Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset

Author(s): Kuo-Chen Chou*, Xiang Cheng and Xuan Xiao

Volume 15, Issue 5, 2019

Page: [472 - 485] Pages: 14

DOI: 10.2174/1573406415666181218102517

Price: $65

Abstract

Background/Objective: Information of protein subcellular localization is crucially important for both basic research and drug development. With the explosive growth of protein sequences discovered in the post-genomic age, it is highly demanded to develop powerful bioinformatics tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called “pLoc-mEuk” was developed for identifying the subcellular localization of eukaryotic proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems where many proteins, called “multiplex proteins”, may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mEuk was trained by an extremely skewed dataset where some subset was about 200 times the size of the other subsets. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset.

Methods: To alleviate such bias, we have developed a new predictor called pLoc_bal-mEuk by quasi-balancing the training dataset. Cross-validation tests on exactly the same experimentconfirmed dataset have indicated that the proposed new predictor is remarkably superior to pLocmEuk, the existing state-of-the-art predictor in identifying the subcellular localization of eukaryotic proteins. It has not escaped our notice that the quasi-balancing treatment can also be used to deal with many other biological systems.

Results: To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mEuk/.

Conclusion: It is anticipated that the pLoc_bal-Euk predictor holds very high potential to become a useful high throughput tool in identifying the subcellular localization of eukaryotic proteins, particularly for finding multi-target drugs that is currently a very hot trend trend in drug development.

Keywords: Multi-label system, eukaryotic proteins, quasi-balance treatment, 5-step rules, PseAAC, ML-GKR, Chou's intuitive metrics.

Graphical Abstract

[1]
Ehrlich, J.S.; Hansen, M.D.; Nelson, W.J. Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell-cell adhesion. Dev. Cell, 2002, 3, 259-270.
[2]
Glory, E.; Murphy, R.F. Automated subcellular location determination and high-throughput microscopy. Dev. Cell, 2007, 12, 7-16.
[3]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11, 218-234.
[4]
Cheng, X.; Xiao, X. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110, 50-58.
[5]
Nakai, K.; Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics, 1992, 14, 897-911.
[6]
Cedano, J.; Aloy, P.; Perez-Pons, J.A.; Querol, E. Relation between amino acid composition and cellular location of proteins. J. Mol. Biol., 1997, 266, 594-600.
[7]
Reinhardt, A.; Hubbard, T. Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res., 1998, 26, 2230-2236.
[8]
Chou, K.C.; Elrod, D.W. Using discriminant function for prediction of subcellular location of prokaryotic proteins. Biochem. Biophys. Res. Commun., 1998, 252, 63-68.
[9]
Chou, K.C.; Elrod, D.W. Protein subcellular location prediction. Protein Eng., 1999, 12, 107-118.
[10]
Emanuelsson, O.; Nielsen, H.; Brunak, S.; von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 2000, 300, 1005-1016.
[11]
Cai, Y.D.; Liu, X.J.; Xu, X.B. Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect. J. Cell. Biochem., 2002, 84, 343-348.
[12]
Chou, K.C.; Cai, Y.D. A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology. Biochem. Biophys. Res. Commun., 2003, 311, 743-747.
[13]
Chou, K.C.; Cai, Y.D. Prediction and classification of protein subcellular location: Sequence-order effect and pseudo amino acid composition. ) J. Cell. Biochem., (Addendum, ibid. 2004, 91, 1085, 2003, 90, 1250-1260.
[14]
Zhou, G.P.; Doctor, K. Subcellular location prediction of apoptosis proteins. Proteins: Struct. Funct. Genet., 2003, 50, 44-48.
[15]
Chou, K.C.; Cai, Y.D. Prediction of protein subcellular locations by GO-FunD-PseAA predicor. Biochem. Biophys. Res. Commun., 2004, 320, 1236-1239.
[16]
Matsuda, S.; Vert, J.P.; Saigo, H.; Ueda, N.; Toh, H.; Akutsu, T. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci., 2005, 14, 2804-2813.
[17]
Gardy, J.L.; Laird, M.R.; Chen, F.; Rey, S.; Walsh, C.J.; Ester, M.; Brinkman, F.S. PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics, 2005, 21, 617-623.
[18]
Hoglund, A.; Donnes, P.; Blum, T.; Adolph, H.W.; Kohlbacher, O. MultiLoc: Prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics, 2006, 22, 1158-1165.
