Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Lewis Acid Surfactant Combined (LASC) Catalyst as a Versatile Heterogeneous Catalyst in Various Organic Transformations

Author(s): Ruby Singh*, Diksha Bhardwaj, Shakeel Ahmad Ganaie and Aakash Singh

Volume 17, Issue 2, 2020

Page: [124 - 140] Pages: 17

DOI: 10.2174/1570193X16666181228112313

Price: $65

Abstract

Surfactant Aided Lewis Acids (LASCs) make an appearance as one of the efficient and substantial heterogeneous catalysts. Recently, various LASCs have been used as green and heterogeneous catalysts in organic synthesis due to their high water stability, recyclability, cost-effective nature and their ability to create stable colloidal dispersions. In the present review, we have discussed a variety of carbon-carbon bond forming, ring opening, addition and multi-component reactions for the synthesis of various biologically important heterocyclic compounds that have been successfully catalyzed by LASCs. In most cases, the catalytic activity of LASCs was found to be better in water in comparison to other organic solvents, which attracts special attention towards the present review.

Keywords: Heterogeneous catalyst, Lewis acid, multi-component-reactions, organic synthesis, surfactants, water.

Graphical Abstract

[1]
Kobayashi, S. Lanthanide trifluoromethanesulfonates as stable lewis acids in aqueous media. Yb(OTf)3 catalyzed hydroxymethylation reaction of SilylEnol ethers with commercial formaldehyde solution. Chem. Lett., 1991, 12, 2187-2190.
[http://dx.doi.org/10.1246/cl.1991.2187]
[2]
Kobayashi, S.; Hachiya, I. The aldol reaction of SilylEnol ethers with aldehydes in aqueous media. Tetrahedron Lett., 1992, 33, 1625-1628.
[http://dx.doi.org/10.1016/S0040-4039(00)91691-5]
[3]
Kobayashi, S.; Wakabayashi, T.; Nagayama, S.; Oyamada, H. Lewis acid catalysis in micellar systems. Sc(OTf)3-catalyzed aqueous aldol reactions of silylenol ethers with aldehydes in the presence of a surfactant. Tetrahedron Lett., 1997, 38, 4559-4562.
[http://dx.doi.org/10.1016/S0040-4039(97)00854-X]
[4]
Manabe, K.; Mori, Y.; Wakabayashi, T.; Nagayama, S.; Kobayashi, S. Organic synthesis inside particles in water: Lewis acid-surfactant-combined catalysts for organic reactions in water using colloidal dispersions as reaction media. J. Am. Chem. Soc., 2000, 122, 7202-7207.
[http://dx.doi.org/10.1021/ja001420r]
[5]
Manabe, K.; Kobayashi, S. Facile synthesis of α-amino phosphonates in water using a Lewis acid-surfactant-combined catalyst. Chem. Commun. (Camb.), 2000, 8, 669-670.
[http://dx.doi.org/10.1039/b000319k]
[6]
(a) Daoud, R.; Desneves, J.; Deady, L.W.; Tilley, L.; Scheper, R.J.; Gros, P.; Georges, E. The multidrug resistance protein is photoaffinity labeled by a quinoline-based drug at multiple sites. Biochemistry, 2000, 39(20), 6094-6102.
[http://dx.doi.org/10.1021/bi9922188] [PMID: 10821682]
(b) Suzuki, T.; Fukazawa, N.; San-nohe, K.; Sato, W.; Yano, O.; Tsuruo, T. Structure-activity relationship of newly synthesized quinoline derivatives for reversal of multidrug resistance in cancer. J. Med. Chem., 1997, 40(13), 2047-2052.
[http://dx.doi.org/10.1021/jm960869l] [PMID: 9207946]
(c) Klingenstein, R.; Melnyk, P.; Leliveld, S.R.; Ryckebusch, A.; Korth, C. Similar structure-activity relationships of quinoline derivatives for antiprion and antimalarial effects. J. Med. Chem., 2006, 49(17), 5300-5308.
[http://dx.doi.org/10.1021/jm0602763] [PMID: 16913719]
[7]
Zhang, L.; Wu, J. Friedlander synthesis of quinolines using a Lewis acid-surfactant-combined-catalyst in water. Adv. Synth. Catal., 2007, 349, 1047-1051.
[http://dx.doi.org/10.1002/adsc.200600527]
[8]
Bentley, K.W. The isoquinoline alkaloidsHarwood Academic Publishers: Amsterdam; , 1998, 1, pp. 59-92.
[9]
Ye, Y.; Ding, Q.; Wu, J. Three-component reaction of 2-alkynyl benzaldehyde, amine, and nucleophile using Lewis acid-surfactant combined catalyst in water. Tetrahedron, 2008, 64, 1378-1382.
[http://dx.doi.org/10.1016/j.tet.2007.11.055]
[10]
(a) Elinson, M.N.; Dorofeev, A.S.; Feducovich, S.K.; Gorbunov, S.V.; Nasybullin, R.F.; Stepanov, N.O.; Nikishin, G.I. Electrochemically induced chain transformation of salicylaldehydes and alkyl cyanoacetates into substituted 4H-chromenes. Tetrahedron Lett., 2006, 47, 7629-7633.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.053]
(b) Sun, W.; Cama, L.D.; Birzin, E.T.; Warrier, S.; Locco, L.; Mosley, R.; Hammond, M.L.; Rohrer, S.P. 6H-benzo[c]chromen-6-one derivatives as selective ERbeta agonists. Bioorg. Med. Chem. Lett., 2006, 16(6), 1468-1472.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.057] [PMID: 16412638]
(c) Stachulski, A.V.; Berry, N.G.; Lilian Low, A.C.; Moores, S.L.; Row, E.; Warhurst, D.C.; Adagu, I.S.; Rossignol, J.F. Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo. J. Med. Chem., 2006, 49(4), 1450-1454.
[http://dx.doi.org/10.1021/jm050973f] [PMID: 16480281]
(d) Gesson, J.P.; Fonteneau, N.; Mondon, M.; Charbit, S. 7- Carboxy-flavone derivatives preparation method and therapeutic use. US patent 6, 039B2 2005.
[11]
Pradhan, K.; Paul, S.; Das, R.A. Fe(DS)3 an efficient Lewis Acid-Surfactant-Combined Catalyst (LASC) for the one-pot synthesis of chromeno[4,3-b]chromene derivatives by assembling the basic building blocks. Tetrahedron Lett., 2013, 54, 3105-3110.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.001]
[12]
Nezhad, A.K.; Haghighi, S.M.; Panahi, F. Nano-TiO2 on dodecyl-sulfated silica: As an efficient Heterogeneous Lewis Acid-Surfactant-Combined Catalyst (HLASC) for reaction in aqueous media. ACS Sustain. Chem.& Eng., 2013, 1, 1015-1023.
[http://dx.doi.org/10.1021/sc4000913]
[13]
(a) Kacker, I.K.; Zaheer, S.H. Synthesis of substituted 4-quinazolones. J. Ind Chem. Soc., 1997, 28, 344-346.
(b) Amin, A.H.; Mehta, D.R.; Samarth, S. Biological activity in the quinazolone series. Prog. Drug Res., 1970, 14, 218-225.
(c) Partyka, R.A.; Crenshaw, R.R. 1,3,4-oxadiazole amides. U.S. Patent, 1997, US4001238A. 1997.
(d) Vardan, S.; Mookherjee, S.; Eich, R. Effects of tiodazosin, a new antihypertensive, hemodynamics, and clinical variables. Clin. Pharm. Ther., 1983, 34, 290-296.
[14]
(a) Alagarsamy, V.; Raja Solomon, V.; Dhanabal, K. Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorg. Med. Chem., 2007, 15(1), 235-241.
[http://dx.doi.org/10.1016/j.bmc.2006.09.065] [PMID: 17079148]
(b) Alagarsamy, V.; Pathak, U.S. Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg. Med. Chem., 2007, 15(10), 3457-3462.
[http://dx.doi.org/10.1016/j.bmc.2007.03.007] [PMID: 17391966]
(c) Murugan, V.; Kulkarni, M.; Anand, R.M.; Kumar, E.P.; Suresh, B.; Reddy, V.M. Synthesis of 2-[bis-(2-chloroethyl)amino methyl]-6,8-dinitro-1-(4-substituted phenyl)- 1H-quinazolin-4-one derivatives as possible antineoplastic agents. Asian J. Chem., 2006, 18, 900-906.
(d) Godfrey, A.A.A. Preparation of quinazolin-4-ones via cyclization of N-(cyanophenyl) acetamide derivatives. Chem. Abstr., 2005, 142 198095
(e) Selvam, P.; Girija, K.; Nagarajan, G.; De Clerco, E. Synthesis, antibacterial and anti-HIV activities of 3-(5-amino-6-(2-3-dichloro-phenyl)-(1,2,4)triazin-3-yl)-6,8-dibromo-2-substituted-3H-quinozo-lin-4-one. Indian J. Pharm. Sci., 2005, 67, 484-487.
[15]
Safaei, H.R.; Shekouhy, M.; Khademi, S.; Rahmanian, V.; Safaei, M. Diversity-oriented synthesis of quinazoline derivatives using zirconium tetrakis(dodecyl sulfate) [Zr(DS)4] as a reusable Lewis acid-surfactant-combined catalyst in tap water. J. Ind. Eng. Chem., 2014, 20, 3019-3024.
[http://dx.doi.org/10.1016/j.jiec.2013.11.037]
[16]
(a) Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P.M.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines. Bioorg. Med. Chem. Lett., 2006, 16(4), 815-820.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.025] [PMID: 16309903]
(b) Dell, A.; Williams, D.H.; Morris, H.R.; Smith, G.A.; Feeney, J.; Roberts, G.C.K. Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc., 1975, 97(9), 2497-2502.
[http://dx.doi.org/10.1021/ja00842a029] [PMID: 1133418]
(c) Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis agents. J. Med. Chem., 2005, 48(6), 2019-2025.
[http://dx.doi.org/10.1021/jm049952w] [PMID: 15771444]
(d) Aguirre, G.; Cerecetto, H.; Di Maio, R.; González, M.; Alfaro, M.E.M.; Jaso, A.; Zarranz, B.; Ortega, M.A.; Aldana, I.; Monge-Vega, A.; Quinoxaline, N. N′-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi. Structure-activity relationships. Bioorg. Med. Chem. Lett., 2004, 14(14), 3835-3839.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.088] [PMID: 15203172]
(e) Gali-Muhtasib, H.U.; Diab-Assaf, M.; Haddadin, M.J. Quinoxaline 1,4-dioxides induce G2/M cell cycle arrest and apoptosis in human colon cancer cells. Cancer Chemother. Pharmacol., 2005, 55(4), 369-378.
[http://dx.doi.org/10.1007/s00280-004-0907-x] [PMID: 15538569]
(f) Toshima, K.; Ozawa, T.; Kimura, T.; Matsumura, S. The significant effect of the carbohydrate structures on the DNA photocleavage of the quinoxaline-carbohydrate hybrids. Bioorg. Med. Chem. Lett., 2004, 14(11), 2777-2779.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.065] [PMID: 15125931]
[17]
Hasaninejad, A.; Zare, A.; Zolfigol, M.A.; Shekouhy, M. Zirconium Tetrakis(Dodecyl Sulfate) [Zr(DS)4] as an efficient Lewis acid-surfactant combined catalyst for the synthesis of quinoxaline derivatives in aqueous media. Synth. Commun., 2009, 39, 569-579.
[http://dx.doi.org/10.1080/00397910802406737]
[18]
Singh, R.; Ganaie, S.A. An efficient synthesis of quinoxaline derivatives using Fe(DS)3 as a Lewis acid-surfactant-combined catalyst. Chem. Sci. Trans., 2016, 5(3), 603-610.
[19]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[20]
(a) Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type-a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
(b) Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
(c) Ramos, L.M.; Guido, B.C.; Nobrega, C.C.; Corrêa, J.R.; Silva, R.G.; de Oliveira, H.C.; Gomes, A.F.; Gozzo, F.C.; Neto, B.A. The Biginelli reaction with an imidazolium-tagged recyclable iron catalyst: Kinetics, mechanism, and antitumoral activity. Chemistry, 2013, 19(13), 4156-4168.
[http://dx.doi.org/10.1002/chem.201204314] [PMID: 23460474]
[21]
Qiu, Y.; Sun, H.; Ma, Z.; Xia, W. Efficient, stable, and reusable Lewis acid-surfactant-combined catalyst: One-pot Biginelli and solvent-free esterification reactions. J. Mol. Catal., 2014, 392, 76-82.
[http://dx.doi.org/10.1016/j.molcata.2014.04.031]
[22]
Veisi, H.; Maleki, B.; Eshbala, F.H.; Veisi, H.; Masti, R.; Ashrafi, S.S.; Baghayeri, M. In situ generation of Iron(III) dodecyl sulfate as Lewis acid-surfactant catalyst for synthesis of bis-indolyl, tris-indolyl, Di(bis-indolyl), Tri(bis-indolyl), tetra(bis-indolyl)methanes and 3-alkylated indole compounds in water. RSC Advances, 2014, 4, 30683-30688.
[http://dx.doi.org/10.1039/C4RA03194F]
[23]
(a) Huang, X.; Cheng, C.C.; Fischmann, T.O.; Duca, J.S.; Richards, M.; Tadikonda, P.K.; Reddy, P.A.; Zhao, L.; Siddiqui, M.A.; Parry, D.; Davis, N.; Seghezzi, W.; Wiswell, D.; Shipps, G.W., Jr Structure-based design and optimization of 2-aminothiazole-4-carboxamide as a new class of CHK1 inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(9), 2590-2594.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.108] [PMID: 23535330]
(b) Pi, Z.; Sutton, J.; Lloyd, J. 2-Aminothiazole based P2Y1 antagonists as novel antiplatelet agents. Bioorg. Med. Chem. Lett., 2013, 23, 4206-4209.
(c) Mjambili, F.; Njoroge, M.; Naran, K. Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorg. Med. Chem. Lett., 2014, 24, 560-564.
[24]
Parvizi, J.; Mahmoodi, N.O.; Pirbasti, F.G. Ultrasound and water-mediated synthesis of bis-thiazoles catalyzed by Fe(SD)3 as Lewis acid-surfactant-combined catalyst. J. Sulfur Chem., 2017, 39, 140-150.
[http://dx.doi.org/10.1080/17415993.2017.1400033]
[25]
Decker, M.; Arand, M.; Cronin, A. Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch. Toxicol., 2009, 83(4), 297-318.
[http://dx.doi.org/10.1007/s00204-009-0416-0] [PMID: 19340413]
[26]
Vedejs, E.; Krafft, G.A. Cyclic sulfides in organic synthesis. Tetrahedron, 1982, 38, 2857-2881.
[http://dx.doi.org/10.1016/0040-4020(82)85013-8]
[27]
Dittmer, D.C.; Katritzky, A.R.; Rees, C.W. Thiiranes and Thiirenes; Pergamon: Elmsford, NY, 1984, Vol. 7, pp. 132-182.
[28]
Firouzabadi, F.; Iranpoor, N.; Khoshnood, A.A. Aluminum tris (dodecyl sulfate) trihydrate Al(DS)3·3H2O as an efficient Lewis acid- a surfactant-combined catalyst for organic reactions in water: Efficient conversion of epoxides to thiiranes and to amino alcohols at room temperature; J. Mol. Cat, 2007, pp. 109-115.
[29]
(a) Li, C.J. Organic reactions in aqueous media - with a focus on the carbon-carbon bond formation. Chem. Rev., 1993, 93, 2023-2035.
[http://dx.doi.org/10.1021/cr00022a004]
(b) Lubineau, A.; Ange, J.; Queneau, Y. Water-promoted organic reactions. Synthesis, 1994, 8, 741-760.
[http://dx.doi.org/10.1055/s-1994-25562]
[30]
(a) Mukaiyama, T.; Narasaka, K.; Banno, T. New aldol-type reaction. Chem. Lett., 1973, 2, 1011-1014.
(b) Mukaiyama, T.; Banno, K.; Narasaka, K. New cross-aldol reactions. Reactions of silylenol ethers with carbonyl compounds activated by titanium tetrachloride. J. Am. Chem. Soc., 1974, 96, 7503-7509.
(c) Mukaiyama, T. The directed aldol reaction. Org. React., 1982, 28, 203-326.
[31]
Fendler, J.H.; Fendler, E.J. Catalysis in micellar and macromolecular systems. ACS Symposium Series, 1992, pp. 2-30.
[32]
Kobayashi, S.; Wakabayashi, T. Scandium Trisdodecyl Sulfate (STDS). A new type of Lewis acid that forms stable dispersion systems with organic substrates in water and accelerates aldol reactions much faster in water than in organic solvents. Tetrahedron Lett., 1998, 39, 5389-5392.
[http://dx.doi.org/10.1016/S0040-4039(98)01081-8]
[33]
Kobayashi, S.; Mori, Y.; Nagayama, S.; Manabe, K. Catalytic asymmetric aldol reactions in water using a chiral Lewis acid-surfactant-combined catalyst. Green Chem., 1999, 1, 175-177.
[http://dx.doi.org/10.1039/a904439f]
[34]
Li, C.; Zeng, C.; Wang, D.; Chen, Y.; Tian, H. Calix[6]arene derivatives bearing sulfonate and alkyl groups as surfactants in Sc(OTf)3-catalyzed Mukaiyamaaldol reactions in water. Tetrahedron Lett., 2000, 41, 2529-2532.
[http://dx.doi.org/10.1016/S0040-4039(00)00257-4]
[35]
Lafantaisie, M.; Mirabaud, A.; Plancq, B.; Ollevier, T. Iron(II)‐derived lewis acid/surfactant combined catalysis for the enantioselective Mukaiyama aldol reaction in pure water. ChemCatChem, 2014, 6, 2244-2247.
[http://dx.doi.org/10.1002/cctc.201402029]
[36]
Yamamoto, Y.; Asao, N. Selective reactions using allylic metals. Chem. Rev., 1993, 93, 2207-2293.
[http://dx.doi.org/10.1021/cr00022a010]
[37]
Kobayashi, S.; Mori, Y.; Nagayama, S.; Manabe, K. Synthetic reactions using organometallics in water. Aldol and allylation reactions catalyzed by Lewis acid-surfactant-combined catalysts/Brønsted acids systems. Inorg. Chim. Acta, 1999, 296, 158-163.
[http://dx.doi.org/10.1016/S0020-1693(99)00354-0]
[38]
Deleersnyder, K.; Shi, D.; Binnemans, K.; Parac-Vogt, T. Lanthanide-surfactant-combined catalysts for the allylation of benzaldehyde with tetraallyltin in aqueous solutions. J. Alloys Compd., 2008, 451, 418-421.
[http://dx.doi.org/10.1016/j.jallcom.2007.04.161]
[39]
Jung, M.E. Comprehensive Organic Synthesis. Trost, B.M.; Fleming, I., Eds.Pergamon: Oxford; , 1991, 4, pp. 1-67.
[40]
Mori, Y.; Kakumoto, K.; Manabe, K.; Kobayashi, S. Michael reactions in water using Lewis acid-surfactant-combined catalysts. Tetrahedron Lett., 2000, 41, 3107-3111.
[http://dx.doi.org/10.1016/S0040-4039(00)00319-1]
[41]
Firouzabadi, H.; Iranpoor, N.; Khoshnood, A. Aluminum tris (dodecyl sulfate) trihydrate Al(DS)3·3H2O as an efficient Lewis acid surfactant-combined catalyst for organic reactions in water efficient conversion of epoxides to thiiranes and to amino alcohols at room temperature. J. Mol. Catal. Chem., 2007, 274, 109-115.
[http://dx.doi.org/10.1016/j.molcata.2007.04.035]
[42]
Jafarpour, M.; Rezaeifard, A.; Aliabadi, M. Zirconium Tetrakis (dodecyl sulfate) as an efficient and recyclable lewis acid-surfactant-combined catalyzed C-C and C-N bond forming under mild and environmentally benign conditions. Lett. Org. Chem., 2009, 6, 94-99.
[http://dx.doi.org/10.2174/157017809787003115]
[43]
Manabe, K.; Aoyama, N.; Kobayashi, S. Friedel-Crafts-type conjugate addition of indoles using a Lewis acid surfactant-combined catalyst in water. Adv. Synth. Catal., 2001, 343, 174-176.
[http://dx.doi.org/10.1002/1615-4169(20010226)343:2<174:AID-ADSC174>3.0.CO;2-S]
[44]
Wang, S.; William, R.; Estelle Seah, K.K.G.; Liu, X-W. Lewis acid-surfactant-combined catalyzed the synthesis of 4-aminocyclo pentanones from glycals in water. Green Chem., 2013, 15, 3180-3183.
[http://dx.doi.org/10.1039/c3gc41032c]
[45]
Qiu, Y.; Sun, H.; Ma, Z.; Xia, W. Efficient, stable and reusable Lewis acid-surfactant-combined catalyst: One-pot Biginelli and solvent-free esterification reactions. J. Mol. Catal. Chem., 2014, 392, 76-82.
[http://dx.doi.org/10.1016/j.molcata.2014.04.031]
[46]
Manabe, K.; Kobayashi, S. Facile synthesis of a-amino phosphonates in water using a Lewis acid-surfactant-combined catalyst. Chem. Commun. (Camb.), 2000, 669-670.
[http://dx.doi.org/10.1039/b000319k]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy