Review Article

纳米生物膜阵列作为微尺度微生物培养和高通量下游应用的新型通用平台

卷 26, 期 14, 2019

页: [2529 - 2535] 页: 7

弟呕挨: 10.2174/0929867326666190107155953

价格: $65

摘要

生物膜是微生物生长的主要模式,现在人们完全认为人类的大多数感染与生物膜病因有关。生物膜定义为由保护性外聚合物基质包围的附着和结构化微生物群落。重要的是,在生物膜内生长的固着微生物对抗微生物剂具有高度抗性。因此,迫切需要开发新的和改进的抗生物膜疗法。不幸的是,大多数用于体外生物膜形成的现有技术与高通量筛选技术不相容,所述高通量筛选技术可以加速发现具有抗生物膜活性的新药物。为了克服这一主要障碍,我们小组开发了一种新技术,包括在微阵列平台上微生物生物膜的微观培养。使用该技术,可以在标准显微镜载玻片上同时形成数百至数千个微生物生物膜,每个微生物生物膜具有约30-50纳升的体积。尽管超过传统生物膜超过三个数量级的小型化,但这些纳米生物膜显示出类似的生长,结构和表型特性,包括抗生素抗药性。这些纳米生物膜芯片易于自动化,大大减少了检测量和成本。该技术平台允许真正的高通量筛选以寻找新的抗生物膜药物。

关键词: 生物膜,微阵列,生物膜芯片,微量培养,高通量筛选,药物开发。

[1]
Costerton, J.W.; Cheng, K.J.; Geesey, G.G.; Ladd, T.I.; Nickel, J.C.; Dasgupta, M.; Marrie, T.J. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol., 1987, 41, 435-464. [http://dx.doi.org/10.1146/annurev.mi.41.100187.002251]. [PMID: 3318676].
[2]
Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis., 2002, 8(9), 881-890. [http://dx.doi.org/10.3201/eid0809.020063]. [PMID: 12194761].
[3]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284(5418), 1318-1322. [http://dx.doi.org/10.1126/science.284.5418.1318]. [PMID: 10334980].
[4]
Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev., 2002, 15(2), 167-193. [http://dx.doi.org/10.1128/CMR.15.2.167-193.2002]. [PMID: 11932229].
[5]
Darouiche, R.O. Treatment of infections associated with surgical implants. N. Engl. J. Med., 2004, 350(14), 1422-1429. [http://dx.doi.org/10.1056/NEJMra035415]. [PMID: 15070792].
[6]
Raad, I. Intravascular-catheter-related infections. Lancet, 1998, 351(9106), 893-898. [http://dx.doi.org/10.1016/S0140-6736(97)10006-X]. [PMID: 9525387].
[7]
Fux, C.A.; Costerton, J.W.; Stewart, P.S.; Stoodley, P. Survival strategies of infectious biofilms. Trends Microbiol., 2005, 13(1), 34-40. [http://dx.doi.org/10.1016/j.tim.2004.11.010]. [PMID: 15639630].
[8]
Talsma, S.S. Biofilms on medical devices. Home Healthc. Nurse, 2007, 25(9), 589-594. [http://dx.doi.org/10.1097/01.NHH.0000296117.87061.14]. [PMID: 18049256].
[9]
de la Fuente-Núñez, C.; Reffuveille, F.; Fernández, L.; Hancock, R.E. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol., 2013, 16(5), 580-589. [http://dx.doi.org/10.1016/j.mib.2013.06.013]. [PMID: 23880136].
[10]
Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnology, 2015, 13, 91. [http://dx.doi.org/10.1186/s12951-015-0147-8]. [PMID: 26666378].
[11]
Pierce, C.G.; Srinivasan, A.; Ramasubramanian, A.K.; López-Ribot, J.L. From biology to drug development: New approaches to combat the threat of fungal biofilms. Microbiol. Spectr., 2015, 3(3) [http://dx.doi.org/10.1128/microbiolspec.MB-0007-2014]. [PMID: 26185082].
[12]
Gefen, O.; Balaban, N.Q. The Moore’s Law of microbiology - towards bacterial culture miniaturization with the micro-Petri chip. Trends Biotechnol., 2008, 26(7), 345-347. [http://dx.doi.org/10.1016/j.tibtech.2008.03.007]. [PMID: 18453020].
[13]
Srinivasan, A.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. Microscale microbial culture. Future Microbiol., 2015, 10(2), 143-146. [http://dx.doi.org/10.2217/fmb.14.129]. [PMID: 25689525].
[14]
Weibull, E.; Antypas, H.; Kjäll, P.; Brauner, A.; Andersson-Svahn, H.; Richter-Dahlfors, A. Bacterial nanoscale cultures for phenotypic multiplexed antibiotic susceptibility testing. J. Clin. Microbiol., 2014, 52(9), 3310-3317. [http://dx.doi.org/10.1128/JCM.01161-14]. [PMID: 24989602].
[15]
Banerjee, S.N.; Emori, T.G.; Culver, D.H.; Gaynes, R.P.; Jarvis, W.R.; Horan, T.; Edwards, J.R.; Tolson, J.; Henderson, T.; Martone, W.J. Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989. Am. J. Med., 1991, 91(3B), 86S-89S. [http://dx.doi.org/10.1016/0002-9343(91)90349-3]. [PMID: 1928197].
[16]
Gudlaugsson, O.; Gillespie, S.; Lee, K.; Vande Berg, J.; Hu, J.; Messer, S.; Herwaldt, L.; Pfaller, M.; Diekema, D. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis., 2003, 37(9), 1172-1177. [http://dx.doi.org/10.1086/378745]. [PMID: 14557960].
[17]
Hajjeh, R.A.; Sofair, A.N.; Harrison, L.H.; Lyon, G.M.; Arthington-Skaggs, B.A.; Mirza, S.A.; Phelan, M.; Morgan, J.; Lee-Yang, W.; Ciblak, M.A.; Benjamin, L.E.; Sanza, L.T.; Huie, S.; Yeo, S.F.; Brandt, M.E.; Warnock, D.W. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J. Clin. Microbiol., 2004, 42(4), 1519-1527. [http://dx.doi.org/10.1128/JCM.42.4.1519-1527.2004]. [PMID: 15070998].
[18]
Ramage, G.; Martínez, J.P.; López-Ribot, J.L. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res., 2006, 6(7), 979-986. [http://dx.doi.org/10.1111/j.1567-1364.2006.00117.x]. [PMID: 17042747].
[19]
Ramage, G.; Mowat, E.; Jones, B.; Williams, C.; Lopez-Ribot, J. Our current understanding of fungal biofilms. Crit. Rev. Microbiol., 2009, 35(4), 340-355. [http://dx.doi.org/10.3109/10408410903241436]. [PMID: 19863383].
[20]
Ostrosky-Zeichner, L.; Casadevall, A.; Galgiani, J.N.; Odds, F.C.; Rex, J.H. An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov., 2010, 9(9), 719-727. [http://dx.doi.org/10.1038/nrd3074]. [PMID: 20725094].
[21]
Pierce, C.G.; Srinivasan, A.; Uppuluri, P.; Ramasubramanian, A.K.; López-Ribot, J.L. Antifungal therapy with an emphasis on biofilms. Curr. Opin. Pharmacol., 2013, 13(5), 726-730. [http://dx.doi.org/10.1016/j.coph.2013.08.008]. [PMID: 24011516].
[22]
Srinivasan, A.; Uppuluri, P.; Lopez-Ribot, J.; Ramasubramanian, A.K. Development of a high-throughput Candida albicans biofilm chip. PLoS One, 2011, 6(4)e19036 [http://dx.doi.org/10.1371/journal.pone.0019036]. [PMID: 21544190].
[23]
Srinivasan, A.; Leung, K.P.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. High-throughput nano-biofilm microarray for antifungal drug discovery. MBio, 2013, 4(4), e00331-e13. [http://dx.doi.org/10.1128/mBio.00331-13]. [PMID: 23800397].
[24]
Tibbitt, M.W.; Anseth, K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng., 2009, 103(4), 655-663. [http://dx.doi.org/10.1002/bit.22361]. [PMID: 19472329].
[25]
Chandra, J.; Kuhn, D.M.; Mukherjee, P.K.; Hoyer, L.L.; McCormick, T.; Ghannoum, M.A. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol., 2001, 183(18), 5385-5394. [http://dx.doi.org/10.1128/JB.183.18.5385-5394.2001]. [PMID: 11514524].
[26]
Ramage, G.; Vandewalle, K.; Wickes, B.L.; López-Ribot, J.L. Characteristics of biofilm formation by Candida albicans. Rev. Iberoam. Micol., 2001, 18(4), 163-170. [PMID: 15496122].
[27]
Ramage, G.; Vande Walle, K.; Wickes, B.L.; López-Ribot, J.L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother., 2001, 45(9), 2475-2479. [http://dx.doi.org/10.1128/AAC.45.9.2475-2479.2001]. [PMID: 11502517].
[28]
Uppuluri, P.; Srinivasan, A.; Ramasubramanian, A.; Lopez-Ribot, J.L. Effects of fluconazole, amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion. Antimicrob. Agents Chemother., 2011, 55(7), 3591-3593. [http://dx.doi.org/10.1128/AAC.01701-10]. [PMID: 21518839].
[29]
Srinivasan, A.; Gupta, C.M.; Agrawal, C.M.; Leung, K.P.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. Drug susceptibility of matrix-encapsulated Candida albicans nano-biofilms. Biotechnol. Bioeng., 2014, 111(2), 418-424. [http://dx.doi.org/10.1002/bit.25120]. [PMID: 24114441].
[30]
Srinivasan, A.; Torres, N.S.; Leung, K.P.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. nBioChip, a lab-on-a-chip platform of mono- and polymicrobial biofilms for high-throughput downstream applications. MSphere, 2017, 2(3), e00247-e17. [http://dx.doi.org/10.1128/mSphere.00247-17]. [PMID: 28680970].
[31]
Srinivasan, A.; Lee, G.C.; Torres, N.S.; Hernandez, K.; Dallas, S.D.; Lopez-Ribot, J.; Frei, C.R.; Ramasubramanian, A.K. High-throughput microarray for antimicrobial susceptibility testing. Biotechnol. Rep. (Amst.), 2017, 16, 44-47. [http://dx.doi.org/10.1016/j.btre.2017.10.004]. [PMID: 29167758].
[32]
Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis., 2004, 39(3), 309-317. [http://dx.doi.org/10.1086/421946]. [PMID: 15306996].
[33]
Wolcott, R.; Costerton, J.W.; Raoult, D.; Cutler, S.J. The polymicrobial nature of biofilm infection. Clin. Microbiol. Infect., 2013, 19(2), 107-112. [http://dx.doi.org/10.1111/j.1469-0691.2012.04001.x]. [PMID: 22925473].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy