Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Let-7a Could Serve as A Biomarker for Chemo-Responsiveness to Docetaxel in Gastric Cancer

Author(s): Najibeh Shekari, Faezeh Asghari, Navideh Haghnavaz, Dariush Shanehbandi, Vahid Khaze, Behzad Baradaran and Tohid Kazemi*

Volume 19, Issue 3, 2019

Page: [304 - 309] Pages: 6

DOI: 10.2174/1871520619666181213110258

Price: $65

Abstract

Background: MicroRNAs are noncoding RNAs which play critical roles in response to anti-cancer agents. Let-7a and miR-21 are well-known tumor-suppressor and oncomiR miRNAs, respectively. They are involved in tumorigenesis of gastric cancer and have potential to be used as markers in response to the therapy.

Objective: We aimed to study alterations in the expression of Let-7a and miR-21, and their targets in gastric cancer cell lines after treatment with docetaxel.

Methods: In order to determine the IC50 of docetaxel, MTT assay was performed in AGS, MKN45 and KATO III gastric cancer cell lines. The expression levels of Let-7a and miR-21 and their target genes, HMGA2 and PDCD4, were determined by reverse-transcription quantitative real-time PCR for both treated and untreated cell lines.

Results: MTT assay showed higher IC50 concentration of docetaxel in KATO III in comparison with AGS and MKN45, indicating KATO III`s higher resistance to docetaxel. Following the treatment, the expression level of Let-7a was significantly increased in AGS and MKN45, while decreased in KATO III. Expression level of miR- 21 in the three treated cell lines was increased significantly. Not only Let-7a, but also expression level of HMGA2 and PDCD4 genes showed different patterns in KATO III in comparison with AGS and MKN45.

Conclusion: Down-regulation and up-regulation of Let-7a in docetaxel-resistant and sensitive cell lines, respectively indicates its potential usefulness as biomarker for responsiveness of gastric cancer to the therapy with docetaxel and also for predicting patient`s outcome.

Keywords: Gastric cancer, docetaxel, Let-7a, miR-21, chemoresistance, chemosensitivity.

Graphical Abstract

[1]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends. Canc. Epidemiol. Prev. Biomarkers, 2016, 25(1), 16-27.
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA: A Canc. J. Clin., 2015, 65(2), 87-108.
[3]
Jin, Z.; Jiang, W.; Wang, L. Biomarkers for gastric cancer: Progression in early diagnosis and prognosis. (Review) Oncol. Lett., 2015, 9(4), 1502-1508.
[4]
Sakuramoto, S.; Sasako, M.; Yamaguchi, T.; Kinoshita, T.; Fujii, M.; Nashimoto, A.; Furukawa, H.; Nakajima, T.; Ohashi, Y.; Imamura, H.; Higashino, M.; Yamamura, Y.; Kurita, A.; Arai, K. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med., 2007, 357(18), 1810-1820.
[5]
Sasako, M.; Sakuramoto, S.; Katai, H.; Kinoshita, T.; Furukawa, H.; Yamaguchi, T.; Nashimoto, A.; Fujii, M.; Nakajima, T.; Ohashi, Y. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J. Clin. Oncol., 2011, 29(33), 4387-4393.
[6]
Fauzee, N.J.S.; Dong, Z.; Wang, Y.L. Taxanes: Promising anti-cancer drugs. Asian Pac. J. Canc Prev., 2011, 12(4), 837-851.
[7]
Yared, J.A.; Tkaczuk, K.H. Update on taxane development: New analogs and new formulations. Drug Des. Develop. Ther., 2012, 6, 371.
[8]
Sato, Y.; Takayama, T.; Sagawa, T.; Takahashi, Y.; Ohnuma, H.; Okubo, S.; Shintani, N.; Tanaka, S.; Kida, M.; Sato, Y. Phase II study of S-1, docetaxel and cisplatin combination chemotherapy in patients with unresectable metastatic gastric cancer. Cancer Chemother. Pharmacol., 2010, 66(4), 721-728.
[9]
Kang, B.W.; Kwon, O-K.; Chung, H.Y.; Yu, W.; Kim, J.G. Taxanes in the treatment of advanced gastric cancer. Molecules, 2016, 21(5), 651.
[10]
Kopczynska, E. Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel. Contemp. Oncol. (Pozn.), 2015, 19(6), 423-427.
[11]
Han, T-S.; Hur, K.; Xu, G.; Choi, B.; Okugawa, Y.; Toiyama, Y.; Oshima, H.; Oshima, M.; Lee, H-J.; Kim, V.N. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut, 2015, 64(2), 203-214.
[12]
Shekari, N.; Baradaran, B.; Shanehbandi, D.; Kazemi, T. Circulating MicroRNAs: Valuable biomarkers for the diagnosis and prognosis of gastric cancer. Curr. Med. Chem., 2018, 25(6), 698-714.
[13]
Hummel, R.; Hussey, D.J.; Haier, J. MicroRNAs: Predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur. J. Cancer (Oxford, England: 1990), 2010, 46(2), 298-311.
[14]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharmaceut. Bullet., 2017, 7(3), 339-348.
[15]
Matuszcak, C.; Haier, J.; Hummel, R.; Lindner, K. MicroRNAs: Promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J. Gastroenterol., 2014, 20(38), 13658-13666.
[16]
Xia, L.; Zhang, D.; Du, R.; Pan, Y.; Zhao, L.; Sun, S.; Hong, L.; Liu, J.; Fan, D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer, 2008, 123(2), 372-379.
[17]
Su, J.L.; Chen, P.S.; Johansson, G.; Kuo, M.L. Function and regulation of Let-7 family microRNAs. MicroRNA (Shariqah, United Arab Emirates), 2012, 1(1), 34-39.
[18]
Ayers, D.; Vandesompele, J. Influence of microRNAs and long non-coding RNAs in cancer chemoresistance. Genes., 2017, 8(3)
[19]
da Silva Oliveira, K.C.; Thomaz Araujo, T.M.; Albuquerque, C.I.; Barata, G.A.; Gigek, C.O.; Leal, M.F.; Wisnieski, F.; Rodrigues Mello, Junior, F.A.; Khayat, A.S.; de Assumpcao, P.P.; Rodriguez Burbano, R.M.; Smith, M.C.; Calcagno, D.Q. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J. Gastroenterol., 2016, 22(35), 7951-7962.
[20]
Tsang, W.P.; Kwok, T.T. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis: Int. J. Programm. Cell Death, 2008, 13(10), 1215-1222.
[21]
Wang, X.; Cao, L.; Wang, Y.; Wang, X.; Liu, N.; You, Y. Regulation of Let-7 and its target oncogenes.(Review). Oncol. Lett., 2012, 3(5), 955-960.
[22]
Jun, K.H.; Jung, J.H.; Choi, H.J.; Shin, E.Y.; Chin, H.M. HMGA1/HMGA2 protein expression and prognostic implications in gastric cancer. Int. J. Surgery (London, England), 2015, 24(Pt A), 39-44.
[23]
Feng, Y.H.; Tsao, C.J. Emerging role of microRNA-21 in cancer. Biomed. Rep., 2016, 5(4), 395-402.
[24]
Sekar, D.; Krishnan, R.; Thirugnanasambantham, K.; Rajasekaran, B.; Islam, V.I.; Sekar, P. Significance of microRNA 21 in gastric cancer. Clinics. Res. Hepatol. Gastroenterol., 2016, 40(5), 538-545.
[25]
Liang, H.; Wang, F.; Chu, D.; Zhang, W.; Liao, Z.; Fu, Z.; Yan, X.; Zhu, H.; Guo, W.; Zhang, Y.; Guan, W.; Chen, X. miR-93 functions as an oncomiR for the downregulation of PDCD4 in gastric carcinoma. Sci. Rep., 2016, 6, 23772.
[26]
Lemoine, N.; Adenis, A.; Bouche, O.; Duhamel, A.; Heurgue, A.; Leteurtre, E.; Amela, E.; Salleron, J.; Hebbar, M. Signet ring cells and efficacy of first-line chemotherapy in advanced gastric or oesogastric junction adenocarcinoma. Anticancer Res., 2016, 36(10), 5543-5549.
[27]
Xue, F.; Liu, Y.; Zhang, H.; Wen, Y.; Yan, L.; Tang, Q.; Xiao, E.; Zhang, D. Let-7a enhances the sensitivity of hepatocellular carcinoma cells to cetuximab by regulating STAT3 expression. OncoTargets Ther., 2016, 9, 7253-7261.
[28]
Serguienko, A.; Grad, I.; Wennerstrom, A.B.; Meza-Zepeda, L.A.; Thiede, B.; Stratford, E.W.; Myklebost, O.; Munthe, E. Metabolic reprogramming of metastatic breast cancer and melanoma by Let-7a microRNA. Oncotarget, 2015, 6(4), 2451-2465.
[29]
Wu, J.; Li, S.; Jia, W.; Deng, H.; Chen, K.; Zhu, L.; Yu, F.; Su, F. Reduced Let-7a is associated with chemoresistance in primary breast cancer. PLoS One, 2015, 10(7)e0133643
[30]
Motoyama, K.; Inoue, H.; Nakamura, Y.; Uetake, H.; Sugihara, K.; Mori, M. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to Let-7 microRNA family. Clin. Cancer Res., 2008, 14(8), 2334-2340.
[31]
Summer, H.; Li, O.; Bao, Q.; Zhan, L.; Peter, S.; Sathiyanathan, P.; Henderson, D.; Klonisch, T.; Goodman, S.D.; Droge, P. HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res., 2009, 37(13), 4371-4384.
[32]
Yang, X.; Zhao, Q.; Yin, H.; Lei, X.; Gan, R. MiR-33b-5p sensitizes gastric cancer cells to chemotherapy drugs via inhibiting HMGA2 expression. J. Drug Targeting., 2017, 25(7), 653-660.
[33]
Wu, H.; Liang, Y.; Shen, L.; Shen, L. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2. Biol. Open, 2016, 5(5), 563-570.
[34]
Rossi, L.; Bonmassar, E.; Faraoni, I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol. Res., 2007, 56(3), 248-253.
[35]
Shi, G.H.; Ye, D.W.; Yao, X.D.; Zhang, S.L.; Dai, B.; Zhang, H.L.; Shen, Y.J.; Zhu, Y.; Zhu, Y.P.; Xiao, W.J.; Ma, C.G. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol. Sinica., 2010, 31(7), 867-873.
[36]
Yang, S.M.; Huang, C.; Li, X.F.; Yu, M.Z.; He, Y.; Li, J. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology, 2013, 306, 162-168.
[37]
Jin, B.; Liu, Y.; Wang, H. Antagonism of miRNA-21 sensitizes human gastric cancer cells to paclitaxel. Cell Biochem. Biophys., 2015, 72(1), 275-282.
[38]
Cai, Y.; Yu, X.; Hu, S.; Yu, J. A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinformat, 2009, 7(4), 147-154.
[39]
Folini, M.; Gandellini, P.; Longoni, N.; Profumo, V.; Callari, M.; Pennati, M.; Colecchia, M.; Supino, R.; Veneroni, S.; Salvioni, R.; Valdagni, R.; Daidone, M.G.; Zaffaroni, N. miR-21: An oncomir on strike in prostate cancer. Mol. Cancer, 2010, 9, 12.
[40]
Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA therapeutics in cancer - an emerging concept. EBioMedicine, 2016, 12, 34-42.
[41]
Pan, X.; Wang, Z.X.; Wang, R. MicroRNA-21: A novel therapeutic target in human cancer. Cancer Biol. Ther., 2010, 10(12), 1224-1232.
[42]
Shiota, M.; Izumi, H.; Tanimoto, A.; Takahashi, M.; Miyamoto, N.; Kashiwagi, E.; Kidani, A.; Hirano, G.; Masubuchi, D.; Fukunaka, Y.; Yasuniwa, Y.; Naito, S.; Nishizawa, S.; Sasaguri, Y.; Kohno, K. Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth. Cancer Res., 2009, 69(7), 3148-3156.
[43]
Chen, Z.; Yuan, Y.C.; Wang, Y.; Liu, Z.; Chan, H.J.; Chen, S. Down-regulation of Programmed Cell Death 4 (PDCD4) is associated with aromatase inhibitor resistance and a poor prognosis in estrogen receptor-positive breast cancer. Breast Cancer Res. Treatm., 2015, 152(1), 29-39.
[44]
Ma, Q.Q.; Huang, J.T.; Xiong, Y.G.; Yang, X.Y.; Han, R.; Zhu, W.W. MicroRNA-96 regulates apoptosis by targeting PDCD4 in human glioma cells. Technol. Cancer Res. Treatm., 2017, 16(1), 92-98.
[45]
Jin, H.; Wang, C. MicroRNA-9 functions as an oncogene and targets PDCD4 gene in cervical cancer. Int. J. Clin. Experim. Pathol., 2016, 9(2), 2726-2734.
[46]
Zhang, X.; Gee, H.; Rose, B.; Lee, C.S.; Clark, J.; Elliott, M.; Gamble, J.R.; Cairns, M.J.; Harris, A.; Khoury, S.; Tran, N. Regulation of the tumour suppressor PDCD4 by miR-499 and miR-21 in oropharyngeal cancers. BMC Cancer, 2016, 16, 86.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy