Y.; Chen, L.; Long, X.; Zhang, X.; Pan, B.; Qian, J. Multi-functional magnetic water purifier for disinfection and removal of dyes and metal ions with superior reusability. J. Hazard. Mater., 2018, 347, 160-167.
[http://dx.doi.org/10.1016/j.jhazmat.2017.12.037] [PMID: 29310038]
[19]
Yunhong, P.; Xiyi, L.; Qibin, X.; Junliang, W.; Zhong, L. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J., 2018, 337, 351-371.
[http://dx.doi.org/10.1016/j.cej.2017.12.092]
[20]
Gupta, V.K.; Tyagi, I.; Agarwal, S.; Sadegh, H.; Shahryari-ghoshekandi, R.; Yari, M.; Yousefi-nejat, O. Experimental study of surfaces of hydrogel polymers HEMA, HEMA-EEMA-MA, and PVA as adsorbent for removal of azo dyes from liquid phase. J. Mol. Liq., 2015, 206, 129-136.
[http://dx.doi.org/10.1016/j.molliq.2015.02.015]
[21]
Ozdemir, O.; Turan, M.; Turan, A.Z.; Faki, A.; Engin, A.B. Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ). J. Hazard. Mater., 2009, 166(2-3), 647-654.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.123] [PMID: 19136207]
[22]
Lin, J.X.; Zhan, S.L.; Fang, M.H.; Qian, X.Q.; Yang, H. Adsorption of basic dye from aqueous solution onto fly ash. J. Environ. Manage., 2008, 87(1), 193-200.
[http://dx.doi.org/10.1016/j.jenvman.2007.01.001] [PMID: 17307284]
[23]
Allen, S.J.; McKay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci., 2004, 280(2), 322-333.
[http://dx.doi.org/10.1016/j.jcis.2004.08.078] [PMID: 15533404]
[24]
Sharma, M.K.; Sobti, R.C. Rec effect of certain textile dyes in Bacillus subtilis. Mutat. Res., 2000, 465(1-2), 27-38.
[http://dx.doi.org/10.1016/S1383-5718(99)00201-6] [PMID: 10708966]
[25]
Felipe, F.H.; Maria, V.B.Z.; Michelle, F.B. Advances and Trends in Voltammetric Analysis of Dyes, Applications of the Voltammetry (in book) 2017. ISBN 978-953-51-3216-5
[http://dx.doi.org/10.5772/67945]
[26]
Shindy, H.A. Problems and solutions in colors, dyes and pigments chemistry: A Review. Chem. Int., 2017, 3, 97-10.
[27]
Natarajan, E. Optimization of process parameters for the decolorization of reactive blue 235 dye by barium alginate immobilized iron nanoparticles synthesized from aluminum industry waste. Environ. Nanotechnol. Monit. Manag., 2017, 7, 73-88.
[http://dx.doi.org/10.1016/j.enmm.2017.01.002]
[28]
Abbasi, M. Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal. J. Clean. Prod., 2017, 145, 105-113.
[http://dx.doi.org/10.1016/j.jclepro.2017.01.046]
[29]
Almasian, A.; Najafi, F.; Mirjalili, M.; Gashti, M.P.; Farde, G.C. Zwitter ionic modification of cobalt-ferrite nanofiber for the removal of anionic and cationic dyes. J. Taiwan Inst. Chem. Eng.[DNLM]., 2016, 67, 306-317.
[http://dx.doi.org/10.1016/j.jtice.2016.07.037]
[30]
Auta, M.; Hameed, B.H. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids Surf. B Biointerfaces, 2013, 105, 199-206.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.021] [PMID: 23376092]
[31]
Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water. J. Colloid Interface Sci., 2017, 493, 85-93.
[http://dx.doi.org/10.1016/j.jcis.2017.01.012] [PMID: 28088570]
[32]
Débora, G.O.; Linus, P.; Santiago, S.; Gustavo, A. Chitosan-based improved stability of gold nanoparticles for the study of adsorption of dyes using SERS. Vib. Spectrosc., 2016, 87, 8-13.
[http://dx.doi.org/10.1016/j.vibspec.2016.08.017]
[33]
Demirbas, A. Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. J. Hazard. Mater., 2009, 167(1-3), 1-9.
[http://dx.doi.org/10.1016/j.jhazmat.2008.12.114] [PMID: 19181447]
[34]
Farooq, S.; Saeed, A.; Sharif, M.; Hussain, J.; Mabood, F.; Iftekhar, M. Process optimization studies of crystal violet dye adsorption onto novel, mixed metal Ni0.5Co0.5Fe2O4 ferrospinel nanoparticles using factorial design. J. Water Process Eng., 2017, 16, 132-141.
[http://dx.doi.org/10.1016/j.jwpe.2017.01.001]
[35]
Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: a review. Environ. Int., 2004, 30(7), 953-971.
[http://dx.doi.org/10.1016/j.envint.2004.02.001] [PMID: 15196844]
[36]
Hernández-Montoya, V.; Pérez-Cruz, M.A.; Mendoza-Castillo, D.I.; Moreno-Virgen, M.R.; Bonilla-Petriciolet, A. Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manage., 2013, 116, 213-221.
[http://dx.doi.org/10.1016/j.jenvman.2012.12.010] [PMID: 23321372]
[37]
Isanejad, M.; Arzani, M.; Mahdavi, H.R.; Mohammadi, T. Novel amine modification of ZIF-8 for improving simultaneous removal of cationic dyes from aqueous solutions using supported liquid membrane. J. Mol. Liq., 2017, 225, 800-809.
[http://dx.doi.org/10.1016/j.molliq.2016.11.007]
[38]
Saini, J.; Garg, V.K. Removal of Orange G and Rhodamine B dyes from aqueous system using hydrothermally synthesized zinc oxide loaded activated carbon (ZnO-AC). J. Environ. Chem. Eng., 2017, 5, 884-892.
[http://dx.doi.org/10.1016/j.jece.2017.01.012]
[39]
Inamuddin. Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int. J. Biol. Macromol., 2019, 121, 1046-1053.
[40]
Rajeswari, A.; Vismaiya, S.; Pius, A. Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem. Eng. J., 2017, 313, 928-937.
[http://dx.doi.org/10.1016/j.cej.2016.10.124]
[41]
Wei, Z.D.; Wang, R. Hierarchical BiOBr microspheres with oxygen vacancies synthesized via reactable ionic liquids for dyes removal. Chin. Chem. Lett., 2016, 27, 769-772.
[http://dx.doi.org/10.1016/j.cclet.2016.03.013]
[42]
Liang, S.X.; Jia, Z.; Zhang, W.C.; Wang, W.M.; Zhang, L.C. Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV-Vis light. Mater. Des., 2017, 119, 244-253.
[http://dx.doi.org/10.1016/j.matdes.2017.01.039]
[43]
Ling, Y.Y.; Suah, F.B.M. Extraction of malachite green from wastewater by using polymer inclusion membrane. J. Environ. Chem. Eng., 2017, 5, 785-794.
[http://dx.doi.org/10.1016/j.jece.2017.01.001]
[44]
Raducan, A.; Olteanu, A.; Puiu, M.; Oancea, D. Influence of surfactants on the fading of malachite green. Cent. Eur. J. Chem., 2008, 6, 1895-1066.
[45]
Andersen, W.C.; Turnipseed, S.B.; Roybal, J.E. Quantitative and confirmatory analyses of malachite green and leucomalachite green residues in fish and shrimp. J. Agric. Food Chem., 2006, 54(13), 4517-4523.
[http://dx.doi.org/10.1021/jf0532258] [PMID: 16786992]
[46]
Wu, L.Z.Z.; Zhong, H.; Chen, X.; Huang, Z. Rapid determination of malachite green in water and fish using a fluorescent probe based on CdTe quantum dots coated with molecularly imprinted polymer. Sens. Actuators B Chem., 2017, 239, 69-75.
[http://dx.doi.org/10.1016/j.snb.2016.07.166]
[47]
Lenglet, S.; Mach, F.; Montecucco, F. Methylene blue: potential use of an antique molecule in vasoplegic syndrome during cardiac surgery. Expert Rev. Cardiovasc. Ther., 2011, 9(12), 1519-1525.
[http://dx.doi.org/10.1586/erc.11.160] [PMID: 22103871]
[48]
Dharmambal, S.; Mani, N. Adsorption of Congo red dye onto activated carbon produced from Tectonagrandis bark powder - A study of kinetic and equilibrium adsorption isotherm. J. Appl. Chem., 2014, 8, 11-18.
[49]
Acemioğlu, B. Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. J. Colloid Interface Sci., 2004, 274(2), 371-379.
[http://dx.doi.org/10.1016/j.jcis.2004.03.019] [PMID: 15144808]
[50]
Ma, C.; Wang, F.; Zhang, C.; Yu, Z.; Wei, J.; Yang, Z.; Li, Y.; Li, Z.; Zhu, M.; Shen, L.; Zeng, G. Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide. Chemosphere, 2017, 168, 80-90.
[http://dx.doi.org/10.1016/j.chemosphere.2016.10.063] [PMID: 27776241]
[51]
Tor, A.; Cengeloglu, Y. Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J. Hazard. Mater., 2006, 138(2), 409-415.
[http://dx.doi.org/10.1016/j.jhazmat.2006.04.063] [PMID: 16846690]
[52]
Yang, C.S.; Huang, G.; Zhao, S.; Zhang, P.; Yao, Y. Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: Equilibrium and kinetic adsorption studies. Fuel, 2016, 165, 264-271.
[http://dx.doi.org/10.1016/j.fuel.2015.10.069]
[53]
Datang, L.; Li, J.; Tang, J. Mercury oxide as an efficient photocatalyst for degradation of rhodamine B dye under visible-light irradiation. Solid State Sci., 2016, 61, 201-206.
[http://dx.doi.org/10.1016/j.solidstatesciences.2016.10.005]
[54]
Gupta, V. Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res., 2004, 43, 1740-1747.
[http://dx.doi.org/10.1021/ie034218g]
[55]
Rajoriya, S.; Bargole, S.; Saharan, V.K. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway. Ultrason. Sonochem., 2017, 34, 183-194.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.028] [PMID: 27773234]
[56]
Fayazi, M.; Azizian, S. Catalytic degradation of methyl violet without light irradiation using nanostructured CuS. J. Mol. Liq., 2016, 224, 763-767.
[http://dx.doi.org/10.1016/j.molliq.2016.10.058]
[57]
Keyhanian, F.; Shariati, S.; Faraji, M.; Hesabi, M. Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arab. J. Chem., 2016, 9, 348-354.
[http://dx.doi.org/10.1016/j.arabjc.2011.04.012]
[58]
Mittal, H.; Kumar, V. Saruchi; Ray, S.S. Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel. Int. J. Biol. Macromol., 2016, 89, 1-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.050] [PMID: 27106587]
[59]
Siddiqui, S.I.; Ravi, R.; Rathi, G.; Tara, N.; Islam, S.U.; Chaudhry, S.A. Decolourization of textile wastewater using composite materials. In: nanomaterials in the wet processing of textiles Inc; Islam, SU; Butola, BS, Eds.John Wiley & Sons, Inc; , 2018, pp. 187-218.
[60]
Ayad, M.M.; El-Nasr, A.A. Adsorption of cationic dye (Methylene blue) from water using polyaniline nanotubes base. J. Phys. Chem. C, 2010, 114, 14377-14383.
[http://dx.doi.org/10.1021/jp103780w]
[61]
Cai, T.; Yang, Z.; Li, H.; Hu, Y.; Li, A.; Cheng, R. Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxy methyl cellulose on dye removal efficiency. Cellulose, 2013, 20, 2605-2614.
[http://dx.doi.org/10.1007/s10570-013-9987-2]
[62]
Chung, K.T. Mutagenicity and carcinogenicity of aromatic amines metabolically produced from azo dyes. Int. J. Environ. Sci. Health, 2002, 18, 51-74.
[63]
Hameed, B.H. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J. Hazard. Mater., 2008, 154(1-3), 204-212.
[http://dx.doi.org/10.1016/j.jhazmat.2007.10.010] [PMID: 18023971]
[64]
Xu, R.K.; Xiao, S.C.; Yuan, J.H.; Zhao, A.Z. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour. Technol., 2011, 102(22), 10293-10298.
[http://dx.doi.org/10.1016/j.biortech.2011.08.089] [PMID: 21924897]
[65]
Wioletta, P.; Ewa, Z.D.; Elzbieta, G.S. Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. Braz. J. Microbiol., 2018, 49, 285-295.
[66]
Abe, F.R.; Soares, A.M.V.M.; Oliveira, D.P.; Gravato, C. Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. Environ. Pollut., 2018, 235, 255-262.
[http://dx.doi.org/10.1016/j.envpol.2017.12.020] [PMID: 29291525]
[67]
Akarslan, F.; Demiralay, H. Effects of textile materials harmful to human health. Acta Phys. Pol. A, 2015, 128, 407-408.
[http://dx.doi.org/10.12693/APhysPolA.128.B-407]
[68]
Busk, L.; Ahlborg, U.G. Retinoids as inhibitors of ortho-aminoazotoluene-induced mutagenesis in the Salmonella/liver microsome test. Mutat. Res., 1982, 104(4-5), 225-231.
[http://dx.doi.org/10.1016/0165-7992(82)90148-8] [PMID: 7050684]
[69]
Esancy, J.F.; Freeman, H.S.; Claxton, L.D. The effect of alkoxy substituents on the mutagenicity of some aminoazobenzene dyes and their reductive-cleavage products. Mutat. Res., 1990, 238(1), 1-22.
[http://dx.doi.org/10.1016/0165-1110(90)90036-B] [PMID: 2406582]
[70]
Myslak, Z.W.; Bolt, H.M.; Brockmann, W. Tumors of the urinary bladder in painters: a case-control study. Am. J. Ind. Med., 1991, 19(6), 705-713.
[http://dx.doi.org/10.1002/ajim.4700190604] [PMID: 1882850]
[71]
Platzek, T.; Lang, C.; Grohmann, G.; Gi, U.S.; Baltes, W. Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Hum. Exp. Toxicol., 1999, 18(9), 552-559.
[http://dx.doi.org/10.1191/096032799678845061] [PMID: 10523869]
[72]
Stingley, R.L.; Zou, W.; Heinze, T.M.; Chen, H.; Cerniglia, C.E. Metabolism of azo dyes by human skin microbiota. J. Med. Microbiol., 2010, 59(Pt 1), 108-114.
[http://dx.doi.org/10.1099/jmm.0.012617-0] [PMID: 19729456]
[73]
Yu, M.C.; Skipper, P.L.; Tannenbaum, S.R.; Chan, K.K.; Ross, R.K. Arylamine exposures and bladder cancer risk. Mutat. Res., 2002, 506-507(506-507), 21-28.
[http://dx.doi.org/10.1016/S0027-5107(02)00148-3] [PMID: 12351141]
[74]
Cretescu, I.; Tudor, L.; Ingrid, B.; Tudorel, B.M.; Gabriela, S. Low-cost sorbents for the removal of acid dyes from aqueous solutions. Process Saf. Environ. Prot., 2017, 108, 57-66.
[http://dx.doi.org/10.1016/j.psep.2016.05.016]
[75]
Fowler, J.F., Jr; Skinner, S.M.; Belsito, D.V. Allergic contact dermatitis from formaldehyde resins in permanent press clothing: an underdiagnosed cause of generalized dermatitis. J. Am. Acad. Dermatol., 1992, 27(6 Pt 1), 962-968.
[http://dx.doi.org/10.1016/0190-9622(92)70295-Q] [PMID: 1479102]
[76]
Asgher, M.; Bhatti, H.N. Evaluation of thermodynamics and effect of chemical treatments on sorption potential of (Citrus) waste biomass for removal of anionic dyes from aqueous solutions. Ecol. Eng., 2012, 38, 79-85.
[http://dx.doi.org/10.1016/j.ecoleng.2011.10.004]
[77]
Chu, H.; Chen, K. Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass. Process Biochem., 2007, 37, 595-600.
[http://dx.doi.org/10.1016/S0032-9592(01)00234-5]
[78]
Fu, Y.; Viraraghavan, T. Fungal decolorization of dye wastewaters: A review. Bioresour. Technol., 2001, 79(3), 251-262.
[http://dx.doi.org/10.1016/S0960-8524(01)00028-1] [PMID: 11499579]
[79]
Fu, Y.; Viraraghavan, T. Removal of Congo red from an aqueous solution by fungus Aspergillus niger. Adv. Environ. Res., 2002, 7, 239-247.
[http://dx.doi.org/10.1016/S1093-0191(01)00123-X]
[80]
Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol., 2003, 87(1), 129-132.
[http://dx.doi.org/10.1016/S0960-8524(02)00201-8] [PMID: 12733586]
[81]
Lazar, V. Colour chemistry: Synthesis, properties, and applications of organic dyes and pigments. Color Res. Appl., 2015, 30, 313-314.
[http://dx.doi.org/10.1002/col.20132]
[82]
Aly, R.O. Implementation of chitosan inductively modified by γ-rays copolymerization with acrylamide in the decontamination of aqueous basic dye solution. Arab. J. Chem., 2017, 10, 121-126.
[http://dx.doi.org/10.1016/j.arabjc.2012.06.017]
[83]
Kuen, S.L.; Yan, G.L.; Hao, W.C.; Yu, H.H. Preparation and characterization of V-loaded titania nanotubes for adsorption/photocatalysis of basic dye and environmental hormone contaminated wastewaters. Catal. Today, 2018, 307, 119-130.
[http://dx.doi.org/10.1016/j.cattod.2017.05.075]
[84]
Elhossein, A.M.; Hala, A.K.; Mariam, M.E. Application of polyurethane@salvadora persica composite for detection and removal of acidic and basic dyes from wastewater. J. Taiwan Inst. Chem. Eng., 2017, 80, 894-900.
[http://dx.doi.org/10.1016/j.jtice.2017.07.028]
[85]
Gottlieb, A.; Shaw, C.; Smith, A.; Wheatley, A.; Forsythe, S. The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J. Biotechnol., 2003, 101(1), 49-56.
[http://dx.doi.org/10.1016/S0168-1656(02)00302-4] [PMID: 12523969]
[86]
Jain, R.; Sharma, P.; Sikarwar, S. Kinetics and isotherm analysis of Tropaeoline 000 adsorption onto unsaturated polyester resin (UPR): A non-carbon adsorbent. Environ. Sci. Pollut. Res. Int., 2013, 20(3), 1493-1502.
[http://dx.doi.org/10.1007/s11356-012-0994-x] [PMID: 22689095]
[87]
Nidheesh, P.V.; Gandhimathi, R.; Ramesh, S.T. Degradation of dyes from aqueous solution by Fenton processes: A review. Environ. Sci. Pollut. Res. Int., 2013, 20(4), 2099-2132.
[http://dx.doi.org/10.1007/s11356-012-1385-z] [PMID: 23338990]
[88]
Khan, T.A.; Chaudhry, S.A.; Ali, I. Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J. Mol. Liq., 2015, 202, 165-175.
[http://dx.doi.org/10.1016/j.molliq.2014.12.021]
[89]
Siddiqui, S.I.; Chaudhry, S.A. Arsenic removal from water using nanocomposites: A review. Curr. Environ. Eng., 2017, 4, 81-102.
[http://dx.doi.org/10.2174/2212717804666161214143715]
[90]
Siddiqui, S.I.; Chaudhry, S.A. Arsenic: toxic effects and remediation. In: advanced materials for wastewater treatment; Islam, S.U., Ed.; John Wiley & Sons, Inc; , 2017, pp. 1-27.
[91]
Sasaki, T.; Iizuka, A.; Watanabe, M.; Hongo, T.; Yamasaki, A. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes. Waste Manag., 2014, 34(10), 1829-1835.
[http://dx.doi.org/10.1016/j.wasman.2014.01.001] [PMID: 24472713]
[92]
Ali, H. Biodegradation of synthetic dyes: A review. Water Air Soil Pollut., 2010, 213, 251-273.
[http://dx.doi.org/10.1007/s11270-010-0382-4]
[93]
Allen, S.; Koumanova, B. Decolourisation of water/wastewater using adsorption. J. Univ. Chem. Technol. Metall., 2005, 40, 175-192.
[94]
Garg, V.K.; Gupta, R.; Bala Yadav, A.; Kumar, R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour. Technol., 2003, 89(2), 121-124.
[http://dx.doi.org/10.1016/S0960-8524(03)00058-0] [PMID: 12699929]
[95]
Latif, M.M.; Ibrahim, A.M. EI-Kady, M.F. Adsorption equilibrium, kinetics and thermodynamic s of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J. Am. Sci., 2010, 6, 267-283.
[96]
Siddiqui, S.I.; Chaudhry, S.A. Removal of arsenic from water through adsorption onto metal oxide-coated material. Mater. Res. Found., 2017, 15, 227-276.
[http://dx.doi.org/10.21741/9781945291333-9]
[97]
Siddiqui, S.I.; Chaudhry, S.A.; Islam, S.U. Green adsorbents from plant sources for the removal of arsenic: an emerging wastewater treatment technology.In: Plant-Based Natural Products: Derivatives and Applications; Islam, S.U., Ed.; John Wiley & Sons, Inc., 2017, pp. 193-215.
[http://dx.doi.org/10.1002/9781119423898.ch10]
[98]
Chaudhry, S.A.; Khan, T.A.; Ali, I. Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J. Mol. Liq., 2017, 236, 320-330.
[http://dx.doi.org/10.1016/j.molliq.2017.04.029]
[99]
Chaudhry, S.A.; Khan, T.A.; Ali, I. Zirconium oxide-coated sand-based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egypt J. Petrol., 2017, 26, 553-563.
[http://dx.doi.org/10.1016/j.ejpe.2016.11.006]
[100]
Chaudhry, S.A.; Zaidi, Z.; Siddiqui, S.I. Isotherm, kinetic and thermodynamics of arsenic adsorption onto iron-zirconium binary oxide-coated sand (IZBOCS): Modelling and process optimization. J. Mol. Liq., 2017, 229, 230-240.
[http://dx.doi.org/10.1016/j.molliq.2016.12.048]
[101]
Siddiqui, S.I.; Chaudhry, S.A. Iron oxide and its modified forms as an adsorbent for arsenic removal: a comprehensive recent advancement. Process Saf. Environ. Prot., 2017, 111, 592-626.
[http://dx.doi.org/10.1016/j.psep.2017.08.009]
[102]
Crini, G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol., 2006, 97(9), 1061-1085.
[http://dx.doi.org/10.1016/j.biortech.2005.05.001] [PMID: 15993052]
[103]
Chaudhry, S.A.; Ahmed, M.; Siddiqui, S.I.; Ahmed, S. Fe(III)-Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) And As(V) from water: Application of isotherm, kinetic and thermodynamics. J. Mol. Liq., 2016, 22, 431-441.
[http://dx.doi.org/10.1016/j.molliq.2016.08.116]
[104]
Chaudhry, S.A.; Khan, T.A.; Ali, I. Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: Isotherm, thermodynamic and kinetic studies. Egypt J. Basic App. Sci., 2016, 3, 287-300.
[105]
Khan, T.A.; Chaudhry, S.A.; Ali, I. Thermodynamic and kinetic studies of As(V) removal from water by zirconium oxide-coated marine sand. Environ. Sci. Pollut. Res. Int., 2013, 20(8), 5425-5440.
[http://dx.doi.org/10.1007/s11356-013-1543-y] [PMID: 23423866]
[106]
Feynman, R. There’s plenty of room at the bottom. Science, 1991, 29, 1300-1301.
[107]
Kavitha, K.S.; Baker, S.; Rakshith, D. Kavitha, Rao H.C.Y.; Harini, B.; Satish, S.P. Plants as green source towards synthesis of nanoparticles. Int. Res. J. Biol. Sci., 2013, 2, 66-76.
[108]
Firdhouse, M.J.; Lalitha, P.; Shubashini, K. Sripathi. Novel synthesis of silver nanoparticles using leaf ethanol extract of Pisonia grandis (R. Br). Pharma Chem., 2012, 4, 2320-2326.
[109]
Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and characterisation of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Res., 2000, 30, 545-610.
[110]
Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem. Sci. (Camb.), 2017, 8(1), 63-77.
[http://dx.doi.org/10.1039/C6SC02403C] [PMID: 28451149]
[111]
Ladj, R.; Bitar, A.; Eissa, M.; Mugnier, Y. Le Dantec, Fessi, H.; Elaissari, A. Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 1381-1396.
[http://dx.doi.org/10.1039/c2tb00301e]
[112]
Rao, J.P.; Kurt Geckeler, E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36, 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[113]
Abhilash, M. Potential applications of nanoparticles. Int. J. Pharma Bio Sci., 2010, 1, 1-12.
[114]
Akbarzadeh, A.; Sadabady, R.R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Koshki, K.N. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett, 2013, 8, 02-110.
[115]
Junghanns, J.U.; Müller, R.H.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309.
[PMID: 18990939]
[116]
Malik, A.; Chaudhary, S.; Garg, G.; Tomar, A. Dendrimers: A tool for drug delivery. Adv. Biomed. Res., 2012, 6, 165-169.
[117]
Sauto, E.B.; Severino, P.; Santana, M.H.A. Preparation of polymeric nanoparticles by polymerization of monomers-Part I. Polímeros, 2012, 22, 96-100.
[118]
Li, Y.P.; Pei, Y.Y.; Zhou, Z.H.; Zhang, X.Y.; Gu, Z.H.; Ding, J. Nanoparticles as tumornecrosis factor-[alpha] carriers. J. Control. Release, 2011, 71, 287-296.
[http://dx.doi.org/10.1016/S0168-3659(01)00235-8] [PMID: 11295221]
[119]
Zhang, Q.; Shen, Z.; Nagai, T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int. J. Pharm., 2001, 218(1-2), 75-80.
[http://dx.doi.org/10.1016/S0378-5173(01)00614-7] [PMID: 11337151]
[120]
Suh, S.K.; Yuet, K.; Hwang, D.K.; Bong, K.W.; Doyle, P.S.; Hatton, T.A. Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J. Am. Chem. Soc., 2012, 134(17), 7337-7343.
[http://dx.doi.org/10.1021/ja209245v] [PMID: 22462394]
[121]
Choudhury, R.R.; Gohil, J.M.; Mohanty, S.; Nayak, S.K. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 313-333.
[http://dx.doi.org/10.1039/C7TA08627J]
[122]
Demirer, G.S.; Okur, A.C.; Kizilel, S. Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2015, 40, 1-3.
[123]
Zhang, Q.; Sando, D.; Nagarajan, V. Chemical route derived bismuth ferrite thin films and nanomaterials. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 4, 1-88.
[124]
Douglas, T.; Young, M. Host-guest encapsulation of materials by assembled virus protein cages. Nature, 1998, 393, 152-155.
[http://dx.doi.org/10.1038/30211]
[125]
Douglas, T.; Strable, E.; Willits, D.; Aitouchen, A.; Libera, M. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater., 2002, 14, 415-418.
[http://dx.doi.org/10.1002/1521-4095(20020318)14:6<415:AID-ADMA415>3.0.CO;2-W]
[126]
Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 2013, 14, 95-100.
[http://dx.doi.org/10.1088/0957-4484/14/1/321]
[127]
Sunkar, S.; Nachiyar, C.V. Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: A novel source in the benign synthesis. Global J. Med. Res., 2012, 12, 43-49.
[128]
Singh, M.; Dosanjh, H.S.; Singh, H. Surface modified spinel cobalt ferrite nanoparticles for cationic dye removal: Kinetics and thermodynamics studies. J. Water Process Eng., 2016, 11, 152-161.
[http://dx.doi.org/10.1016/j.jwpe.2016.05.006]
[129]
Choi, Y.; Ho, N.H.; Tung, C.H. Sensing phosphatase activity by using gold nanoparticles. Angew. Chem. Int. Ed. Engl., 2007, 46(5), 707-709.
[http://dx.doi.org/10.1002/anie.200603735] [PMID: 17143915]
[130]
Vilchis, N.A.R.; Mendieta, S.V.; Camacho, L.M.; Gomez, S.R.M.; Camacho, L.M.A. Solvent less synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett., 2008, 62, 3103-3105.
[http://dx.doi.org/10.1016/j.matlet.2008.01.138]
[131]
Yoosaf, K.; Ipe, B.I.; Suresh, C.H.; Thomas, K.G. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem., 2007, 111, 12839-12847.
[132]
Dhand, C.; Dwivedi, N.; Loh, X.J.; Ying, A.N.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances, 2015, 5105003
[http://dx.doi.org/10.1039/C5RA19388E]
[133]
Siddiqui, S.I.; Chaudhry, S.A. A review on graphene oxide and its composites preparation and their use for the removal of As3+ and As5+ from water under the effect of various parameters: Application of isotherm, kinetic and thermodynamics. Process Saf. Environ. Prot., In Press
[http://dx.doi.org/10.1016/j.psep.2018.07.020]
[134]
Siddiqui, S.I.; Ravi, R.; Chaudhry, S.A. Removal of arsenic from water using graphene oxide nano-hybrids. In:A New Generation Material Graphene: Applications in Water Technology; Naushad, M., Ed.; Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-319-75484-0_9]
[135]
Rathi, G.; Siddiqui, S.I.; Chaudhary, S.A. Green material from plant source for the remediation of Methylene Blue dye: An emerging wastewater treatment technology. Handbook of Textile Effluent Remediation; Yusuf, M., Ed.; Pan Stanford: ; New York, 2018.
[136]
Subbaiya, R.; Shiyamala, M.; Revathi, K.; Pushpalatha, R. Masilamani, Selvam M. Biological synthesis of silver nanoparticles from Nerium oleander and its antibacterial and antioxidant property. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 83-87.
[137]
Arasi, Y.A.; Hema, M.; Tamilselvi, P.; Anbarasan, R. Synthesis and characterization of SiO2 nanoparticles by sol-gel process. Indian J. Sci., 2012, 1, 6-10.
[138]
Murugan, A.; Kumar, K. Shanmugasundaram. Biosynthesis and characterization of silver nanoparticles using the aqueous extract of vitex negundo. linn. World J. Pharm. Pharm. Sci., 2014, 3, 1385-1393.
[139]
Rahman, N.; Abedin, Z.; Ali Hossain, M. Rapid degradation of azo dyes using nano-scale zero valent iron. Am. J. Environ. Sci., 2014, 10, 157-163.
[http://dx.doi.org/10.3844/ajessp.2014.157.163]
[140]
Arabi, S.; Sohrabi, M.R.; Khosravi, M. Adsorption kinetic and thermodynamics of vat dye onto nano zero valent iron. Indian J. Chem. Technol., 2013, 20, 173-179.
[141]
Pierson, H.O. Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications; William Andrew Inc., 1999, p. 174.
[142]
Teja, A.S.; Koh, P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater., 2009, 55, 22-45.
[http://dx.doi.org/10.1016/j.pcrysgrow.2008.08.003]
[143]
Layek, S.; Pandey, A.; Pandey, A.; Verma, H.C. Synthesis of γ-Fe2O3 nanoparticles with crystallographic and magnetic texture. Int. J. Eng. Sci. Technol., 2010, 2, 33-39.
[144]
Lee, S.J.; Jeong, J.R.; Shin, S.C.; Kim, J.C.; Kim, J.D. Synthesis and characterization super paramagnetic meghemite nanoparticles prepared by co-precipitation technique. J. Magn. Magn. Mater., 2004, 282, 147-150.
[http://dx.doi.org/10.1016/j.jmmm.2004.04.035]
[145]
Zhang, Z.; Kong, J. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater., 2011, 193, 325-329.
[http://dx.doi.org/10.1016/j.jhazmat.2011.07.033] [PMID: 21813238]
[146]
Alzahrani, E. Gum arabic-coated magnetic nanoparticles for methylene blue removal. Int. J. Innovative Res. Sci. Eng. Technol., 2014, 3, 15118-15129.
[http://dx.doi.org/10.15680/IJIRSET.2014.0308009]
[147]
Madhavi, V.; Prasad, T.N.V.K.V.; Madhavi, G. Synthesis and spectral characterization of iron based micro and nanoparticles. Iran. J. Energy Environ., 2013, 4, 385-390.
[http://dx.doi.org/10.5829/idosi.ijee.2013.04.04.10]
[148]
Malhotra, P.; Kathal, R.; Puri, A. Iron nanoparticles catalyzed degradation of organic dyes in water for environmental remediation. J. Basic Appl. Eng. Res., 2016, 3, 41-43.
[149]
Nam, S.K.; Tratnyek, P.G. Reduction of azo dyes with zerovalent iron. Water Res., 2000, 34, 1837-1845.
[http://dx.doi.org/10.1016/S0043-1354(99)00331-0]
[150]
Vîrlan, C.; Ciocârlan, R.M.N.G.; Roman, T.; Gherca, D.; Cornei, N.; Pui, A. Studies on adsorption capacity of cationic dyes on several magnetic nanoparticles. Acta Chemica. Iasi., 2013, 21, 19-30.
[http://dx.doi.org/10.2478/achi-2013-0003]
[151]
Gautam, R.K.; Rawat, V.; Banerjee, S.; Sanroman, M.A.; Soni, S.; Singh, S.K.; Chattopadhyaya, M.C. Synthesis of bimetallic Fe-Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and congo red in water. J. Mol. Liq., 2015, 212, 227-236.
[http://dx.doi.org/10.1016/j.molliq.2015.09.006]
[152]
Agarwal, S.; Tyagi, I.; Gupta, V.K.; Mashhadi, S.; Ghasemi, M. Kinetics and thermodynamics of malachite green dye removal from aqueous phase using iron nanoparticles loaded on ash. J. Mol. Liq., 2016, 223, 1340-1347.
[http://dx.doi.org/10.1016/j.molliq.2016.04.039]
[153]
Shanehsaz, M.; Seidi, S.; Ghorbani, Y.; Shoja, S.M.R.; Rouhani, S. Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal and kinetic study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 149, 481-486.
[http://dx.doi.org/10.1016/j.saa.2015.04.114] [PMID: 25978015]
[154]
Dalvand, A.; Nabizadeh, R.; Ganjali, M.R.; Khoobi, M.; Nazmara, S.; Mahvi, A.H. Modeling of reactive blue19 azo dye removal from colored textile waste water using L-arginine-functionalized Fe3O4 nanoparticles: Optimization, reusability, kinetic and equilibrium studies. J. Magn. Magn. Mater., 2016, 404, 179-189.
[http://dx.doi.org/10.1016/j.jmmm.2015.12.040]
[155]
Mustafa, G.; Tahir, H.; Sultan, M.; Akhtar, N. Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes. Afr. J. Biotechnol., 2013, 12, 6650-6660.
[http://dx.doi.org/10.5897/AJB2013.13058]
[156]
Mekewi, M.A.; Darwish, A.S.; Amin, M.S.; Eshaq, G.H.; Bourazan, H.A. Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egyptian J. Petrol., 2016, 25, 269-279.
[http://dx.doi.org/10.1016/j.ejpe.2015.06.011]
[157]
Taufik, A.; Saleh, R. Synthesis of iron(II,III) oxide/zinc oxide/copper(II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal. J. Colloid Interface Sci., 2017, 491, 27-36.
[http://dx.doi.org/10.1016/j.jcis.2016.12.018] [PMID: 28012289]
[158]
Sasikala, R.; Karthikeyan, K.; Easwaramoorthy, D.; Mohammed Bilal, I.; Rani, S.K. Photocatalytic degradation of trypan blue and methyl orange azo dyes by cerium loaded CuO nanoparticles. Environ. Nanotechnol. Monit. Manag., 2016, 6, 45-53.
[http://dx.doi.org/10.1016/j.enmm.2016.07.001]
[159]
Karimi, H.; Mousavi, S.; Sadeghian, B. Silver nanoparticle loaded on activated carbon as efficient adsorbent for removal of methyl orange. Indian J. Sci. Technol., 2012, 5, 2346-2353.
[160]
Mady, A.H.; Baynosa, M.J.; Tuma, D.; Shim, J.J. Facile microwave-assisted green synthesis of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation. Appl. Catal. B, 2017, 203, 416-427.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.033]
[161]
Yang, L.; Wan, Y.; Huang, Y.; Weng, H.; Qin, L.; Seo, H.J. Synthesis, surface and optical properties of Ag2ZnV4O12 nanoparticles for efficient dye removal under visible-light irradiation. J. Taiwan Inst. Chem. Eng., 2016, 66, 400-406.
[http://dx.doi.org/10.1016/j.jtice.2016.06.040]
[162]
Saharan, P.; Chaudhary, G.R.; Lata, S.; Mehta, S.K.; Mor, S. Ultra fast and effective treatment of dyes from water with the synergistic effect of Ni doped ZnO nanoparticles and ultrasonication. Ultrason. Sonochem., 2015, 22, 317-325.
[http://dx.doi.org/10.1016/j.ultsonch.2014.07.004] [PMID: 25060120]
[163]
Yavari, S.; Mahmodi, N.M.; Teymouri, P.; Shahmoradi, B.; Maleki, A. Cobalt ferrite nanoparticles: Preparation, characterization and anionic dye removal capability. J. Taiwan Ins. Chem. Eng., 2016, 59, 320-329.
[http://dx.doi.org/10.1016/j.jtice.2015.08.011]
[164]
Cantarella, M.; Sanz, R.; Buccheri, M.A.; Ruffino, F.; Rappazzo, G.; Scalese, S.; Impellizzeri, G.; Romano, L.; Privitera, V. Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J. Photochem. Photobiol. Chem., 2016, 321, 1-11.
[http://dx.doi.org/10.1016/j.jphotochem.2016.01.020]
[165]
Scuderi, V.; Impellizzeri, G.; Romano, L.; Scuderi, M.; Nicotra, G.; Bergum, K.; Irrera, A.; Svensson, B.G.; Privitera, V. TiO2-coated nanostructures for dye photo-degradation in water. Nanoscale Res. Lett., 2014, 9(1), 458-465.
[http://dx.doi.org/10.1186/1556-276X-9-458] [PMID: 25246868]
[166]
Mahesh, K.P.O.; Kuo, D.H. Synthesis of Ni nanoparticles decorated SiO2/TiO2 magnetic spheresfor enhanced photocatalytic activity towards the degradation of azo dye. Appl. Surf. Sci., 2015, 357, 433-438.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.264]
[167]
Rajesh, R.; Iyer, S.S.; Ezhilan, J.; Kumar, S.S.; Venkatesan, R. Graphene oxide supported copper oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 166, 49-55.
[http://dx.doi.org/10.1016/j.saa.2016.05.002] [PMID: 27208759]
[168]
Pourjavadi, A.; Abedin-Moghanaki, A. Ultrafast and efficient removal of cationic dyes using a magnetic nanocomposite based on functionalized cross-linked poly (methylacrylate). React. Funct. Polym., 2016, 105, 95-102.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.05.016]
[169]
Zohreh, N.; Hosseini, S.H.; Pourjavadi, A.; Bennett, C. Cross-linked poly(dimethylaminoethyl acrylamide) coated magnetic nanoparticles: a high loaded, retrievable, and stable basic catalyst for the synthesis of benzopyranes in water. RSC Advances, 2014, 4, 50047-50055.
[http://dx.doi.org/10.1039/C4RA07503J]
[170]
Falah, M.; MacKenzie, K.J.D.; Knibbe, R.; Page, S.J.; Hanna, J.V. New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants. J. Hazard. Mater., 2016, 318, 772-782.
[http://dx.doi.org/10.1016/j.jhazmat.2016.06.016] [PMID: 27329791]
[171]
Othman, M.B.H.; Md Aki, H.; Md Rasib, S.Z.; Khan, A. Ahmad. Z. Thermal properties and kinetic investigation of chitosan-PMAA based dual-responsive hydrogels. Ind. Crops Prod., 2015, 66, 178-187.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.057]
[172]
Skoric, M.L.; Terzic, I.; Milosavljevic, N.; Radetic, M.; Šaponjic, Z. Radoicˇic, M.; Krušic, M. K. Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. Eur. Polym. J., 2016, 82, 57-70.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.06.026]
[173]
Zhou, Z.; Lin, S.; Yue, T.; Lee, T.C. Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. J. Food Eng., 2014, 126, 133-141.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.11.014]
[174]
Liang, Z.; Zhao, Z.; Sun, T.; Shi, W.; Cui, F. Enhanced adsorption of the cationic dyes in the spherical CuO/meso-silica nano composite and impact of solution chemistry. J. Colloid Interface Sci., 2017, 485, 192-200.
[http://dx.doi.org/10.1016/j.jcis.2016.09.028] [PMID: 27664527]
[175]
Mahida, V.P.; Patel, M.P. Removal of some most hazardous cationic dyes using novel poly (NIPAAm/AA/N-allylisatin) nanohydrogel. Arab. J. Chem., 2016, 9, 430-442.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.016]
[176]
Amr, A. Essawy. Silver imprinted zinc oxide nanoparticles: Green synthetic approach, characterization and efficient sunlight-induced photocatalytic water detoxification. J. Clean. Prod., 2018, 183, 1011-1020.
[http://dx.doi.org/10.1016/j.jclepro.2018.02.214]
[177]
Modi, S.; Pathak, B.; Fulekar, M.H. Microbial synthesized silver nanoparticles for decolorization and biodegradation of azo dye compound. J. Environ. Nanotechnol., 2015, 4, 37-46.
[http://dx.doi.org/10.13074/jent.2015.06.152149]
[178]
Zhong, S.; Jiang, W.; Han, M.; Liu, G.; Lu, Y. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation. Appl. Surf. Sci., 2015, 347, 242-249.
[http://dx.doi.org/10.1016/j.apsusc.2015.04.080]
[179]
Marahel, F.; Ghaedi, M.; Kokhdan, S.N. Silver nanoparticle loaded on activated carbon as an adsorbent for the removal of sudan red 7b from aqueous solution. Fresenius Environ. Bull., 2012, 21, 163-170.
[180]
Zhanga, F.; Chena, X.; Wua, F.; Ji, Y. High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids Surf A: Phys. Eng. Aspects, 2016, 509, 474-483.
[http://dx.doi.org/10.1016/j.colsurfa.2016.09.059]
[181]
Meng, X.; Zhang, Z.; Luo, N.; Cao, S.; Yang, M. Transparent poly(methyl methacrylate)/TiO2 nanocomposites for UV-shielding applications. Polym. Sci. Ser. A, 2011, 10, 977-983.
[http://dx.doi.org/10.1134/S0965545X11100099]
[182]
Zimbone, M.; Buccheri, M.A.; Cacciato, G.; Sanz, R.; Rappazzo, G.; Boninelli, S.; Reitano, R.; Romano, L.; Privitera, V.; Grimaldi, M.G. Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl. Catal. B, 2015, 165, 487-494.
[http://dx.doi.org/10.1016/j.apcatb.2014.10.031]
[183]
Khairy, M.; Zakaria, W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egyptian J. Petrol., 2014, 23, 419-426.
[http://dx.doi.org/10.1016/j.ejpe.2014.09.010]
[184]
Yoong, L.S.; Chong, F.K.; Dutta, B.K. Development of copper-doped TiO2 photo-catalyst for hydrogen production under visible light. Energy, 2009, 34, 1652-1661.
[http://dx.doi.org/10.1016/j.energy.2009.07.024]
[185]
Liu, J.; Yu, H.; Liang, Q.; Liu, Y.; Shen, J.; Bai, Q. Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J. Colloid Interface Sci., 2017, 497, 402-412.
[http://dx.doi.org/10.1016/j.jcis.2017.03.028] [PMID: 28314145]
[186]
Lessa, E.F.; Gularte, M.S.; Garcia, E.S.; Fajardo, A.R. Orange waste: A valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes. Carbohydr. Polym., 2017, 157, 660-668.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.019] [PMID: 27987976]
[187]
Salama, A. Functionalized hybrid materials assisted organic dyes removal from aqueous solutions. Environ. Nanotechnol. Monit. Manag., 2016, 6, 159-163.
[http://dx.doi.org/10.1016/j.enmm.2016.10.003]
[188]
Huang, G.; Sun, Y.; Zhao, C.; Zhao, Y.; Song, Z.; Chen, J.; Ma, S.; Du, J.; Yin, Z. Water-n-BuOH solvothermal synthesis of ZnAl-LDHs with different morphologies and its calcined product in efficient dyes removal. J. Colloid Interface Sci., 2017, 494, 215-222.
[http://dx.doi.org/10.1016/j.jcis.2017.01.079] [PMID: 28160706]
[189]
Long, Y.; Xiao, L.; Cao, Q. Co-polymerization of catechol and polyethylenimine on magnetic nanoparticles for efficient selective removal of anionic dyes from water. Powder Technol., 2017, 310, 24-34.
[http://dx.doi.org/10.1016/j.powtec.2017.01.013]
[190]
Sahraei, R.; Pour, Z.S.; Ghaemy, M. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J. Clean. Prod. 4, 2017, 142, 2973-2984.
[191]
Agarwal, S.; Gupta, V.K.; Ghasemi, M.; Amin, J.A. Peganum harmala-L Seeds adsorbent for the rapid removal of noxious brilliant green dyes from aqueous phase. J. Mol. Liq., 2017, 231, 296-305.
[http://dx.doi.org/10.1016/j.molliq.2017.01.097]
[192]
Hua, S.; Yu, X.; Li, F.; Duan, J.; Ji, H.; Liu, W. Hydrogen titanate nanosheets with both adsorptive and photocatalytic properties used for organic dyes removal. Colloids Surf. A Physicochem. Eng. Asp., 2017, 516, 211-218.
[http://dx.doi.org/10.1016/j.colsurfa.2016.12.031]
[193]
Sun, Z.; Yao, G.; Liu, M.; Zheng, S. In situ synthesis of magnetic MnFe2O4/diatomite nano-composite adsorbent and its efficient removal of cationic dyes. J. Taiwan Inst. Chem. Eng., 2017, 71, 501-509.
[http://dx.doi.org/10.1016/j.jtice.2016.12.013]
[194]
Dil, E.A.; Ghaedi, M.; Asfaram, A. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling. Ultrason. Sonochem., 2017, 34, 792-802.
[http://dx.doi.org/10.1016/j.ultsonch.2016.07.015] [PMID: 27773307]
[195]
Han, H.; Wei, W.; Jiang, Z.; Lu, J.; Zhu, J.; Xie, J. Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids Surf. A Physicochem. Eng. Asp., 2016, 509, 539-549.
[http://dx.doi.org/10.1016/j.colsurfa.2016.09.056]
[196]
Zhang, Y.Z.; Li, J.; Zhao, J.; Bian, W.; Li, Y.; Wang, X.J. Adsorption behavior of modified Iron stick yam skin with Polyethyleneimine as a potential biosorbent for the removal of anionic dyes in single and ternary systems at low temperature. Bioresour. Technol., 2016, 222, 285-293.
[http://dx.doi.org/10.1016/j.biortech.2016.09.108] [PMID: 27723475]
[197]
Lee, K.E.; Morad, N.; Teng, T.T.; Poh, B.T. Effects of different conditions on the removal of dye from reactive dye wastewater using inorganic-organic composite polymer. Int. J. Environ. Sci. Dev., 2012, 3, 1-4.
[http://dx.doi.org/10.7763/IJESD.2012.V3.177]
[198]
Ansari, F.; Ghaedi, M.; Taghdiri, M.; Asfaram, A. Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: Experimental design and derivative spectrophotometry method. Ultrason. Sonochem., 2016, 33, 197-209.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.004] [PMID: 27245971]
[199]
Jin, L.; Sun, Q.; Xu, Q.; Xu, Y. Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresour. Technol., 2015, 197, 348-355.
[http://dx.doi.org/10.1016/j.biortech.2015.08.093] [PMID: 26344242]
[200]
Gonzalez, J.A.; Villanueva, M.E.; Piehl, L.L.; Copello, G.J. Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study. Chem. Eng. J., 2015, 280, 41-48.
[http://dx.doi.org/10.1016/j.cej.2015.05.112]
[201]
El-Gamal, S.M.A.; Amin, M.S.; Ahmed, M.A. Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. J. Environ. Chem. Eng., 2015, 3, 1702-1712.
[http://dx.doi.org/10.1016/j.jece.2015.06.022]
[202]
Srivastava, V.; Sillanpää, M. Synthesis of malachite@clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater. J. Environ. Sci. (China), 2017, 51, 97-110.
[http://dx.doi.org/10.1016/j.jes.2016.08.011] [PMID: 28115155]
[203]
Djilali, Y.; Elandaloussi, H.; Aziz, A.; De Ménorval, L.C. Alkaline treatment of timber sawdust: A straightforward route toward effective low-cost adsorbent for the enhanced removal of basic dyes from aqueous solutions. J. Saudi Chem. Soc., 2016, 20, S241-S249.
[http://dx.doi.org/10.1016/j.jscs.2012.10.013]
[204]
Wawrzkiewicz, M.; Wiśniewska, M.; Gun’ko, V.M.; Zarko, V.I. Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica-alumina oxide. Powder Technol., 2015, 278, 306-315.
[http://dx.doi.org/10.1016/j.powtec.2015.03.035]
[205]
Afkhami, A.; Sayari, S.; Moosavi, R.; Madrakian, T. Magnetic nickel zinc ferrite nanocomposite as an efficient adsorbent for the removal of organic dyes from aqueous solutions. J. Ind. Eng. Chem., 2015, 21, 920-924.
[http://dx.doi.org/10.1016/j.jiec.2014.04.033]
[206]
Konicki, W.; Cendrowski, K.; Bazarko, G.; Mijowska, E. Study on efficient removal of anionic, cationic and nonionic dyes from aqueous solutions by means of mesoporous carbon nanospheres with empty cavity. Chem. Eng. Res. Des., 2015, 94, 242-253.
[http://dx.doi.org/10.1016/j.cherd.2014.08.006]
[207]
Chen, Y.; He, F.; Ren, Y.; Peng, H.; Huang, K. Fabrication of chitosan/PAA multilayer onto magnetic microspheres by LbL method for removal of dyes. Chem. Eng. J., 2014, 249, 79-92.
[http://dx.doi.org/10.1016/j.cej.2014.03.093]
[208]
Xiao, L.; Zhang, S.; Huang, J. Effective removal of organic dyes by tungstate oxide nanourchins. Powder Technol., 2014, 258, 297-303.
[http://dx.doi.org/10.1016/j.powtec.2014.03.049]
[209]
Jiang, Q.; Lu, Y.; Huang, Z.; Hu, J. Facile solvent-thermal synthesis of ultrathin MoSe2 nanosheets for hydrogen evolution and organic dyes adsorption. Appl. Surf. Sci., 2017, 402, 277-285.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.049]
[210]
Zhu, Z.; Wu, P.; Liu, G. Ultra-high adsorption capacity of anionic dyes with sharp selectivity through the cationic charged hybrid nanofibrous membranes. Chem. Eng. J., 2017, 313, 957-966.
[http://dx.doi.org/10.1016/j.cej.2016.10.145]
[211]
Asfaram, A.; Ghaedi, M.; Hajati, S.; Goudarzi, A.; Dil, E.A. Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon. Ultrason. Sonochem., 2017, 34, 1-12.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.011] [PMID: 27773223]
[212]
Khafri, H.Z.; Ghaedi, M.; Asfaram, A.; Safarpoor, M. Synthesis and characterization of ZnS:Ni-NPs loaded on AC derived from apple tree wood and their applicability for the ultrasound assisted comparative adsorption of cationic dyes based on the experimental design. Ultrason. Sonochem., 2017, 38, 371-380.
[http://dx.doi.org/10.1016/j.ultsonch.2017.03.033] [PMID: 28633837]
[213]
Song, W.; Gao, B.; Xu, X.; Xing, L.; Han, S.; Duan, P.; Song, W.; Jia, R. Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater. Bioresour. Technol., 2016, 210, 123-130.
[http://dx.doi.org/10.1016/j.biortech.2016.01.078] [PMID: 26852273]
[214]
Dashamiri, S.; Ghaedi, M.; Asfaram, A.; Zare, F.; Wang, S. Multi-response optimization of ultrasound assisted competitive adsorption of dyes onto Cu (OH)2-nanoparticle loaded activated carbon: Central composite design. Ultrason. Sonochem., 2017, 34, 343-353.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.007] [PMID: 27773255]
[215]
Chinoune, K.; Bentaleb, K.; Bouberka, Z.; Nadim, A.; Maschke, U. Adsorption of reactive dyes from aqueous solution by dirty bentonite. Appl. Clay Sci., 2016, 123, 64-75.
[http://dx.doi.org/10.1016/j.clay.2016.01.006]
[216]
Song, K.; Xu, H.; Xu, L.; Xie, K.; Yang, Y. Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution. Bioresour. Technol., 2017, 232, 254-262.
[http://dx.doi.org/10.1016/j.biortech.2017.01.070] [PMID: 28235662]
[217]
Yao, T.; Guo, S.; Zeng, C.; Wang, C.; Zhang, L. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. J. Hazard. Mater., 2015, 292, 90-97.
[http://dx.doi.org/10.1016/j.jhazmat.2015.03.014] [PMID: 25797927]
[218]
Liu, Y.; Zeng, G.; Tang, L.; Cai, Y.; Pang, Y.; Zhang, Y.; Yang, G.; Zhou, Y.; He, X.; He, Y. Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. J. Colloid Interface Sci., 2015, 448, 451-459.
[http://dx.doi.org/10.1016/j.jcis.2015.02.037] [PMID: 25765736]
[219]
Dotto, G.L.; Santos, J.M.N.; Tanabe, E.H. Chitosan/polyamide nanofibers prepared by force spinning®technology: A new adsorbent to remove anionic dyes from aqueous solutions. J. Clean. Prod., 2017, 144, 120-129.
[http://dx.doi.org/10.1016/j.jclepro.2017.01.004]
[220]
Lu, L.; Li, J.; Ng, D.H.L. Synthesis of novel hierarchically porous Fe3O4@MgAl-LDH magnetic microspheres and its superb adsorption properties of dye from water. J. Ind. Eng. Chem., 2017, 46, 315-323.
[http://dx.doi.org/10.1016/j.jiec.2016.10.045]
[221]
Asfaram, A.; Ghaedi, M.; Hajati, S.; Goudarzi, A. Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: Modeling and optimization. Ultrason. Sonochem., 2016, 32, 418-431.
[http://dx.doi.org/10.1016/j.ultsonch.2016.04.011] [PMID: 27150788]
[222]
Bagheri, A.R.; Ghaedi, M.; Asfaram, A.; Bazrafshan, A.A.; Jannesar, R. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: Experimental design methodology. Ultrason. Sonochem., 2017, 34, 294-304.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.047] [PMID: 27773249]
[223]
Dotto, G.L.; Rodrigues, F.K.; Tanabe, E.H.; Fröhlich, R.; Bertuol, D.A.; Martins, T.R.; Foletto, E.L. Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng., 2016, 4, 230-3239.
[http://dx.doi.org/10.1016/j.jece.2016.07.004]
[224]
Ardhayanti, L.I.; Santosa, S.J. Synthesis of magnetite-Mg/Al hydrotalcite and its application as adsorbent for navy blue and yellow F3G dyes. Procedia Eng., 2016, 148, 1380-1387.
[http://dx.doi.org/10.1016/j.proeng.2016.06.609]
[225]
Jaiswal, R.; Singh, S.; Pande, H. Removal of malachite green dye from aqueous solution using magnetic activated carbon. Res. J. Chem. Sci., 2015, 5, 38-43.
[226]
Mondal, M.K.; Singh, S.; Umareddy, M.; Dasgupta, B. Removal of Orange G from aqueous solution by hematite: isotherm and mass transfer studies. Korean J. Chem. Eng., 2010, 27, 1811-1815.
[http://dx.doi.org/10.1007/s11814-010-0301-9]
[227]
Chaudhary, S.; Kaur, Y.; Umar, A.; Chaudhary, G.R. Ionic liquid and surfactant functionalized ZnO nanoadsorbent for recyclable proficient adsorption of toxic dyes from waste water. J. Mol. Liq., 2016, 224, 1294-1304.
[http://dx.doi.org/10.1016/j.molliq.2016.10.116]
[228]
Banu, K.N.; Santhi, T. Development of tri-metal oxide nano composite adsorbents for the removal of reactive yellow-15 from aqueous solution. Int. J. Sci. Nat, 2013, 4, 381-389.
[229]
Gamra, A.Z.M.; Ahmed, M.A. TiO2 nanoparticles for removal of malachite green dye from waste water. Adv. Chem. Eng. Sci., 2015, 5, 373-388.
[http://dx.doi.org/10.4236/aces.2015.53039]
[230]
Hashem, F.S. Removal of methylene blue by magnetite covered bentonite nano-composite. Eur. Chem. Bull., 2013, 2, 524-529.
[231]
Ding, Z.; Wang, W.; Zhang, Y.; Li, F.; Liu, J.P. Synthesis, characterization and adsorption capability for congo red of CoFe2O4 ferrite nanoparticles. J. Alloys Compd., 2015, 640, 362-370.
[http://dx.doi.org/10.1016/j.jallcom.2015.04.020]
[232]
Guo, H.; Chen, J.; Weng, W.; Zheng, Z.; Wang, D. Adsorption behaviour of congo red from aqueous solution on La2O3-doped TiO2 nanotubes. J. Ind. Eng. Chem., 2013, 20, 3081-3088.
[http://dx.doi.org/10.1016/j.jiec.2013.11.047]
[233]
Karthikaikumar, S.; Karthikeyan, M.; Kumar, K.K.S. Removal of congo red dye from aqueous solution by polyaniline-montmorrillo-nite composite. Chem. Sci. Rev. Lett., 2014, 2, 606-614.
[234]
Ghorai, S.; Sarkar, A.; Raoufi, M.; Panda, A.B.; Schönherr, H.; Pal, S. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl. Mater. Interfaces, 2014, 6(7), 4766-4777.
[http://dx.doi.org/10.1021/am4055657] [PMID: 24579659]
[235]
Afkhami, A.; Moosavi, R. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater., 2010, 174(1-3), 398-403.
[http://dx.doi.org/10.1016/j.jhazmat.2009.09.066] [PMID: 19819070]
[236]
Ghaedi, M.; Biyareh, M.N.; Kokhdan, S.N.; Shamsaldini, S.; Sahraei, R.; Daneshfar, A.; Shahriyar, S. Comparison of the efficiency of palladium and silver nanoparticles loaded on activated carbon and zinc oxide nanorods loaded on activated carbon as new adsorbents for removal of congo red from aqueous solution: Kinetic and isotherm study. Mater. Sci. Eng. C, 2012, 32, 725-734.
[http://dx.doi.org/10.1016/j.msec.2012.01.015]
[237]
Nassar, N.Y.; Khatab, M. Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Advances, 2016, 6, 79688-79705.
[http://dx.doi.org/10.1039/C6RA12852A]
[238]
Nassar, M.Y.; Abdallah, S. Facile controllable hydrothermal route for porous CoMn2O4 nanostructure: Synthesis, characterization, and textile dye removal from aqueous media. RSC Advances, 2016, 6, 84050-84067.
[http://dx.doi.org/10.1039/C6RA12424K]
[239]
Nassar, M.Y.; Mohamed, T.Y.; Ahmed, I.S.; Samir, I. MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq., 2017, 225, 730-740.
[http://dx.doi.org/10.1016/j.molliq.2016.10.135]
[240]
Shayesteh, H.; Ashrafi, A. Ahmad Rahbar-Kelishami, Evaluation of Fe3O4@MnO2 core-shell magnetic nanoparticles as an adsorbent for decolorization of methylene blue dye in contaminated water: Synthesis and characterization, kinetic, equilibrium, and thermodynamic studies. J. Mol. Struct., 2017, 1149, 199-205.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.100]
[241]
Gupta, K.; Khatri, O.P. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. J. Colloid Interface Sci., 2017, 501, 11-21.
[http://dx.doi.org/10.1016/j.jcis.2017.04.035] [PMID: 28431217]
[242]
Eksuree, S.; Jutarat, K.; Somchai, T.; Titipun, T. Simple wet-chemical synthesis of superparamagnetic CTAB-modified magnetite nanoparticles using as adsorbents for anionic dye congo red removal. Mater. Lett., 2018, 213, 138-142.
[http://dx.doi.org/10.1016/j.matlet.2017.11.015]
[243]
Rouhollah, K.; Batoul, R.; Ghodsieh, B.; Maryam, M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq., 2018, 255, 541-549.
[http://dx.doi.org/10.1016/j.molliq.2018.02.010]
[244]
Xu, R.; Mao, J.; Peng, N.; Luo, X.; Chang, C. Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes. Carbohydr. Polym., 2018, 188, 143-150.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.073] [PMID: 29525150]
[245]
Vinodha, G.; Cindrella, L.; Shima, P.D. Graphene oxide-wrapped magnetite nanoclusters: A recyclable functional hybrid for fast and highly efficient removal of organic dyes from wastewater. J. Environ. Chem. Eng., 2018, 6, 2176-2190.
[http://dx.doi.org/10.1016/j.jece.2018.03.026]
[246]
García, F.E.; Plaza-Cazón, J.; Montesinos, V.N.; Donati, E.R.; Litter, M.I. Combined strategy for removal of Reactive Black 5 by biomass sorption on Macrocystis pyrifera and zerovalent iron nanoparticles. J. Environ. Manage., 2018, 207, 70-79.
[http://dx.doi.org/10.1016/j.jenvman.2017.11.002] [PMID: 29154010]
[247]
Lifa, G.; Wei, W.; Ziling, P.; Fatang, T.; Xueliang, Q. Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water. Powder Technol., 2018, 326, 393-401.
[http://dx.doi.org/10.1016/j.powtec.2017.12.003]
[248]
Alireza, B.; Mojtaba, F.Y.; Soheyla, K.; Hossein, V.; Eslam, P. 2, 2′-(Butane-1, 4-diylbis(oxy))dibenzaldehyde cross-linked magnetic chitosan nanoparticles as a new adsorbent for the removal of reactive red 239 from aqueous solutions. Mater. Chem. Phys., 2018, 212, 1-11.
[http://dx.doi.org/10.1016/j.matchemphys.2018.02.036]
[249]
Jin, L.; Zhao, X.; Qian, X.; Dong, M. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes. J. Colloid Interface Sci., 2018, 509, 245-253.
[http://dx.doi.org/10.1016/j.jcis.2017.09.002] [PMID: 28915482]
[250]
Zeng, L.; Xiao, L.; Long, Y.; Shi, X. Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. J. Colloid Interface Sci., 2018, 516, 274-283.
[http://dx.doi.org/10.1016/j.jcis.2018.01.070] [PMID: 29408114]
[251]
Huairu, T.; Jun, P.; Tingting, L.; Chen, S.; Hua, H. Preparation and performance study of MgFe2O4/metal-organic framework composite for rapid removal of organic dyes from water. J. Solid State Chem., 2018, 257, 40-48.
[http://dx.doi.org/10.1016/j.jssc.2017.09.017]
[252]
Kazemi, M.; Jahanshahi, M.; Peyravi, M. Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate. J. Hazard. Mater., 2018, 344, 12-22.
[http://dx.doi.org/10.1016/j.jhazmat.2017.09.059] [PMID: 29031091]
[253]
Dai, R.; Zhang, Y.; Shi, Z.Q.; Yang, F.; Zhao, C.S. A facile approach towards amino-coated ferroferric oxide nanoparticles for environmental pollutant removal. J. Colloid Interface Sci., 2018, 513, 647-657.
[http://dx.doi.org/10.1016/j.jcis.2017.11.070] [PMID: 29207347]
[254]
Weilong, S.; Feng, G.; Huibo, W.; Changan, L.; Zhenhui, K. Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution. Appl. Surf. Sci., 2018, 433, 790-797.
[http://dx.doi.org/10.1016/j.apsusc.2017.10.099]
[255]
Senthil Kumar, P.; Varjani, S.J.; Suganya, S. Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling. Bioresour. Technol., 2018, 250, 716-722.
[http://dx.doi.org/10.1016/j.biortech.2017.11.097] [PMID: 29223092]
[256]
Li, C.; Wang, X.; Meng, D.; Zhou, L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int. J. Biol. Macromol., 2018, 107(Pt B), 1871-1878.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.058] [PMID: 29032084]
[257]
Yang, Q.; Wang, Y.; Wang, J.; Liu, F.; Hu, N.; Pei, H.; Yang, W.; Li, Z.; Suo, Y.; Wang, J. High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chem., 2018, 254, 241-248.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.011] [PMID: 29548448]
[258]
Das, T.R.; Patra, S.; Madhuri, R.; Sharma, P.K. Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J. Colloid Interface Sci., 2018, 509, 82-93.
[http://dx.doi.org/10.1016/j.jcis.2017.08.102] [PMID: 28886372]
[259]
Baoliang, Z.; Yu, H.; Jiqi, W.; Xin, C.; Qiuyu, Z. Fe3O4@SiO2@ CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase. J. Alloys Compd., 2018, 735, 1986-1996.
[http://dx.doi.org/10.1016/j.jallcom.2017.11.349]
[260]
Karimi, M.H.; Mahdavinia, G.R.; Massoumi, B.; Baghban, A.; Saraei, M. Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. Int. J. Biol. Macromol., 2018, 113, 361-375.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.102] [PMID: 29471096]
[261]
Khani, R.; Sobhani, S.; Beyki, M.H.; Miri, S. Application of magnetic ionomer for development of very fast and highly efficient uptake of triazo dye Direct Blue 71 form different water samples. Ecotoxicol. Environ. Saf., 2018, 150, 54-61.
[http://dx.doi.org/10.1016/j.ecoenv.2017.12.018] [PMID: 29268115]
[262]
Hosseinzadeh, H.; Ramin, S. Fabrication of starch-graft-poly(acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution. Int. J. Biol. Macromol., 2018, 106, 101-115.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.182] [PMID: 28778526]
[263]
Enrique, C.P.; Jenifer, C.S.; Anaelise, M.C.; Bandegharaei, A.H.; Guilherme, L.D. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng., 2018, 6, 649-659.
[http://dx.doi.org/10.1016/j.jece.2017.12.062]
[264]
Jing, X.; Difa, X.; Bicheng, Z.; Bei, C.; Chuanjia, J. Adsorptive removal of an anionic dye congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres. Appl. Surf. Sci., 2018, 435, 1136-1142.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.232]
[265]
Qiang, Z.; Xiaoying, Z.; Baoliang, C. Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water. Chem. Eng. J., 2018, 334, 119-1127.
[266]
Hongling, D.; Xiaoming, P.; Weiyan, Y.; Fengping, H.; Yuxiang, Z. Synthesis and characterization of graphitic magnetic mesoporous nanocomposite and its application in dye adsorption. J. Mol. Liq., 2018, 253, 197-204.
[http://dx.doi.org/10.1016/j.molliq.2018.01.030]
[267]
Vojoudi, H.; Badiei, A.; Amiri, A.; Banaei, A.; Schenk-Joß, K. Efficient device for the benign removal of organic pollutants from aqueous solutions using modified mesoporous magnetite nanostructures. J. Phys. Chem. Solids, 2018, 113, 210-219.
[http://dx.doi.org/10.1016/j.jpcs.2017.10.029]
[268]
Salama, A.; Hesemann, P. New N-guanidinium chitosan/silica ionic microhybrids as efficient adsorbent for dye removal from waste water. Int. J. Biol. Macromol., 2018, 111, 762-768.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.049] [PMID: 29329809]
[269]
Qi, C.; Zhao, L.; Lin, Y.; Wu, D. Graphene oxide/chitosan sponge as a novel filtering material for the removal of dye from water. J. Colloid Interface Sci., 2018, 517, 18-27.
[http://dx.doi.org/10.1016/j.jcis.2018.01.089] [PMID: 29421677]
[270]
Corneliu, C.; Andra, C.H.; Petrisor, S.; Petronela, P.; Valeria, H. Optimized formulation of NiFe2O4@Ca-alginate composite as a selective and magnetic adsorbent for cationic dyes: Experimental and modeling study. React. Funct. Polym., 2018, 125, 57-69.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.02.008]
[271]
Rui, W.; Jing, Y.; Qi, H. Activated carbon/Mn0.6Zn0.4Fe2O4 composites: Facile synthesis, magnetic performance and their potential application for the removal of methylene blue from water. Chem. Eng. Res. Des., 2018, 132, 215-225.
[http://dx.doi.org/10.1016/j.cherd.2018.01.027]
[272]
Tuzen, M.; Sarı, A.; Saleh, T.A. Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. J. Environ. Manage., 2018, 206, 170-177.
[http://dx.doi.org/10.1016/j.jenvman.2017.10.016] [PMID: 29065358]
[273]
Jia-Ying, Y.; Xin-Yu, J.; Fei-Peng, J.; Jin-Gang, Y. The oxygen-rich pentaerythritol modified multi-walled carbon nanotube as an efficient adsorbent for aqueous removal of alizarin yellow R and alizarin red S. Appl. Surf. Sci., 2018, 436, 198-206.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.029]
[274]
Eman, F.A.; Abeer, A.E.; Ali, H.G. Synergistic effect of Cu(II) in the one-pot synthesis of reduced graphene oxide (rGO/CuxO) nanohybrids as adsorbents for cationic and anionic dyes. J. Environ. Chem. Eng., 2018, 6, 623-634.
[http://dx.doi.org/10.1016/j.jece.2017.12.047]
[275]
Zhennan, S.; Chen, X.; Han, G.; Ling, L.; Run, Z. Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids Surf. A Physicochem. Eng. Asp., 2018, 539, 382-390.
[http://dx.doi.org/10.1016/j.colsurfa.2017.12.043]
[276]
Pei, L.P.; Gao, B.; Li, A.; Yang, H. Highly selective adsorption of dyes and arsenate from their aqueous mixtures using a silica-sand/cationized-starch composite. Microporous Mesoporous Mater., 2018, 263, 210-219.
[http://dx.doi.org/10.1016/j.micromeso.2017.12.025]
[277]
Panpan, S.; Lin, X.; Jie, L.; Peiyan, Z.; Wancheng, Z. Hydrothermal synthesis of mesoporous Mg3Si2O5(OH)4 microspheres as high-performance adsorbents for dye removal. Chem. Eng. J., 2018, 334, 377-388.
[http://dx.doi.org/10.1016/j.cej.2017.09.120]
[278]
Jyoti, S.; Garg, V.K.; Gupta, R.K. Removal of Methylene blue from aqueous solution by Fe3O4@Ag/SiO2 nanospheres: Synthesis, characterization and adsorption performance. J. Mol. Liq., 2018, 250, 413-422.
[http://dx.doi.org/10.1016/j.molliq.2017.11.180]
[279]
Qian, M.; Yanyan, P.; Dan, D.; Xue, P.; Liangjie, Y. Core-shell structured Mn2O3/MgO microsphere for removal of C.I. Basic violet 3 from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp., 2018, 545, 188-196.
[http://dx.doi.org/10.1016/j.colsurfa.2018.01.051]
[280]
Tanzifi, M.; Tavakkoli Yaraki, M.; Karami, M.; Karimi, S.; Dehghani Kiadehi, A.; Karimipour, K.; Wang, S. Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites. J. Colloid Interface Sci., 2018, 519, 154-173.
[http://dx.doi.org/10.1016/j.jcis.2018.02.059] [PMID: 29494878]
[281]
Kyung, W.J.; Brian, H.C.; Chau, M.D.; Young, J.L.; Hyup, S.L. Aluminum carboxylate-based metal organic frameworks for effective adsorption of anionic azo dyes from aqueous media. J. Ind. Eng. Chem., 2018, 59, 149-159.
[http://dx.doi.org/10.1016/j.jiec.2017.10.019]
[282]
Pal, U.; Sandoval, A.; Madrid, S.I.U.; Corro, G.; Sharma, V.; Mohanty, P. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution. Chemosphere, 2016, 163, 142-152.
[http://dx.doi.org/10.1016/j.chemosphere.2016.08.020] [PMID: 27529381]
[283]
Dhodapkar, R.; Borde, P.; Nandy, T. Super absorbent polymers in environmental remediation. Glob. NEST J., 2009, 11, 223-234.
[284]
Yu, C.; Geng, J.; Zhuang, Y.; Zhao, J.; Chu, L.; Luo, X.; Zhao, Y.; Guo, Y. Preparation of the chitosan grafted poly (quaternary ammonium)/Fe3O4 nanoparticles and its adsorption performance for food yellow 3. Carbohydr. Polym., 2016, 152, 327-336.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.114] [PMID: 27516279]
[285]
Omorogie, M.O.; Babalola, J.O.; Unuabonah, E.I. Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: A critical review. Desalin. Water Treat., 2014, 57, 518-544.
[http://dx.doi.org/10.1080/19443994.2014.967726]
[286]
Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater., 2011, 186(1), 160-168.
[http://dx.doi.org/10.1016/j.jhazmat.2010.10.102] [PMID: 21146294]
[287]
Zhang, J.; Zhou, Q.; Ou, L. Removal of indigo carmine from aqueous solution by microwave-treated activated carbon from peanut shell. Desalin. Water Treat., 2014, 57, 718-727.
[http://dx.doi.org/10.1080/19443994.2014.967729]
[288]
Siddiqui, S.I.; Rathi, G.; Chaudhry, S.A. Qualitative analysis of acid washed black cumin seeds for decolorization of water through removal of highly intense dye methylene blue. Data Brief, 2018, 20, 1044-1047.
[http://dx.doi.org/10.1016/j.dib.2018.08.096] [PMID: 30225320]
[289]
Siddiqui, S.I.; Fatima, B.; Tara, N.; Rathi, G.; Chaudhry, S.A. 15 - Recent advances in remediation of synthetic dyes from wastewaters using sustainable and low-cost adsorbents.In:The Textile Institute Book Series, The Impact and Prospects of Green Chemistry for Textile Technology; Islam, S.U.; Butola, B.S., Eds.; Woodhead Publishing, 2019, pp. 471-507.
[290]
Salleh, M.A.M.; Mahmoud, D.K.; Wan, W.A.; Karim, A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 2011, 280, 1-13.
[http://dx.doi.org/10.1016/j.desal.2011.07.019]
[291]
Tian, Y.; Ji, C.; Zhao, M. Preparation and characterization of baker’s yeast modified by nano-Fe3O4: Application of biosorption of methyl violet in aqueous solution. Chem. Eng. J., 2010, 165, 474-481.
[http://dx.doi.org/10.1016/j.cej.2010.09.037]
[292]
Pirbazari, A.E.; Saberikhah, E.; Kozani, S.S.H. Fe3O4-wheat straw: Preparation, characterization and its application for methylene blue adsorption. Water Resour. Ind., 2017, 7-8, 23-37.
[http://dx.doi.org/10.1016/j.wri.2014.09.001]
[293]
Siddiqui, S.I.; Chaudhry, S.A. Nigella sativa plant based nanocomposite-MnFe2O4/BC: An antibacterial material for water purification. J. Clean. Prod., 2018, 200, 996-1008.
[http://dx.doi.org/10.1016/j.jclepro.2018.07.300]
[294]
Siddiqui, S.I.; Manzoor, O.; Mohsin, M.; Chaudhry, S.A. Nigella sativa seed based nanocomposite-MnO2/BC: An antibacterial material for photocatalytic degradation, and adsorptive removal of Methylene blue from water. Environ. Res., 2019, 171, 328-340.
[http://dx.doi.org/10.1016/j.envres.2018.11.044] [PMID: 30711734]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy