[1]
Tripura, R.; Peto, T.J.; Chalk, J.; Lee, S.J.; Sirithiranont, P.; Nguon, C.; Dhorda, M.; von Seidlein, L.; Maude, R.J.; Day, N.P.J.; Imwong, M.; White, N.J.; Dondorp, A.M. Persistent Plasmodium falciparum and Plasmodium vivax infections in a western Cambodian population: Implications for prevention, treatment and elimination strategies. Malar. J., 2016, 15(1), 181.
[2]
Imwong, M.; Nguyen, T.N.; Tripura, R.; Peto, T.J.; Lee, S.J.; Lwin, K.M. The epidemiology of subclinical malaria infections in South-East Asia: Findings from cross-sectional surveys in Thailand-Myanmar border areas, Cambodia, and Vietnam. Malar. J., 2015, 14, 381.
[3]
Rich, S.M.; Leendertz, F.H.; Xu, G.; LeBreton, M.; Djoko, C.F.; Aminake, M.N.; Takang, E.E.; Diffo, J.L.D.; Pike, B.L.; Rosenthal, B.M.; Formenty, P.; Boesch, C.; Ayala, F.J.; Wolfe, N.D. The origin of malignant malaria. Proc. Natl. Acad. Sci. USA, 2009, 106(35), 14902-14907.
[5]
Sibley, C.H. Understanding artemisinin resistance. Science, 2015, 347(6220), 373-374.
[6]
Mbengue, A.; Bhattacharjee, S.; Pandharkar, T.; Liu, H.; Estiu, G.; Stahelin, R.V.; Rizk, S.S.; Njimoh, D.L.; Ryan, Y.; Chotivanich, K.; Nguon, C.; Ghorbal, M.; Lopez-Rubio, J-J.; Pfrender, M.; Emrich, S.; Mohandas, N.; Dondorp, A.M.; Wiest, O.; Haldar, K. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 2015, 520(7549), 683-687.
[7]
Meister, S.; Plouffe, D.M.; Kuhen, K.L.; Bonamy, G.M.C.; Wu, T.; Barnes, S.W.; Bopp, S.E.; Borboa, R.; Bright, A.T.; Che, J.; Cohen, S.; Dharia, N.V.; Gagaring, K.; Gettayacamin, M.; Gordon, P.; Groessl, T.; Kato, N.; Lee, M.C.S.; McNamara, C.W.; Fidock, D.A.; Nagle, A.; Nam, T-G.; Richmond, W.; Roland, J.; Rottmann, M.; Zhou, B.; Froissard, P.; Glynne, R.J.; Mazier, D.; Sattabongkot, J.; Schultz, P.G.; Tuntland, T.; Walker, J.R.; Zhou, Y.; Chatterjee, A.; Diagana, T.T.; Winzeler, E.A. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science, 2011, 334(6061), 1372-1377.
[8]
Gamo, F.; Sanz, L.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J.; Vanderwall, D.; Green, D.; Kumar, V.; Hasan, S.; Brown, J.; Peishoff, C.; Cardon, L.; Garcia-Bustos, J. Thousands of chemical starting points for antimalarial lead identification. Nature, 2010, 465, 305-310.
[9]
Guiguemde, W.; Shelat, A.; Bouck, D.; Duffy, S.; Crowther, G.; Davis, P.; Smithson, D.; Connelly, M.; Clark, J.; Zhu, F.; Jimenez-Diaz, M.; Martinez, M.; Wilson, E.; Tripathi, A.; Gut, J.; Sharlow, E.; Bathurst, I.; El Mazouni, F.; Fowble, J.; Forquer, I.; McGinley, P.; Castro, S.; Angulo-Barturen, I.; Ferrer, S.; Rosenthal, P.; Derisi, J.; Sullivan, D.; Lazo, J.; Roos, D.; Riscoe, M. Chemical genetics of Plasmodium falciparum. Nature, 2010, 465, 311-315.
[10]
Spangenberg, T.; Burrows, J.N.; Kowalczyk, P.; McDonald, S.; Wells, T.N.C.; Willis, P. The open access malaria box: A drug discovery catalyst for neglected diseases. PLoS One, 2013, 8e62906
[11]
Eggert, U.S. The why and how of phenotypic small-molecule screens. Nat. Chem. Biol., 2013, 9(4), 206-209.
[12]
Swinney, D.C. Phenotypic versus target-based drug discovery for first-in-class medicines. Clin. Pharmacol. Ther., 2013, 93, 299-301.
[13]
Guiguemde, W.; Shelat, A.; Garcia-Bustos, J.; Diagana, T.; Gamo, F.; Guy, R. Global phenotypic screening for antimalarials. Chem. Biol., 2012, 19, 116-129.
[14]
Lee, J.A.; Uhlik, M.T.; Moxham, C.M.; Tomandl, D.; Sall, D.J. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J. Med. Chem., 2012, 55, 4527-4538.
[15]
Angelo, M.M.; Ortwine, D.; Worth, D.F.; Werbel, L.M. N2-1H-benzimidazol-2-yl-N4-phenyl-2,4-pyrimidinediamines and N2-1H-benzimidazol-2-yl-5,6,7,8-tetrahydro-N4-phenyl-2,4 quinazolinediamines as potential antifilarial agents. J. Med. Chem., 1983, 26(9), 1311-1316.
[16]
Martyn, D.C.; Nijjar, A.; Celatka, C.A.; Mazitschek, R.; Cortese, J.F.; Tyndall, E.; Liu, H.; Fitzgerald, M.M.; O’Shea, T.J.; Danthi, S.; Clardy, J. Synthesis and antiplasmodial activity of novel 2,4-diaminopyrimidines. Bioorg. Med. Chem. Lett., 2010, 20(1), 228-231.
[17]
Van Horn, K.S.; Zhu, X.; Pandharkar, T.; Yang, S.; Vesely, B.; Vanaerschot, M.; Dujardin, J-C.; Rijal, S.; Kyle, D.E.; Wang, M.Z.; Werbovetz, K.A.; Manetsch, R. Antileishmanial activity of a series of N2, N4-disubstituted quinazoline-2,4-diamines. J. Med. Chem., 2014, 57(12), 5141-5156.
[18]
Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrián, F.; Matzen, J.T.; Anderson, P.; Nam, T-G.; Gray, N.S.; Chatterjee, A.; Janes, J.; Yan, S.F.; Trager, R.; Caldwell, J.S.; Schultz, P.G.; Zhou, Y.; Winzeler, E.A. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9059-9064.
[19]
Van Voorhis, W.C.; Adams, J.H.; Adelfio, R.; Ahyong, V.; Akabas, M.H.; Alano, P.; Alday, A.; Alemán Resto, Y.; Alsibaee, A.; Alzualde, A. Open source drug discovery with the malaria box compound collection for neglected diseases and beyond. PLoS Pathog., 2016, 12(7)e1005763
[20]
Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrián, F.; Matzen, J.T.; Anderson, P.; Nam, T-G.; Gray, N.S.; Chatterjee, A.; Janes, J.; Yan, S.F.; Trager, R.; Caldwell, J.S.; Schultz, P.G.; Zhou, Y.; Winzeler, E.A. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9059-9064.
[21]
Rueeger, H.; Rigollier, P.; Yamaguchi, Y.; Schmidlin, T.; Schilling, W.; Criscione, L.; Whitebread, S.; Chiesi, M.; Walker, M.W.; Dhanoa, D.; Islam, I.; Zhang, J.; Gluchowski, C. Design, synthesis and SAR of a series of 2-substituted 4-amino-quinazoline neuropeptide Y Y5 receptor antagonists. Bioorg. Med. Chem. Lett., 2000, 10(11), 1175-1179.
[22]
Zhu, L.; Jin, J.; Liu, C.; Zhang, C.; Sun, Y.; Guo, Y.; Fu, D.; Chen, X.; Xu, B. Synthesis and biological evaluation of novel quinazoline-derived human Pin1 inhibitors. Bioorg. Med. Chem., 2011, 19(9), 2797-2807.
[23]
Pobsuk, N.; Urooj, P.T.; Chaichamnong, N.; Salaloya, N.; Suphakun, P.; Hannongbua, S.; Choowongkomon, K.; Pekthong, P.; Chootip, C.; Ingkaninan, K.; Gleeson, M.P. Design, synthesis and evaluation of N2, N4-diaminoquinazoline-based inhibitors of phosphodiesterase type 5. Bioorg. Med. Chem. Lett., 2019, 29(2), 267-270.
[24]
Gleeson, M.P.; Hersey, A.; Montanari, D.; Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov., 2011, 10, 197-208.
[25]
Gleeson, M.P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem., 2008, 51(4), 817-834.
[26]
Van Horn, K.S.; Burda, W.N.; Fleeman, R.; Shaw, L.N.; Manetsch, R. Antibacterial activity of a series of N2, N4-disubstituted quinazoline-2,4-diamines. J. Med. Chem., 2014, 57(7), 3075-3093.
[27]
Watanabe, N.; Adachi, H.; Takase, Y.; Ozaki, H.; Matsukura, M.; Miyazaki, K.; Ishibashi, K.; Ishihara, H.; Kodama, K.; Nishino, M.; Kakiki, M.; Kabasawa, Y. 4-(3-Chloro-4-methoxybenzyl) amino-phthalazines: Synthesis and inhibitory activity toward phosphodiesterase 5. J. Med. Chem., 2000, 43(13), 2523-2529.
[28]
Trager, W.; Jensen, J. Human malaria parasites in continuous culture. Science, 1976, 193(4254), 673-675.
[29]
Daengrot, C.; Rukachaisirikul, V.; Tansakul, C.; Thongpanchang, T.; Phongpaichit, S.; Bowornwiriyapan, K.; Sakayaroj, J. Eremophilane sesquiterpenes and diphenyl thioethers from the soil fungus Penicillium copticola PSU-RSPG138. J. Nat. Prod., 2015, 78(4), 615-622.
[31]
Avery, V.M.; Bashyam, S.; Burrows, J.N.; Duffy, S.; Papadatos, G.; Puthukkuti, S.; Sambandan, Y.; Singh, S.; Spangenberg, T.; Waterson, D.; Willis, P. Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum. Malar. J., 2014, 13(1), 190.
[32]
Davis, A.M.; Keeling, D.J.; Steele, J.; Tomkinson, N.P.; Tinker, A.C. Components of successful lead generation. Curr. Top. Med. Chem., 2005, 5(4), 421-439.
[33]
Bollini, M.; Frey, K.M.; Cisneros, J.A.; Spasov, K.A.; Das, K.; Bauman, J.D.; Arnold, E.; Anderson, K.S.; Jorgensen, W.L. Extension into the entrance channel of HIV-1 reverse transcriptase-crystallography and enhanced solubility. Bioorg. Med. Chem. Lett., 2013, 23(18), 5209-5212.
[34]
Phuangsawai, O.; Beswick, P.; Ratanabunyong, S.; Tabtimmai, L.; Suphakun, P.; Obounchoey, P.; Srisook, P.; Horata, N.; Chuckowree, I.; Hannongbua, S.; Ward, S.E.; Choowongkomon, K.; Gleeson, M.P. Evaluation of the anti-malarial activity and cytotoxicity of 2,4-diamino-pyrimidine-based kinase inhibitors. Eur. J. Med. Chem., 2016, 124, 896-905.
[35]
Toviwek, B.; Suphakun, P.; Choowongkomon, K.; Hannongbua, S.; Gleeson, M.P. Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines. Bioorg. Med. Chem. Lett., 2017, 27(20), 4749-4754.