Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Metal Nanoparticles: An Efficient Tool for Heterocycles Synthesis and Their Functionalization via C-H Activation

Author(s): Debasree Saha and Chhanda Mukhopadhyay*

Volume 6, Issue 2, 2019

Page: [79 - 91] Pages: 13

DOI: 10.2174/2213337206666181226152743

Abstract

Background: Metal nanoparticles have been extensively used in the synthesis of organic molecules during the last few decades especially due to their high catalytic activity. Organic reactions involving C-H functionalisations are very much in demand as they provide a direct method of derivatisation of organic molecules, thus making the process economical. In the recent years, metal nanoparticles catalysed C-H activation reactions have led to the design of useful molecules especially heterocyclic motifs which form the core structure of drugs and thus have high biological and industrial importance.

Methods: In this review, we present a collection of reactions where metal nanoparticles are instrumental in the synthesis and functionalization of heterocycles via C-H activation. The review consists of three units namely, Nano-copper catalysed C-H activation reactions, nano-palladium catalysed CH activation reactions and other nano-metals catalysed C-H activation reactions.

Results: The discussion reflects the scope of nano-metals as effective catalysts for the synthesis and functionalization of heterocycles as well as the efficiency of nano-metals towards catalysing economic and environmentally viable reaction protocols.

Conclusion: The theme of this review is to correlate nanometal catalysis, heterocyclic synthesis and C-H activation, each of which in itself forms an integral part of modern day chemical research. Thus, the review will hopefully highlight the need for future development and research in this area and be instrumental in guiding researchers towards fulfilling that goal.

Keywords: Heterocycles, C-H activation, nanometals, catalysis, organometallic, recycle.

« Previous
Graphical Abstract

[1]
(a) Talley, J.J.; Bertenshaw, S.R.; Brown, D.L.; Carter, J.S.; Graneto, M.J.; Koboldt, C.M.; Masferer, J.L.; Norman, B.H.; Rogier, D.J., Jr; Zweifel, B.S.; Seibert, K. 4,5‐Diaryloxazole inhibitors of cyclooxygenase‐2 (COX‐2). Med. Res. Rev., 1999, 19, 199-208.
(b) Almansa, C.; Alfon, J.; de Arriba, A.F.; Cavalcanti, F.L.; Escamilla, I.; Gomez, L.A.; Miralles, A.; Soliva, R.; Bartoli, J.; Carceller, E.; Merlos, M.; Rafanell, J.G. Synthesis and structure−activity relationship of a new series of COX-2 selective inhibitors: 1,5-diarylimidazoles. J. Med. Chem., 2003, 46, 3463-3475.
(c) Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. Facile synthesis of 2,5-diarylthiazoles via palladium-catalyzed tandem C−H substitutions. Design of tunable light emission and liquid crystalline characteristics. J. Am. Chem. Soc., 2003, 125, 1700-1701.
[2]
(a) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Nickel-catalyzed biaryl coupling of heteroarenes and aryl halides/triflates. Org. Lett., 2009, 11, 1733-1736.
(b) Lewis, J.C.; Berman, A.M.; Bergman, R.G.; Ellman, J.A. Rh(I)-Catalyzed arylation of heterocycles via C−H bond activation: Expanded scope through mechanistic insight. J. Am. Chem. Soc., 2008, 130, 2493-2500.
(c) Nandakumar, N.S.; Bhanushali, M.J.; Bhor, M.D.; Bhanage, B.M. Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate): an efficient catalyst for regioselective C-2 arylation of heterocycles. Tetrahedron Lett., 2008, 49, 1045-1048.
(d) Dogan, O.; Gurbuz, N.; Ozdemir, I.; Cetinkaya, B.; Sahin, O.; Buyukgungor, O. Synthesis, characterization and catalytic activity of novel N-heterocyclic carbene-palladium complexes. Dalton Trans., 2009, 0, 7087-7093.
(e) Turner, G.; Morris, J.A.; Greaney, M.F. Direct arylation of thiazoles on water. Angew. Chem. Int. Ed., 2007, 46, 7996-8000.
(f) Yokooji, A.; Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. Palladium-catalyzed direct arylation of thiazoles with aryl bromides. Tetrahedron, 2003, 59, 5685-5689.
(g) Gallagher, W.P.; Maleczka, R.E., Jr PMHS-mediated couplings of alkynes or benzothiazoles with various electrophiles: application to the synthesis of (−)-akolactone A. J. Org. Chem., 2003, 68, 6775-6779.
(h) Pivsa Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Palladium-catalyzed arylation of azole compounds with aryl halides in the presence of alkali metal carbonates and the use of copper iodide in the reaction. Bull. Chem. Soc. Jpn., 1998, 71, 467-473.
(i)Yoshizumi, T.; Tsurugi, H.; Satoh, T.; Miura, M. Copper-mediated direct arylation of benzoazoles with aryl iodides. Tetrahedron Lett., 2008, 49, 1598-1600.
(j)Do, H-Q.; Daugulis, O. Copper-catalyzed arylation of heterocycle C−H bonds. J. Am. Chem. Soc., 2007, 129, 12404-12405.
(k)Schnurch, M.; Dastbaravardeh, N.; Ghobrial, M.; Mrozek, B.; Mihovilovic, M.D. Functionalization of saturated and unsaturated heterocycles via transition metal catalyzed C-H activation reactions. Curr. Org. Chem., 2011, 15, 2694-2730.
(l)Novak, P.; Correa, A.; Gallardo-Donaire, J.; Martin, R. Synergistic palladium‐catalyzed C(sp3)-H activation/C(sp3)-O bond formation: A direct, step‐economical route to benzolactones. Angew. Chem. Int. Ed.,2011, 50, 12236-12239. Angew. Chem., 2011, 123, 12444-12447.
(m)Kuhl, N.; Hopkinson, M.N.; Wencel-Delord, J.; Glorius, F. Beyond directing groups: Transition‐metal‐catalyzed C-H activation of simple arenes. Angew. Chem. Int. Ed., 2012, 51, 10236-10254. Angew. Chem., 2012, 124, 10382-10401.
[3]
(a) Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res., 2013, 46, 1825-1837.
(b) Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z.; Dontsova, D.; Antonietti, M.; Lòpez, N.; Pèrez-Ramirez, J. A stable single‐site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed., 2015, 54, 11265-11269.
(c) Vilé, G.; Bridier, B.; Wichert, J.; Pèrez-Ramirez, J. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angew. Chem. Int. Ed., 2012, 51, 8620-8623.
(d) Munnic, P.; de Jongh, P.E.; de Jongh, K.P. Recent developments in the synthesis of supported catalysts. Chem. Rev., 2015, 115, 6687-6718.
(e) Gawande, M.B.; Goswami, A.; Felpin, F.; Asef, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based nanoparticles: Synthesis and applications in catalysis. Chem. Rev., 2016, 116, 3722-3811.
(f) Ojha, N.K.; Zyryanov, G.V.; Majee, A.; Charushin, V.N.; Chupakhin, O.N.; Santra, S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coord. Chem. Rev., 2017, 353, 1-57.
(g) Polshettiwar, V.; Asefa, T., Eds.; Nano-Catalysis: Synthesis and Applications ; Wiley-Blackwell John Wiley) & Sons, Inc. , 2013.
[4]
(a) Pla, D.; Gómez, M. Metal and metal oxide nanoparticles: A lever for C–H functionalization. ACS Catal., 2016, 6, 3537-3552.
(b) Wu, X-F., Ed.; Transition Metal-Catalyzed Heterocycle Synthesis via C-H Activation; Wiley-VCH, 2016.
[5]
(a) Guo, X.; Gu, D.; Wu, Z. Zhang, W. Copper-catalyzed C–H functionalization reactions: Efficient synthesis of heterocycles. Chem. Rev., 2015, 115, 1622-1651.
(b) Allen, S.E.; Walvoord, R.R.; Padilla-Salinas, R.; Kozlowski, M.C. Aerobic copper-catalyzed organic reactions. Chem. Rev., 2013, 113, 6234-6458.
[6]
Kidwai, M.; Bansal, V.; Mishra, N.K.; Kumar, A.; Mozumdar, S. Copper-nanoparticle-catalyzed A3 coupling via C-H activation. Synlett, 2007, 1581-1584.
[7]
Rosario, A.R.; Casola, K.K.; Oliveira, C.E.S.; Zeni, G. Copper oxide nanoparticle‐catalyzed chalcogenation of the carbon‐hydrogen bond in thiazoles: Synthesis of 2-(organochalcogen) thiazoles. Adv. Synth. Catal., 2013, 355, 2960-2966.
[8]
Acharyya, S.S.; Ghosh, S.; Bal, R. Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C–H and N–H bonds. Chem. Commun. , 2014, 50, 13311-13314.
[9]
Priyadarshini, S.; Amal Joseph, P.J.; Lakshmi Kantam, M. Copper catalyzed oxidative cross-coupling of aromatic amines with 2-pyrrolidinone: a facile synthesis of N-aryl-γ-amino-γ-lactams. Tetrahedron, 2014, 70, 6068-6074.
[10]
Dutta, P.K.; Sen, S.; Saha, D.; Dhar, B. Solid supported nano structured Cu catalyst for solvent/ligand free C2 amination of azoles. Eur. J. Org. Chem., 2018, 2018, 657-665.
[11]
(a) Djakovitch, L.; Felpin, F-X. Direct C sp2-H and C sp3-H arylation enabled by heterogeneous palladium catalysts. ChemCatChem, 2014, 6, 2175-2187.
(b) Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev., 2016, 116, 12564-1264.
[12]
Bej, A.; Ghosh, K.; Sarkar, A.; Knight, D.W. Palladium nanoparticles in the catalysis of coupling reactions. RSC Advances, 2016, 6, 11446-11453.
[13]
Saha, D.; Adak, L.; Ranu, B.C. Palladium(0) nanoparticles-catalyzed ligand-free direct arylation of benzothiazole via C–H bond functionalization. Tetrahedron Lett., 2010, 51, 5624-5627.
[14]
Huang, Y.; Ma, T.; Huang, P.; Wu, D.; Lin, Z.; Cao, R. Direct C-H bond arylation of indoles with aryl boronic acids catalyzed by palladium nanoparticles encapsulated in mesoporous metal–organic framework. ChemCatChem, 2013, 5, 1877-1883.
[15]
Ehlers, P.; Petrosyan, A.; Baumgard, J.; Jopp, S.; Steinfeld, N.; Ghochikyan, T.V.; Saghyan, A.S. Fischer; Langer, P. Synthesis of 2,5‐diarylpyrroles by ligand-free palladium-catalyzed CH activation of pyrroles in ionic liquids. ChemCatChem, 2013, 5, 2504-2511.
[16]
Malmgren, J.; Nagendiran, A.; Tai, C-W.; Bäckvall, J-E.; Olofsson, B. C-2 Selective arylation of indoles with heterogeneous nanopalladium and diaryliodonium salts. Chem. Eur. J, 2014, 20, 13531-13535.
[17]
Korwar, S.; Brinkley, K.; Siamaki, A.R.; Gupton, B.F.; Ellis, K.C. Selective N-Chelation-Directed C-H activation reactions catalyzed by Pd(II) nanoparticles supported on multiwalled carbon nanotubes. Org. Lett., 2015, 17, 1782-1785.
[18]
Pascanu, V.; Carson, F.; Solano, M.V. Su, J.; Zou, X.; Johansson, M.J. Martin-Matute, B. Selective heterogeneous C−H activation/ halogenation reactions catalyzed by Pd@MOF nanocomposites. Chem. Eur. J., 2016, 22, 3729-3737.
[19]
Zinovyeva, V.A.; Vorotyntsev, M.A.; Bezverkhyy, I.; Chaumont, D.; Hierso, J-C. Highly dispersed palladium–polypyrrole nanocomposites: in‐water synthesis and application for catalytic arylation of heteroaromatics by direct C–H bond activation. Adv. Funct. Mater., 2011, 21, 1064-1075.
[20]
Williams, T.J.; Reay, A.J.; Whitwood, A.C.; Fairlamb, I.J.S. A mild and selective Pd-mediated methodology for the synthesis of highly fluorescent 2-arylated tryptophans and tryptophan-containing peptides: a catalytic role for Pd0 nanoparticles. Chem. Commun., 2014, 50, 3052-3054.
[21]
Pieters, G.; Taglang, C.; Bonnefille, E.; Gutmann, T.; Puente, C.; Berthet, J-C.; Dugave, C.; Chaudret, B.; Rousseau, B. Regioselective and stereospecific deuteration of bioactive aza compounds by the use of ruthenium nanoparticles. Angew. Chem. Int. Ed., 2014, 53, 230-234.
[22]
Wada, K.; Hosokawa, S.; Inoue, M. Development of ceria-supported ruthenium catalysts effective for various synthetic reactions. Catal. Surv. Asia, 2011, 15, 1-11.
[23]
Adams, R.D.; Chen, M.; Elpitiya, G.; Potter, M.E.; Raja, R. Iridium–bismuth cluster complexes yield bimetallic nano-catalysts for the direct oxidation of 3-picoline to niacin. ACS Catal., 2013, 3, 3106-3110.
[24]
Al-Amin, M.; Arisawa, M.; Shuto, S.; Ano, Y.; Tobisu, M.; Chatani, N. Palladium nanoparticle-catalyzed direct ethynylation of aliphatic carboxylic acid derivatives via C(sp3)-H bond functionalization. Adv. Synth. Catal., 2014, 356, 1631-1637.

© 2025 Bentham Science Publishers | Privacy Policy