Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

The Effect of Focused Ultrasound on Magnetic Polyelectrolyte Capsules Loaded with Dye When Suspended in Tissue-Mimicking Gel

Author(s): Carmen Stavarache*, Mircea Vinatoru and Timothy Mason

Volume 16, Issue 4, 2019

Page: [355 - 363] Pages: 9

DOI: 10.2174/1567201816666190103121313

Abstract

Background: Capsules containing a dye were prepared by the LbL method with iron oxide nanoparticles (50 nm) in different layers of the shell.

Method: The capsules were dispersed in a gel and subjected to focused ultrasonic irradiation at three different powers and exposure times.

Result: It was found that the inclusion of iron oxide magnetic nanoparticles in any of the polyelectrolyte shells (4, 6, 8 and 10) strengthened the capsules with respect to capsules without nanoparticles. Incorporation of nanoparticles in shell 8 provided the most resistance to fragmentation under focused ultrasonic irradiation. The relative degree of capsule stability is dependent on both the power of the ultrasound and the exposure time.

Conclusion: The presence of iron oxide nanoparticles not only conferred more resistance to fragmentation but also provided a route to protein labelled dye release through sonoporation that was not present for capsules without nanoparticles.

Keywords: Microencapsulation, nanoparticles, ultrasound, controlled release, targeted drug delivery, fragmentation.

Graphical Abstract

[1]
Ranade, V.V.; Cannon, J.B. Drug Delivery Systems, 3rd ed., CRC Press, Taylor & Francis Group, USA , 2011.
[2]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65, 36-48.
[3]
Mignani, S.; El Kazzouli, S.; Bousmina, M.; Majoral, J.P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv. Drug Deliv. Rev., 2013, 65, 1316-1330.
[4]
Delcea, M.; Möhwald, H.; Skirtach, A.G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev., 2011, 63, 730-747.
[5]
De Geest, B.G.; Sanders, N.N.; Sukhorukov, G.B.; Demeester, J.; De Smedt, S.C. Release mechanisms for polyelectrolyte capsules. Chem. Soc. Rev., 2007, 36, 636-649.
[6]
De Geest, B.G.; Skirtach, A.G.; Mamedov, A.A.; Antipov, A.A.; Kotov, N.A.; De Smedt, S.C.; Sukhorukov, G.B. Ultrasound-triggered release from multilayered capsules. Small, 2007, 3, 804-808.
[7]
Frenkel, V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev., 2008, 60, 1193-1208.
[8]
Volodkin, D.V.; Petrov, A.I.; Prevot, M.; Sukhorukov, G.B. Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation. Langmuir, 2004, 20, 3398-3406.
[9]
Gil, P.R.; del Mercato, L.L.; del-Pino, P.; Muñoz-Javier, A.; Parak, W.J. Nanoparticle-modified polyelectrolyte capsules. Nano Today, 2008, 3, 12-21.
[10]
Kolesnikova, T.A.; Khlebtsov, B.N.; Shchukin, D.G.; Gorin, D.A. Atomic force microscopy characterization of ultrasound-sensitive nanocomposite microcapsules. Nanotechnol. Russ., 2008, 3, 560-569.
[11]
Antipov, A.A.; Sukhorukov, G.B. Polyelectrolyte multilayer capsules as vehicles with tunable permeability. Adv. Colloid Interface Sci., 2004, 111, 49-61.
[12]
Antipina, M.N.; Sukhorukov, G.B. Remote control over guidance and release properties of composite polyelectrolyte based capsules. Adv. Drug Deliv. Rev., 2011, 63, 716-729.
[13]
Binns, C. Medical applications of magnetic nanoparticles. In: Frontiers of Nanoscience; Elsevier Ltd.: United Kingdom, 2014; pp. 217-258.
[14]
Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 2010, 62, 284-304.
[15]
Martina, M.S.; Fortin, J.P.; Fournier, L.; Ménager, C.; Gazeau, F.; Clément, O.; Lesieur, S. Magnetic targeting of rhodamine-labeled superparamagnetic liposomes to solid tumors: In vivo tracking by fibered confocal fluorescence microscopy. Mol. Imaging, 2007, 6, 140-146.
[16]
Clement, G.T. Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics, 2004, 42, 1087-1093.
[17]
Mason, T.J. Therapeutic ultrasound an overview. Ultrason. Sonochem., 2011, 18, 847-852.
[18]
Böhmer, M.R.; Chlon, C.H.T.; Raju, B.I.; Chin, C.T.; Shevchenko, T.; Klibanov, A.L. Focused ultrasound and microbubbles for enhanced extravasation. J. Control. Release, 2010, 148, 18-24.
[19]
Lensen, D.; Gelderblom, E.C.; Vriezema, D.M.; Marmottant, P.; Verdonschot, N.; Versluis, M.; De Jong, N.; Van Hest, J.C.M. Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter, 2011, 7, 5417-5422.
[20]
Kolesnikova, T.A.; Gorin, D.A.; Fernandes, P.; Kessel, S.; Khomutov, G.B.; Fery, A.; Shchukin, D.G.; Möhwald, H. Nanocomposite microcontainers with high ultrasound sensitivity. Adv. Funct. Mater., 2010, 20, 1189-1195.
[21]
Zhang, W.; Deng, L.; Wang, G.; Guo, X.; Li, Q.; Zhang, J.; Khashab, N.M. Low-magnetization magnetic microcapsules: A synergistic theranostic platform for remote cancer cells therapy and imaging. Part. Part. Syst. Charact., 2014, 31, 985-993.
[22]
Andreeva, D.V.; Gorin, D.A.; Shchukin, D.G.; Sukhorukov, G.B. Magnetic microcapsules with low permeable polypyrrole skin layer. Macromol. Rapid Commun., 2006, 27, 931-936.
[23]
Guo, J.; Yang, W.; Deng, Y.; Wang, C.; Fu, S. Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsules. Small, 2005, 1, 737-741.
[24]
Caruso, F.; Susha, A.S.; Giersig, M.; Möhwald, H. Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres. Adv. Mater., 1999, 11, 950-952.
[25]
Zhu, L.; Ma, J.; Jia, N.; Zhao, Y.; Shen, H. Chitosan-coated magnetic nanoparticles as carriers of 5-Fluorouracil: Preparation, characterization and cytotoxicity studies. Colloids Surf. B Biointerfaces, 2009, 68, 1-6.
[26]
Shchukin, D.G.; Gorin, D.A.; Möhwald, H. Ultrasonically induced opening of polyelectrolyte microcontainers. Langmuir, 2006, 22, 7400-7404.
[27]
Ridi, F.; Bonini, M.; Baglioni, P. Magneto-responsive nanocomposites: Preparation and integration of magnetic nanoparticles into films, capsules, and gels. Adv. Colloid Interface Sci., 2014, 207, 3-13.
[28]
Voigt, A.; Buske, N.; Sukhorukov, G.B.; Antipov, A.A.; Leporatti, S.; Lichtenfeld, H.; Bäumler, H.; Donath, E.; Möhwald, H. Novel polyelectrolyte multilayer micro- and nanocapsules as magnetic carriers. J. Magn. Magn. Mater., 2001, 225, 59-66.
[29]
Xuan, M.; Zhao, J.; Shao, J.; Du, C.; Cui, W.; Duan, L.; Qi, W.; Li, J. Recent progresses in layer-by-layer assembled biogenic capsules and their applications. J. Colloid Interface Sci., 2017, 487, 107-117.
[30]
Guzmán, E.; Mateos-Maroto, A.; Ruano, M.; Ortega, F.; Rubio, R.G. Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Adv. Colloid Interface Sci., 2017, 249, 290-307.
[31]
Liu, M.; Du, H.; Zhang, W.; Zhai, G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Mater. Sci. Eng. C, 2017, 71, 1267-1280.
[32]
Mertz, D.; Sandre, O.; Bégin-Colin, S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys. Acta (BBA) -. Gen. Sub., 2017, 1861, 1617-1641.
[33]
Szczepanowicz, K.; Piechota, P.; Węglarz, W.P.; Warszyński, P. Polyelectrolyte nanocapsules containing iron oxide nanoparticles as MRI detectable drug delivery system. Colloids Surf. A, 2017, 532, 351-356.
[34]
Skirtach, A.G.; De Geest, B.G.; Mamedov, A.; Antipov, A.A.; Kotov, N.A.; Sukhorukov, G.B. Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. J. Mater. Chem., 2007, 17, 1050-1054.
[35]
Sun, Y.; Zheng, Y.; Ran, H.; Zhou, Y.; Shen, H.; Chen, Y.; Chen, H.; Krupka, T.M.; Li, A.; Li, P.; Wang, Z.; Wang, Z. Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials, 2012, 33, 5854-5864.
[36]
Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 2017, 30, 1-14.
[37]
Saeedi, M.; Vahidi, O.; Bonakdar, S. Synthesis and characterization of glycyrrhizic acid coated iron oxide nanoparticles for hyperthermia applications. Mater. Sci. Eng. C, 2017, 77, 1060-1067.
[38]
Mason, T.; Peters, D. 1 - An introduction to the uses of power ultrasound in chemistry. InPractical Sonochemistry, 2nd ed; Woodhead Publishing: England, 2002, pp. 1-48.
[39]
Ohl, C-D.; Arora, M.; Ikink, R.; de Jong, N.; Versluis, M.; Delius, M.; Lohse, D. Sonoporation from jetting cavitation bubbles. Biophys. J., 2006, 91, 4285-4295.
[40]
Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S.C.; Moonen, C.T.W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv. Drug Deliv. Rev., 2014, 72, 49-64.
[41]
Pavlov, A.M.; Saez, V.; Cobley, A.; Graves, J.; Sukhorukov, G.B.; Mason, T.J. Controlled protein release from microcapsules with composite shells using high frequency ultrasound - Potential for in vivo medical use. Soft Matter, 2011, 7, 4341-4347.

© 2025 Bentham Science Publishers | Privacy Policy