[19]
Mundra, P.; Kumar, M.; Kumar, K.K.; Jayaraman, V.K.; Kulkarni, B.D. Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM. Pattern Recognit. Lett., 2007, 28, 1610-1615.
[20]
Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res., 2007, 35W585-587
[21]
Zhang, S.W.; Zhang, Y.L.; Yang, H.F.; Zhao, C.H.; Pan, Q. Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: An approach by incorporating evolutionary information and von Neumann entropies. Amino Acids, 2008, 34, 565-572.
[22]
Ding, Y.S.; Zhang, T.L. Using Chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recognit. Lett., 2008, 29, 1887-1892.
[23]
Shi, J.Y.; Zhang, S.W.; Pan, Q.; Zhou, G.P. Using pseudo amino acid composition to predict protein subcellular location: Approached with amino acid composition distribution. Amino Acids, 2008, 35, 321-327.
[24]
Li, F.M.; Li, Q.Z. Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach. Protein Pept. Lett., 2008, 15, 612-616.
[25]
Lin, H.; Ding, H.; Guo, Feng-Biao F.B.; Zhang, A.Y.; Huang, J. Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition. Protein Pept. Lett., 2008, 15, 739-744.
[26]
Jiang, X.; Wei, R.; Zhang, T.L.; Gu, Q. Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: An approach by approximate entropy. Protein Pept. Lett., 2008, 15, 392-396.
[27]
Lin, H.; Wang, H.; Ding, H.; Chen, Y.L.; Li, Q.Z. Prediction of subcellular localization of apoptosis protein using Chou’s pseudo amino acid composition. Acta Biotheor., 2009, 57, 321-330.
[28]
Lin, J.; Wang, Y. Using a novel AdaBoost algorithm and Chou’s pseudo amino acid composition for predicting protein subcellular localization. Protein Pept. Lett., 2011, 18, 1219-1225.
[29]
Cao, J.Z.; Liu, W.Q.; Gu, H. Predicting viral protein subcellular localization with Chou’s pseudo amino acid composition and imbalance-weighted multi-label K-nearest neighbor algorithm. Protein Pept. Lett., 2012, 19, 1163-1169.
[30]
Fan, G.L.; Li, Q.Z. Predict mycobacterial proteins subcellular locations by incorporating pseudo-average chemical shift into the general form of Chou’s pseudo amino acid composition. J. Theor. Biol., 2012, 304, 88-95.
[31]
Mei, S. Predicting plant protein subcellular multi-localization by Chou’s PseAAC formulation based multi-label homolog knowledge transfer learning. J. Theor. Biol., 2012, 310, 80-87.
[32]
Wan, S.; Mak, M.W.; Kung, S.Y. GOASVM: A subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou’s pseudo amino acid composition. J. Theor. Biol., 2013, 323, 40-48.
[33]
Chang, T.H.; Wu, L.C.; Lee, T.Y.; Chen, S.P.; Huang, H.D.; Horng, J.T. EuLoc: A web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segments into the general form of Chou’s PseAAC. J. Comput. Aided Mol. Des., 2013, 27, 91-103.
[34]
Li, L.; Yu, S.; Xiao, W.; Li, Y.; Li, M.; Huang, L.; Zheng, X.; Zhou, S.; Yang, H. Prediction of bacterial protein subcellular localization by incorporating various features into Chou’s PseAAC and a backward feature selection approach. Biochimie, 2014, 104, 100-107.
[35]
Zuo, Y.C.; Peng, Y.; Liu, L.; Chen, W.; Yang, L.; Fan, G.L. Predicting peroxidase subcellular location by hybridizing different descriptors of Chou’s pseudo amino acid patterns. Anal. Biochem., 2014, 458, 14-19.
[36]
Dehzangi, A.; Heffernan, R.; Sharma, A.; Lyons, J.; Paliwal, K.; Sattar, A. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou’s general PseAAC. J. Theor. Biol., 2015, 364, 284-294.
[37]
Sharma, R.; Dehzangi, A.; Lyons, J.; Paliwal, K.; Tsunoda, T.; Sharma, A. Predict Gram-Positive and Gram-Negative subcellular localization via incorporating evolutionary information and physicochemical features into Chou’s general PseAAC. IEEE Trans. Nanobioscience, 2015, 14, 915-926.
[38]
Yu, B.; Li, S.; Qiu, W.Y.; Chen, C.; Chen, R.X.; Wang, L.; Wang, M.H.; Zhang, Y. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising. Oncotarget, 2017, 8, 107640-107665.
[39]
Zhang, S.; Duan, X. Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC. J. Theor. Biol., 2018, 437, 239-250.
[40]
Chou, K.C.; Shen, H.B. Recent progresses in protein subcellular location prediction. Anal. Biochem., 2007, 370, 1-16.
[41]
Chou, K.C.; Shen, H.B. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One, 2010, 5e9931
[42]
Chou, K.C.; Wu, Z.C.; Xiao, X. iLoc-Euk: A multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One, 2011, 6e18258
[43]
Pacharawongsakda, E.; Theeramunkong, T. Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou’s PseAAC. IEEE Trans. Nanobioscience, 2013, 12, 311-320.
[44]
Mandal, M.; Mukhopadhyay, A.; Maulik, U. Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou’s PseAAC. Med. Biol. Eng. Comput., 2015, 53, 331-344.
[45]
Liu, Z.; Xiao, X.; Qiu, W.R. iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[46]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X. iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33, 2221-2233.
[47]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[48]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B. iPPBS-Opt: A sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules, 2016, 21E95
[49]
Liu, B.; Yang, F.; Huang, D.S. iPromoter-2L: A two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 2018, 34, 33-40.
[50]
Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chen, J. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One, 2015, 10e0121501
[51]
Jia, J.; Liu, Z.; Xiao, X. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol., 2015, 377, 47-56.
[52]
Chen, W.; Tang, H.; Ye, J.; Lin, H. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5e332
[53]
Liu, B.; Fang, L.; Long, R.; Lan, X. iEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 2016, 32, 362-369.
[54]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X. pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32, 3133-3141.
[55]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[56]
Liu, B.; Yang, F. 2L-piRNA: A two-layer ensemble classifier for identifying piwi-interacting RNAs and their function. Mol. Ther. Nucleic Acids, 2017, 7, 267-277.
[57]
Cheng, X.; Zhao, S.G.; Xiao, X. iATC-mISF: A multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics(Corrigendum, ibid., 2017, Vol.33, 2610), 2017, 33, 341-346.
[58]
Liu, B.; Wang, S.; Long, R. iRSpot-EL: Identify recombination spots with an ensemble learning approach. Bioinformatics, 2017, 33, 35-41.
[59]
Qiu, W.R.; Jiang, S.Y.; Xu, Z.C.; Xiao, X. iRNAm5C-PseDNC: Identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 2017, 8, 41178-41188.
[60]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110, 239-246.
[61]
Song, J.; Li, F.; Takemoto, K.; Haffari, G.; Akutsu, T.; Webb, G.I. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural and network features in a machine learning framework. J. Theor. Biol., 2018, 443, 125-137.
[62]
Song, J.; Wang, Y.; Li, F.; Akutsu, T.; Rawlings, N.D.; Webb, G.I. iProt-Sub: A comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief. Bioinform., 2018.
[http://dx.doi.org/10.1093/bib/bby028]
[63]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111, 96-102.
[64]
Liu, B.; Weng, F.; Huang, D.S. iRO-3wPseKNC: Identify DNA replication origins by three-window-based PseKNC. Bioinformatics, 2018, 34, 3086-3093.
[65]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14, 883-891.
[66]
Jia, J.; Li, X.; Qiu, W.; Xiao, X. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J. Theor. Biol., 2019, 460, 195-203.
[67]
Chen, W.; Ding, H.; Zhou, X.; Lin, H. iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition. Anal. Biochem., 2018, 561-562, 59-65.
[68]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J. Theor. Biol., 2011, 273, 236-247.
[69]
Zhang, C.T. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci., 1992, 1, 401-408.
[70]
Feng, P.M.; Chen, W.; Lin, H. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442, 118-125.
[71]
Chen, W.; Feng, P.M.; Lin, H. iRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41e68
[72]
Xiao, X.; Wang, P. iNR-PhysChem: A sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix. PLoS One, 2012, 7e30869
[73]
Lin, W.Z.; Fang, J.A.; Xiao, X. iDNA-Prot: Identification of DNA binding proteins using random forest with grey model. PLoS One, 2011, 6e24756
[74]
Kandaswamy, K.K.; Martinetz, T.; Moller, S.; Suganthan, P.N.; Sridharan, S.; Pugalenthi, G. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. J. Theor. Biol., 2011, 270, 56-62.
[75]
Cai, Y.D. Predicting subcellular localization of proteins in a hybridization space. Bioinformatics, 2004, 20, 1151-1156.
[76]
Chou, K.C.; Cai, Y.D. Prediction of protease types in a hybridization space. Biochem. Biophys. Res. Commun., 2006, 339, 1015-1020.
[77]
Hu, L.; Huang, T.; Shi, X.; Lu, W.C.; Cai, Y.D. Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. PLoS One, 2011, 6e14556
[78]
Chou, K.C.; Elrod, D.W. Bioinformatical analysis of G-protein-coupled receptors. J. Proteome Res., 2002, 1, 429-433.
[79]
Gao, Y.; Shao, S.H.; Xiao, X.; Ding, Y.S.; Huang, Y.S.; Huang, Z.D. Using pseudo amino acid composition to predict protein subcellular location: Approached with Lyapunov index, Bessel function, and Chebyshev filter. Amino Acids, 2005, 28, 373-376.
[80]
Xu, Y.; Ding, J.; Wu, L.Y. iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8e55844
[81]
Chen, W.; Lin, H.; Feng, P.M.; Ding, C.; Zuo, Y.C. iNuc-PhysChem: A sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS One, 2012, 7e47843
[82]
Xiao, X.; Wang, P. Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image. J. Theor. Biol., 2008, 254, 691-696.
[83]
Chou, K.C. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins Struct. Funct. Genet. (Erratum: ibid., 2001, Vol.44, 60), 2001, 43, 246-255.
[84]
Chou, K.C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2005, 21, 10-19.
[85]
Xiao, X.; Shao, S.; Ding, Y.; Huang, Z.; Chen, X. Using cellular automata to generate Image representation for biological sequences. Amino Acids, 2005, 28, 29-35.
[86]
Zhou, X.B.; Chen, C.; Li, Z.C.; Zou, X.Y. Using Chou’s amphiphilic pseudo amino acid composition and support vector machine for prediction of enzyme subfamily classes. J. Theor. Biol., 2007, 248, 546-551.
[87]
Nanni, L.; Lumini, A. Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization. Amino Acids, 2008, 34, 653-660.
[88]
Georgiou, D.N.; Karakasidis, T.E.; Nieto, J.J.; Torres, A. Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition. J. Theor. Biol., 2009, 257, 17-26.
[89]
Esmaeili, M.; Mohabatkar, H.; Mohsenzadeh, S. Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses. J. Theor. Biol., 2010, 263, 203-209.
[90]
Mohabatkar, H. Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein Pept. Lett., 2010, 17, 1207-1214.
[91]
Sahu, S.S.; Panda, G. A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction. Comput. Biol. Chem., 2010, 34, 320-327.
[92]
Mohabatkar, H.; Mohammad Beigi, M.; Esmaeili, A. Prediction of GABA(A) receptor proteins using the concept of Chou’s pseudo amino acid composition and support vector machine. J. Theor. Biol., 2011, 281, 18-23.
[93]
Mohammad, B.M.; Behjati, M.; Mohabatkar, H. Prediction of metalloproteinase family based on the concept of Chou’s pseudo amino acid composition using a machine learning approach. J. Struct. Funct. Genomics, 2011, 12, 191-197.
[94]
Hayat, M.; Khan, A. Discriminating outer membrane proteins with fuzzy k-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein Pept. Lett., 2012, 19, 411-421.
[95]
Nanni, L.; Brahnam, S.; Lumini, A. Wavelet images and Chou’s pseudo amino acid composition for protein classification. Amino Acids, 2012, 43, 657-665.
[96]
Gupta, M.K.; Niyogi, R.; Misra, M. An alignment-free method to find similarity among protein sequences via the general form of Chou’s pseudo amino acid composition. SAR QSAR Environ. Res., 2013, 24, 597-609.
[97]
Khosravian, M.; Faramarzi, F.K.; Beigi, M.M.; Behbahani, M.; Mohabatkar, H. Predicting antibacterial peptides by the concept of Chou’s pseudo amino acid composition and machine learning methods. Protein Pept. Lett., 2013, 20, 180-186.
[98]
Hajisharifi, Z.; Piryaiee, M.; Mohammad Beigi, M.; Behbahani, M.; Mohabatkar, H. Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test. J. Theor. Biol., 2014, 341, 34-40.
[99]
Xu, Y.; Wen, X.; Wen, L.S.; Wu, L.Y.; Deng, N.Y. iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9e105018
[100]
Hayat, M.; Iqbal, N. Discriminating protein structure classes by incorporating pseudo average chemical shift to Chou’s general PseAAC and support vector machine. Comput. Methods Programs Biomed., 2014, 116, 184-192.
[101]
Mondal, S.; Pai, P.P. Chou’s pseudo amino acid composition improves sequence-based antifreeze protein prediction. J. Theor. Biol., 2014, 356, 30-35.
[102]
Ding, H.; Deng, E.Z.; Yuan, L.F.; Liu, L.; Lin, H.; Chen, W. iCTX-Type: A sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int., 2014, 2014286419
[103]
Nanni, L.; Brahnam, S.; Lumini, A. Prediction of protein structure classes by incorporating different protein descriptors into general Chou’s pseudo amino acid composition. J. Theor. Biol., 2014, 360, 109-116.
[104]
Ahmad, S.; Kabir, M.; Hayat, M. Identification of heat shock protein families and J-protein types by incorporating dipeptide composition into Chou’s general PseAAC. Comput. Methods Programs Biomed., 2015, 122, 165-174.
[105]
Kumar, R.; Srivastava, A.; Kumari, B.; Kumar, M. Prediction of beta-lactamase and its class by Chou’s pseudo amino acid composition and support vector machine. J. Theor. Biol., 2015, 365, 96-103.
[106]
Chou, K.C.; Cai, Y.D. Predicting protein quaternary structure by pseudo amino acid composition. Proteins. Struct. Funct. Genet., 2003, 53, 282-289.
[107]
Behbahani, M.; Mohabatkar, H.; Nosrati, M. Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition. J. Theor. Biol., 2016, 411, 1-5.
[108]
Meher, P.K.; Sahu, T.K.; Saini, V.; Rao, A.R. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci. Rep., 2017, 7, 42362.
[109]
Rahimi, M.; Bakhtiarizadeh, M.R.; Mohammadi-Sangcheshmeh, A. OOgenesis_Pred: A sequence-based method for predicting oogenesis proteins by six different modes of Chou’s pseudo amino acid composition. J. Theor. Biol., 2017, 414, 128-136.
[110]
Tahir, M.; Hayat, M.; Kabir, M. Sequence based predictor for discrimination of enhancer and their types by applying general form of Chou’s trinucleotide composition. Comput. Methods Programs Biomed., 2017, 146, 69-75.
[111]
Tripathi, P.; Pandey, P.N. A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou’s pseudo amino acid composition. J. Theor. Biol., 2017, 424, 49-54.
[112]
Arif, M.; Hayat, M.; Jan, Z. iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition. J. Theor. Biol., 2018, 442, 11-21.
[113]
Adilina, S.; Farid, D.M.; Shatabda, S. Effective DNA binding protein prediction by using key features via Chou’s general PseAAC. J. Theor. Biol., 2018, 460, 64-78.
[114]
Akbar, S.; Hayat, M. iMethyl-STTNC: Identification of N(6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences. J. Theor. Biol., 2018, 455, 205-211.
[115]
Butt, A.H.; Rasool, N.; Khan, Y.D. Predicting membrane proteins and their types by extracting various sequence features into Chou’s general PseAAC. Mol. Biol. Rep., 2018, 45, 2295-2306.
[116]
Chen, G.; Cao, M.; Yu, J.; Guo, X.; Shi, S. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC. J. Theor. Biol., 2018, 461, 92-101.
[117]
Contreras-Torres, E. Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou’s PseAAC. J. Theor. Biol., 2018, 454, 139-145.
[118]
Fu, X.; Zhu, W.; Liso, B.; Cai, L.; Peng, L.; Yang, J. Improved DNA-binding protein identification by incorporating evolutionary information into the Chou’s PseAAC. IEEE Access, 2018, 6, 66545-66556.
[119]
Javed, F.; Hayat, M. Predicting subcellular localizations of multi-label proteins by incorporating the sequence features into Chou’s PseAAC. Genomics, 2018.
[http://dx.doi.org/10.1016/j.ygeno.2018.09.004]
[120]
Ju, Z.; Wang, S.Y. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition. Gene, 2018, 664, 78-83.
[121]
Liang, Y.; Zhang, S. Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence. J. Theor. Biol., 2018, 454, 22-29.
[122]
Mei, J.; Fu, Y.; Zhao, J. Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition. J. Theor. Biol., 2018, 456, 41-48.
[123]
Mousavizadegan, M.; Mohabatkar, H. Computational prediction of antifungal peptides via Chou’s PseAAC and SVM. J. Bioinform. Comput. Biol., 2018.1850016
[124]
Qiu, W.; Li, S.; Cui, X.; Yu, Z.; Wang, M.; Du, J.; Peng, Y.; Yu, B. Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition. J. Theor. Biol., 2018, 450, 86-103.
[125]
Rahman, S.M.; Shatabda, S.; Saha, S.; Kaykobad, M.; Sohel Rahman, M. DPP-PseAAC: A DNA-binding protein prediction model using Chou’s general PseAAC. J. Theor. Biol., 2018, 452, 22-34.
[126]
Sankari, E.S.; Manimegalai, D.D. Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC. J. Theor. Biol., 2018, 455, 319-328.
[127]
Srivastava, A.; Kumar, R.; Kumar, M. BlaPred: Predicting and classifying beta-lactamase using a 3-tier prediction system via Chou’s general PseAAC. J. Theor. Biol., 2018, 457, 29-36.
[128]
Tahir, M.; Hayat, M.; Khan, S.A. iNuc-ext-PseTNC: An efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Mol. Genet. Genomic, 2018.
[http://dx.doi.org/10.1007/s00438- 018-1498-2]
[129]
Wang, L.; Zhang, R.; Mu, Y. Fu-SulfPred: Identification of protein S-sulfenylation sites by fusing forests via chou’s general PseAAC. J. Theor. Biol., 2018, 461, 51-58.
[130]
Zhang, S.; Liang, Y. Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou’s PseAAC. J. Theor. Biol., 2018, 457, 163-169.
[131]
Zhao, W.; Wang, L.; Zhang, T.X.; Zhao, Z.N.; Du, P.F. A brief review on software tools in generating Chou’s pseudo-factor representations for all types of biological sequences. Protein Pept. Lett., 2018, 25, 822-829.
[132]
Mei, J.; Zhao, J. Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different classifiers. Sci. Rep., 2018, 8, 2359.
[133]
Mei, J.; Zhao, J. Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou’s general pseudo amino acid composition and motif features. J. Theor. Biol., 2018, 427, 147-153.
[134]
Krishnan, M.S. Using Chou’s general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains. J. Theor. Biol., 2018, 445, 62-74.
[135]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17, 2337-2358.
[136]
Du, P.; Wang, X.; Xu, C.; Gao, Y. PseAAC-Builder: A cross-platform stand-alone program for generating various special Chou’s pseudo amino acid compositions. Anal. Biochem., 2012, 425, 117-119.
[137]
Cao, D.S.; Xu, Q.S.; Liang, Y.Z. Propy: A tool to generate various modes of Chou’s PseAAC. Bioinformatics, 2013, 29, 960-962.
[138]
Du, P.; Gu, S.; Jiao, Y. PseAAC-General: Fast building various modes of general form of Chou’s pseudo amino acid composition for large-scale protein datasets. Int. J. Mol. Sci., 2014, 15, 3495-3506.
[139]
Chou, K.C. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr. Proteomics, 2009, 6, 262-274.
[140]
Chen, W.; Lei, T.Y.; Jin, D.C.; Lin, H. PseKNC: A flexible web-server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 2014, 456, 53-60.
[141]
Chen, W.; Lin, H. Pseudo nucleotide composition or PseKNC: An effective formulation for analyzing genomic sequences. Mol. Biosyst., 2015, 11, 2620-2634.
[142]
Chen, W.; Feng, P.M.; Lin, H. iSS-PseDNC: Identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[143]
Liu, B.; Long, R. iDHS-EL: Identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics, 2016, 32, 2411-2418.
[144]
Al Maruf, M.A.; Shatabda, S. RSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components. Genomics, 2018, ;pii: S0888- 7543,. (18), 30214-30223.
[http://dx.doi.org/10.1016/j.ygeno.2018.06.003]
[145]
Sabooh, M.F.; Iqbal, N.; Khan, M.; Khan, M.; Maqbool, H.F. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J. Theor. Biol., 2018, 452, 1-9.
[146]
Zhang, L.; Kong, L. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou’s pseudo components. J. Theor. Biol., 2018, 441, 1-8.
[147]
Zhang, L.; Kong, L. iRSpot-PDI: Identification of recombination spots by incorporating dinucleotide property diversity information into Chou's pseudo components. Genomics, 2018, , pii: S0888- 7543,. (18), 30135-30136.
[http://dx.doi.org/10.1016/j.ygeno.2018.03.003.]
[148]
Zhang, C.T. Monte Carlo simulation studies on the prediction of protein folding types from amino acid composition. Biophys. J., 1992, 63, 1523-1529.
[149]
Chou, K.C. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J. Biol. Chem., 1993, 268, 16938-16948.
[150]
Zhang, C.T. An analysis of protein folding type prediction by seed-propagated sampling and jackknife test. J. Protein Chem., 1995, 14, 583-593.
[151]
Cai, Y.D.; Feng, K.Y.; Lu, W.C. Using LogitBoost classifier to predict protein structural classes. J. Theor. Biol., 2006, 238, 172-176.
[152]
Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res., 2011, 16, 321-357.
[153]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9, 1092-1100.
[154]
Lin, W.Z.; Fang, J.A.; Xiao, X. iLoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins. Mol. Biosyst., 2013, 9, 634-644.
[155]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C. iPTM-mLys: Identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32, 3116-3123.
[156]
Cheng, X.; Zhao, S.G.; Xiao, X. iATC-mHyb: A hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget, 2017, 8, 58494-58503.
[157]
Cheng, X.; Xiao, X. pLoc-mPlant: Predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13, 1722-1727.
[158]
Cheng, X.; Xiao, X. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[159]
Cheng, X.; Xiao, X. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2018, 110, 231-239.
[160]
Xiao, X.; Cheng, X.; Su, S.; Nao, Q. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat. Sci., 2017, 9, 331-349.
[161]
Chou, K.C.; Zhang, C.T. Review: Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol., 1995, 30, 275-349.
[162]
Zhou, G.P.; Assa-Munt, N. Some insights into protein structural class prediction. Proteins Struct. Funct. Genet., 2001, 44, 57-59.
[163]
Chou, K.C.; Elrod, D.W. Prediction of enzyme family classes. J. Proteome Res., 2003, 2, 183-190.
[164]
Chou, K.C.; Shen, H.B. MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun., 2007, 360, 339-345.
[165]
Ali, F.; Hayat, M. Classification of membrane protein types using voting feature interval in combination with Chou’s pseudo amino acid composition. J. Theor. Biol., 2015, 384, 78-83.
[166]
Tahir, M.; Hayat, M. iNuc-STNC: A sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou’s PseAAC. Mol. Biosyst., 2016, 12, 2587-2593.
[167]
Khan, M.; Hayat, M.; Khan, S.A.; Iqbal, N. Unb-DPC: Identify mycobacterial membrane protein types by incorporating un-biased dipeptide composition into Chou’s general PseAAC. J. Theor. Biol., 2017, 415, 13-19.
[168]
Shen, H.B. Hum-mPLoc: An ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem. Biophys. Res. Commun., 2007, 355, 1006-1011.
[169]
Chou, K.C.; Shen, H.B. Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 2008, 3, 153-162.
[170]
Shen, H.B. A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Anal. Biochem., 2009, 394, 269-274.
[171]
Chou, K.C.; Shen, H.B. Cell-PLoc 2.0: An improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat. Sci., 2010, 2, 1090-1103.
[172]
Chou, K.C.; Wu, Z.C.; Xiao, X. iLoc-Hum: Using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst., 2012, 8, 629-641.
[173]
Cheng, X.; Xiao, X. pLoc-mHum: Predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34, 1448-1456.
[174]
He, J.; Gu, H.; Liu, W. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PLoS One, 2012, 7e37155
[175]
Li, L.Q.; Zhang, Y.; Zou, L.Y.; Zhou, Y.; Zheng, X.Q. Prediction of protein subcellular multi-localization based on the general form of Chou’s pseudo amino acid composition. Protein Pept. Lett., 2012, 19, 375-387.
[176]
Wang, X.; Li, G.Z. A multi-label predictor for identifying the subcellular locations of singleplex and multiplex eukaryotic proteins. PLoS One, 2012, 7e36317
[177]
Huang, C.; Yuan, J. Using radial basis function on the general form of Chou’s pseudo amino acid composition and PSSM to predict subcellular locations of proteins with both single and multiple sites. Biosystems, 2013, 113, 50-57.
[178]
Xu, Y.; Shao, X.J.; Wu, L.Y.; Deng, N.Y. iSNO-AAPair: Incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ, 2013, 1e171
[179]
Chou, K.C. Using subsite coupling to predict signal peptides. Protein Eng., 2001, 14, 75-79.
[180]
Chou, K.C. Prediction of signal peptides using scaled window. Peptides, 2001, 22, 1973-1979.
[181]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W. iPro54-PseKNC: A sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42, 12961-12972.
[182]
Qiu, W.R.; Xiao, X. iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci., 2014, 15, 1746-1766.
[183]
Xu, R.; Zhou, J.; Liu, B.; He, Y.A.; Zou, Q.; Wang, X. Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. J. Biomol. Struct. Dyn., 2015, 33, 1720-1730.
[184]
Liu, B.; Fang, L.; Wang, S.; Wang, X.; Li, H. Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy. J. Theor. Biol., 2015, 385, 153-159.
[185]
Chen, W.; Feng, P.; Ding, H.; Lin, H. iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 2015, 490, 26-33.
[186]
Kabir, M.; Hayat, M. iRSpot-GAEnsC: Identifing recombination spots via ensemble classifier and extending the concept of Chou’s PseAAC to formulate DNA samples. Mol. Genet. Genomics, 2016, 291, 285-296.
[187]
Chen, W.; Ding, H.; Feng, P.; Lin, H. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7, 16895-16909.
[188]
Chen, W.; Feng, P.; Ding, H.; Lin, H. Using deformation energy to analyze nucleosome positioning in genomes. Genomics, 2016, 107, 69-75.
[189]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC). J. Biomol. Struct. Dyn., 2016, 34, 1946-1961.
[190]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, D. iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Inform., 2017, 36 UNSP 1600010.
[191]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H. iRNA-3typeA: Identifying 3-types of modification at RNA’s adenosine sites. Mol. Ther. Nucleic Acids, 2018, 11, 468-474.
[192]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X. pLoc-mAnimal: Predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33, 3524-3531.
[193]
Chou, K.C.; Shen, H.B. Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1, 63-92.
[194]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B. iCar-PseCp: Identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7, 34558-34570.
[195]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7, 44310-44321.
[196]
Qiu, W.R.; Xiao, X.; Xu, Z.C. iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget, 2016, 7, 51270-51283.
[197]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8, 4208-4217.
[198]
Liu, B.; Wu, H.; Zhang, D.; Wang, X. Pse-Analysis: A python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods. Oncotarget, 2017, 8, 13338-13343.
[199]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[200]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[201]
Chen, Z.; Zhao, P.Y.; Li, F.; Leier, A.; Marquez-Lago, T.T.; Wang, Y.; Webb, G.I.; Smith, A.I.; Daly, R.J.; Song, J. iFeature: A python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 2018, 34, 2499-2502.
[202]
Song, J.; Li, F.; Leier, A.; Marquez-Lago, T.T.; Akutsu, T.; Haffari, G.; Webb, G.I.; Pike, R.N. Prosperous: High-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics, 2018, 34, 684-687.
[203]
Wang, J.; Yang, B.; Leier, A.; Marquez-Lago, T.T.; Hayashida, M.; Rocker, A.; Yanju, Z.; Akutsu, T.; Strugnell, R.A.; Song, J.; Lithgow, T. Bastion6: A bioinformatics approach for accurate prediction of type VI secreted effectors. Bioinformatics, 2018, 34, 2546-2555.
[204]
Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T.T.; Webb, G.; Song, J.; Lithgow, T. POSSUM: A bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics, 2017, 33, 2756-2758.
[205]
Chou, K.C. Advance in predicting subcellular localization of multi-label proteins and its implication for developing multi-target drugs. Curr. Med. Chem., 2019.
[http://dx.doi.org/10.2174/0929867326666190507082559.]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy