Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

[68Ga]-Dota Peptide PET/CT in Neuroendocrine Tumors: Main Clinical Applications

Author(s): Elisabetta Giovannini, Giampiero Giovacchini, Elisa Borsò, Patrizia Lazzeri, Mattia Riondato, Rossella Leoncini, Valerio Duce and Andrea Ciarmiello*

Volume 12, Issue 1, 2019

Page: [11 - 22] Pages: 12

DOI: 10.2174/1874471012666181212101244

Price: $65

Abstract

Objective: Neuroendocrine Neoplasms (NENs) are generally defined as rare and heterogeneous tumors. The gastrointestinal system is the most frequent site of NENs localization, however they can be found in other anatomical regions, such as pancreas, lungs, ovaries, thyroid, pituitary, and adrenal glands. Neuroendocrine neoplasms have significant clinical manifestations depending on the production of active peptide.

Methods: Imaging modalities play a fundamental role in initial diagnosis as well as in staging and treatment monitoring of NENs, in particular they vastly enhance the understanding of the physiopathology and diagnosis of NENs through the use of somatostatin analogue tracers labeled with appropriate radioisotopes. Additionally, the use of somatostatin analogues provides the ability to in-vivo measure the expression of somatostatin receptors on NEN cells, a process that might have important therapeutic implications.

Results: A large body of evidences showed improved accuracy of molecular imaging based on PET/CT radiotracer with SST analogues (e.g. [68Ga]-DOTA peptide) for the detection of NEN lesions in comparison to morphological imaging modalities. So far, the role of imaging technologies in assessing treatment response is still under debate.

Conclusion: This review offers the systems of classification and grading of NENs and summarizes the more useful recommendations based on data recently published for the management of patients with NENs, with special focus on the role of imaging modalities based on SST targeting with PET / CT radiotracers.

Keywords: Neuroendocrine neoplasms, [68Ga]-DOTA peptide PET/CT, somatostatin receptor, molecular imaging, lungs NENs, radioisotopes.

Graphical Abstract

[1]
Cho, M.Y.; Kim, J.M.; Sohn, J.H.; Kim, M.J.; Kim, K.M.; Kim, W.H.; Kim, H.; Kook, M.C.; Park, D.Y.; Lee, J.H.; Chang, H.; Jung, E.S.; Kim, H.K.; Jin, S.Y.; Choi, J.H.; Gu, M.J.; Kim, S.; Kang, M.S.; Cho, C.H.; Park, M.I.; Kang, Y.K.; Kim, Y.W.; Yoon, S.O.; Bae, H.I.; Joo, M.; Moon, W.S.; Kang, D.Y.; Chang, S.J. Current trends of the incidence and pathological diagnosis of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) in Korea 2000-2009: Multicenter Study. Cancer Res. Treat., 2012, 44, 157-165.
[2]
Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; Evans, D.B. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol., 2008, 26, 3063-3072.
[3]
Modlin, I.M.; Lye, K.D.; Kidd, M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer, 2003, 97, 934-959.
[4]
Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol., 2017, 3, 1335-1342.
[5]
Ferolla, P.; Faggiano, A.; Mansueto, G.; Avenia, N.; Cantelmi, M.G.; Giovenali, P.; Del Basso De Caro, M.L.; Milone, F.; Scarpelli, G.; Masone, S.; Santeusanio, F.; Lombardi, G.; Angeletti, G.; Colao, A. The biological characterization of neuroendocrine tumors: The role of neuroendocrine markers. J. Endocrinol. Invest., 2008, 31, 277-286.
[6]
Banerjee, S.R.; Pomper, M.G. Clinical applications of Gallium-68. Appl. Radi. Isot., 2013, 76, 2-13.
[7]
Reubi, J.C. Somatostatin and other Peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology, 2004, 80(Suppl. 1), 51-56.
[8]
Balon, H.R.; Brown, T.L.; Goldsmith, S.J.; Silberstein, E.B.; Krenning, E.P.; Lang, O.; Dillehay, G.; Tarrance, J.; Johnson, M.; Stabin, M.G. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J. Nucl. Med. Technol., 2011, 39, 317-324.
[9]
Niederle, B.; Pape, U.F.; Costa, F.; Gross, D.; Kelestimur, F.; Knigge, U.; Oberg, K.; Pavel, M.; Perren, A.; Toumpanakis, C.; O’Connor, J.; O’Toole, D.; Krenning, E.; Reed, N.; Kianmanesh, R. ENETS consensus guidelines update for neuroendocrine neoplasms of the Jejunum and Ileum. Neuroendocrinology, 2016, 103, 125-138.
[10]
Tang, L.H.; Basturk, O.; Sue, J.J.; Klimstra, D.S. A practical approach to the classification of WHO Grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the Pancreas. Am. J. Surg. Pathol., 2016, 40, 1192-1202.
[11]
Ueda, Y.; Toyama, H.; Fukumoto, T.; Ku, Y. Prognosis of Patients with Neuroendocrine Neoplasms of the Pancreas According to the World Health Organization 2017 Classification. J. Pancreas, 2017, 3, 216-220.
[12]
Yachida, S.; Vakiani, E.; White, C.M.; Zhong, Y.; Saunders, T.; Morgan, R.; de Wilde, R.F.; Maitra, A.; Hicks, J.; Demarzo, A.M.; Shi, C.; Sharma, R.; Laheru, D.; Edil, B.H.; Wolfgang, C.L.; Schulick, R.D.; Hruban, R.H.; Tang, L.H.; Klimstra, D.S.; Iacobuzio-Donahue, C.A. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am. J. Surg. Pathol., 2012, 36, 173-184.
[13]
Basturk, O.; Tang, L.; Hruban, R.H.; Adsay, V.; Yang, Z.; Krasinskas, A.M.; Vakiani, E.; La Rosa, S.; Jang, K.T.; Frankel, W.L.; Liu, X.; Zhang, L.; Giordano, T.J.; Bellizzi, A.M.; Chen, J.H.; Shi, C.; Allen, P.; Reidy, D.L.; Wolfgang, C.L.; Saka, B.; Rezaee, N.; Deshpande, V.; Klimstra, D.S. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Amer. J. Surg. Pathol., 2014, 38, 437-447.
[14]
Tang, L.H.; Gonen, M.; Hedvat, C.; Modlin, I.M.; Klimstra, D.S. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Amer. J. Surg. Pathol., 2012, 36, 1761-1770.
[15]
Sankowski, A.J.; Cwikla, J.B.; Nowicki, M.L.; Chaberek, S.; Pech, M.; Lewczuk, A.; Walecki, J. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement. Med. Sci. Monit., 2012, 18, MT33-MT40.
[16]
Ozkara, S.; Aker, F.; Yesil, A.; Senates, E.; Canbey, C.; Yitik, A.; Gonen, C. Re-evaluation of cases with gastroenteropancreatic neuroendocrine tumors between 2004 and 2012 according to the 2010 criteria. Hepatogastroenterology, 2013, 60, 1665-1672.
[17]
Klimstra, D.S. Pathology reporting of neuroendocrine tumors: essential elements for accurate diagnosis, classification, and staging. Semin. Oncol., 2013, 40, 23-36.
[18]
Sundin, A.; Rockall, A. Therapeutic monitoring of gastroenteropancreatic neuroendocrine tumors: the challenges ahead. Neuroendocrinology, 2012, 96, 261-271.
[19]
Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C.; Kovacs, P.; Von Guggenberg, E.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med., 2007, 48, 508-518.
[20]
Sorbye, H.; Welin, S.; Langer, S.W.; Vestermark, L.W.; Holt, N.; Osterlund, P.; Dueland, S.; Hofsli, E.; Guren, M.G.; Ohrling, K.; Birkemeyer, E.; Thiis-Evensen, E.; Biagini, M.; Gronbaek, H.; Soveri, L.M.; Olsen, I.H.; Federspiel, B.; Assmus, J.; Janson, E.T.; Knigge, U. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann. Oncol., 2013, 24, 152-160.
[21]
Tang, L.H.; Untch, B.R.; Reidy, D.L.; O’Reilly, E.; Dhall, D.; Jih, L.; Basturk, O.; Allen, P.J.; Klimstra, D.S. Well-Differentiated Neuroendocrine Tumors with a Morphologically Apparent High-Grade Component: A Pathway Distinct from Poorly Differentiated Neuroendocrine Carcinomas. Clin. Cancer Res., 2016, 22, 1011-1017.
[22]
Basturk, O.; Yang, Z.; Tang, L.H.; Hruban, R.H.; Adsay, V.; McCall, C.M.; Krasinskas, A.M.; Jang, K.T.; Frankel, W.L.; Balci, S.; Sigel, C.; Klimstra, D.S. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Amer. J. Surg. Pathol., 2015, 39, 683-690.
[23]
Heetfeld, M.; Chougnet, C.N.; Olsen, I.H.; Rinke, A.; Borbath, I.; Crespo, G.; Barriuso, J.; Pavel, M.; O’Toole, D.; Walter, T. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer, 2015, 22, 657-664.
[24]
Ambrosini, V.; Rubello, D.; Nanni, C.; Al-Nahhas, A.; Fanti, S. 68Ga-DOTA-peptides versus 18F-DOPA PET for the assessment of NET patients. Nucl. Med. Commun., 2008, 29, 415-417.
[25]
Travis, W.D.; Gal, A.A.; Colby, T.V.; Klimstra, D.S.; Falk, R.; Koss, M.N. Reproducibility of neuroendocrine lung tumor classification. Hum. Pathol., 1998, 29, 272-279.
[26]
Hendifar, A.E.; Marchevsky, A.M.; Tuli, R. Neuroendocrine tumors of the lung: Current challenges and advances in the diagnosis and management of well-differentiated disease. J. Thorac. Oncol., 2017, 12, 425-436.
[27]
Mizutani, G.; Nakanishi, Y.; Watanabe, N.; Honma, T.; Obana, Y.; Seki, T.; Ohni, S.; Nemoto, N. Expression of somatostatin receptor (SSTR) subtypes (SSTR-1, 2A, 3, 4 and 5) in neuroendocrine tumors using real-time RT-PCR method and immunohistochemistry. Acta Histochem. Cytochem., 2012, 45, 167-176.
[28]
Pape, U.F.; Perren, A.; Niederle, B.; Gross, D.; Gress, T.; Costa, F.; Arnold, R.; Denecke, T.; Plockinger, U.; Salazar, R.; Grossman, A. ENETS Consensus Guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas. Neuroendocrinology, 2012, 95, 135-156.
[29]
Rockall, A.G.; Reznek, R.H. Imaging of neuroendocrine tumours (CT/MR/US). Best Pract. Res. Clin. Endocrinol. Metab., 2007, 21, 43-68.
[30]
Horsch, D.; Sayeg, Y.; Bonnet, R.; Kaemmerer, D.; Presselt, N.; Baum, R.P. [Expert dialogue: neuroendocrine tumours of the lungs and gastroenteropancreatic system]. Pneumologie, 2012, 66, 44-48.
[31]
Armbruster, M.; Zech, C.J.; Sourbron, S.; Ceelen, F.; Auernhammer, C.J.; Rist, C.; Haug, A.; Singnurkar, A.; Reiser, M.F.; Sommer, W.H. Diagnostic accuracy of dynamic gadoxetic-acid-enhanced MRI and PET/CT compared in patients with liver metastases from neuroendocrine neoplasms. J. Magn. Reson. Imaging, 2014, 40, 457-466.
[32]
Sundin, A. Adrenal Molecular Imaging. Front. Horm. Res., 2016, 45, 70-79.
[33]
Gatto, F.; Hofland, L.J. The role of somatostatin and dopamine D2 receptors in endocrine tumors. Endocr. Relat. Cancer, 2011, 18, R233-R251.
[34]
Gouffon, M.; Iff, S.; Ziegler, K.; Larche, M.; Schwarzenbach, C.; Prior, J.O.; Matter, M.; Stettler, C.; Pralong, F.P. Diagnosis and workup of 522 consecutive patients with neuroendocrine neoplasms in Switzerland. Swiss Med. Weekly., 2014, 144, w13924.
[35]
Gabriel, M.; Oberauer, A.; Dobrozemsky, G.; Decristoforo, C.; Putzer, D.; Kendler, D.; Uprimny, C.; Kovacs, P.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J. Nucl. Med., 2009, 50, 1427-1434.
[36]
Sandstrom, M.; Velikyan, I.; Garske-Roman, U.; Sorensen, J.; Eriksson, B.; Granberg, D.; Lundqvist, H.; Sundin, A.; Lubberink, M. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J. Nucl. Med., 2013, 54, 1755-1759.
[37]
Prasad, V.; Baum, R.P. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q. J. Nucl. Med. Mol. Imaging, 2010, 54, 61-67.
[38]
Hofmann, M.; Maecke, H.; Borner, R.; Weckesser, E.; Schoffski, P.; Oei, L.; Schumacher, J.; Henze, M.; Heppeler, A.; Meyer, J.; Knapp, H. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: Preliminary data. Eur. J. Nucl. Med., 2001, 28, 1751-1757.
[39]
Dromain, C.; de Baere, T.; Lumbroso, J.; Caillet, H.; Laplanche, A.; Boige, V.; Ducreux, M.; Duvillard, P.; Elias, D.; Schlumberger, M.; Sigal, R.; Baudin, E. Detection of liver metastases from endocrine tumors: A prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J. Clin. Oncol., 2005, 23, 70-78.
[40]
Nicolini, S.; Severi, S.; Ianniello, A.; Sansovini, M.; Ambrosetti, A.; Bongiovanni, A.; Scarpi, E.; Di Mauro, F.; Rossi, A.; Matteucci, F.; Paganelli, G. Investigation of receptor radionuclide therapy with (177)Lu-DOTATATE in patients with GEP-NEN and a high Ki-67 proliferation index. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45, 923-930.
[41]
Kowalski, J.; Henze, M.; Schuhmacher, J.; Macke, H.R.; Hofmann, M.; Haberkorn, U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol. Imaging Biol., 2003, 5, 42-48.
[42]
Fanti, S.; Ambrosini, V.; Tomassetti, P.; Castellucci, P.; Montini, G.; Allegri, V.; Grassetto, G.; Rubello, D.; Nanni, C.; Franchi, R. Evaluation of unusual neuroendocrine tumours by means of 68Ga-DOTA-NOC PET. Biomed. Pharmacother., 2008, 62, 667-671.
[43]
Prasad, V.; Ambrosini, V.; Hommann, M.; Hoersch, D.; Fanti, S.; Baum, R.P. Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 67-77.
[44]
Ambrosini, V.; Campana, D.; Bodei, L.; Nanni, C.; Castellucci, P.; Allegri, V.; Montini, G.C.; Tomassetti, P.; Paganelli, G.; Fanti, S. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J. Nucl. Med., 2010, 51, 669-673.
[45]
Kumar, R.; Sharma, P.; Garg, P.; Karunanithi, S.; Naswa, N.; Sharma, R.; Thulkar, S.; Lata, S.; Malhotra, A. Role of (68)Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumours. Eur. Radiol., 2011, 21, 2408-2416.
[46]
Haug, A.R.; Cindea-Drimus, R.; Auernhammer, C.J.; Reincke, M.; Wangler, B.; Uebleis, C.; Schmidt, G.P.; Goke, B.; Bartenstein, P.; Hacker, M. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J. Nucl. Med., 2012, 53, 1686-1692.
[47]
Sharma, P.; Arora, S.; Mukherjee, A.; Pal, S.; Sahni, P.; Garg, P.; Khadgawat, R.; Thulkar, S.; Bal, C.; Kumar, R. Predictive value of 68Ga-DOTANOC PET/CT in patients with suspicion of neuroendocrine tumors: is its routine use justified? Clin. Nucl. Med., 2014, 39, 37-43.
[48]
Naswa, N.; Sharma, P.; Kumar, A.; Soundararajan, R.; Kumar, R.; Malhotra, A.; Ammini, A.C.; Bal, C. (6)(8)Ga-DOTANOC PET/CT in patients with carcinoma of unknown primary of neuroendocrine origin. Clin. Nucl. Med., 2012, 37, 245-251.
[49]
Virgolini, I.; Ambrosini, V.; Bomanji, J.B.; Baum, R.P.; Fanti, S.; Gabriel, M.; Papathanasiou, N.D.; Pepe, G.; Oyen, W.; De Cristoforo, C.; Chiti, A. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 2004-2010.
[50]
Kauhanen, S.; Seppanen, M.; Ovaska, J.; Minn, H.; Bergman, J.; Korsoff, P.; Salmela, P.; Saltevo, J.; Sane, T.; Valimaki, M.; Nuutila, P. The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr. Relat. Cancer, 2009, 16, 255-265.
[51]
Jager, P.L.; Chirakal, R.; Marriott, C.J.; Brouwers, A.H.; Koopmans, K.P.; Gulenchyn, K.Y. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J. Nucl. Med., 2008, 49, 573-586.
[52]
Koopmans, K.P.; Neels, O.C.; Kema, I.P.; Elsinga, P.H.; Sluiter, W.J.; Vanghillewe, K.; Brouwers, A.H.; Jager, P.L.; de Vries, E.G. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J. Clin. Oncol., 2008, 26, 1489-1495.
[53]
Rasul, S.; Hartenbach, S.; Rebhan, K.; Gollner, A.; Karanikas, G.; Mayerhoefer, M.; Mazal, P.; Hacker, M.; Hartenbach, M. [(18)F]DOPA PET/ceCT in diagnosis and staging of primary medullary thyroid carcinoma prior to surgery. Eur. J. Nucl. Med. Mol. Imaging, 2018.
[54]
Amodru, V.; Guerin, C.; Delcourt, S.; Romanet, P.; Loundou, A.; Viana, B.; Brue, T.; Castinetti, F.; Sebag, F.; Pacak, K.; Taieb, D. Quantitative (18)F-DOPA PET/CT in pheochromocytoma: the relationship between tumor secretion and its biochemical phenotype. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45, 278-282.
[55]
Knie, B.; Plotkin, M.; Zschieschang, P.; Prasad, V.; Moskopp, D. A family with pheochromocytoma-paraganglioma inherited tumour syndrome. Serial 18F-DOPA PET/CT investigations. Nuklearmedizin, 2016, 55, 34-40.
[56]
Bacca, A.; Chiacchio, S.; Zampa, V.; Carrara, D.; Duce, V.; Congregati, C.; Simi, P.; Taddei, S.; Materazzi, G.; Volterrani, D.; Mariani, G.; Bernini, G. Role of 18F-DOPA PET/CT in diagnosis and follow-up of adrenal and extra-adrenal paragangliomas. Clin. Nucl. Med., 2014, 39, 14-20.
[57]
Christiansen, C.D.; Petersen, H.; Nielsen, A.L.; Detlefsen, S.; Brusgaard, K.; Rasmussen, L.; Melikyan, M.; Ekstrom, K.; Globa, E.; Rasmussen, A.H.; Hovendal, C.; Christesen, H.T. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45, 250-261.
[58]
Dadone-Montaudie, B.; Ambrosetti, D.; Dufour, M.; Darcourt, J.; Almairac, F.; Coyne, J.; Virolle, T.; Humbert, O.; Burel-Vandenbos, F. [18F] FDOPA standardized uptake values of brain tumors are not exclusively dependent on LAT1 expression. PloS One, 2017, 12, e0184625.
[59]
Timmers, H.J.; Chen, C.C.; Carrasquillo, J.A.; Whatley, M.; Ling, A.; Havekes, B.; Eisenhofer, G.; Martiniova, L.; Adams, K.T.; Pacak, K. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab., 2009, 94, 4757-4767.
[60]
Imani, F.; Agopian, V.G.; Auerbach, M.S.; Walter, M.A.; Benz, M.R.; Dumont, R.A.; Lai, C.K.; Czernin, J.G.; Yeh, M.W. 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J. Nucl. Med., 2009, 50, 513-519.
[61]
Hoegerle, S.; Nitzsche, E.; Altehoefer, C.; Ghanem, N.; Manz, T.; Brink, I.; Reincke, M.; Moser, E.; Neumann, H.P. Pheochromocytomas: detection with 18F DOPA whole body PET--initial results. Radiology, 2002, 222, 507-512.
[62]
Fani, M.; Nicolas, G.P.; Wild, D. Somatostatin receptor antagonists for imaging and therapy. J. Nucl. Med., 2017, 58, 61S-66S.
[63]
Reubi, J.C.; Waser, B.; Macke, H.; Rivier, J. Highly increased 125I-JR11 antagonist binding in vitro reveals novel indications for sst2 targeting in human cancers. J. Nucl. Med., 2017, 58, 300-306.
[64]
Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Wang, X.; Erchegyi, J.; Rivier, J.; Macke, H.R.; Reubi, J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc. Natl. Acad. Sci. USA, 2006, 103, 16436-16441.
[65]
Wild, D.; Fani, M.; Behe, M.; Brink, I.; Rivier, J.E.; Reubi, J.C.; Maecke, H.R.; Weber, W.A. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J. Nucl. Med., 2011, 52, 1412-1417.
[66]
Bass, R.T.; Buckwalter, B.L.; Patel, B.P.; Pausch, M.H.; Price, L.A.; Strnad, J.; Hadcock, J.R. Identification and characterization of novel somatostatin antagonists. Mol. Pharmacol., 1996, 50, 709-715.
[67]
Reubi, J.C.; Schaer, J.C.; Wenger, S.; Hoeger, C.; Erchegyi, J.; Waser, B.; Rivier, J. SST3-selective potent peptidic somatostatin receptor antagonists. Proc. Natl. Acad. Sci. U S A, 2000, 97, 13973-13978.
[68]
Fani, M.; Del Pozzo, L.; Abiraj, K.; Mansi, R.; Tamma, M.L.; Cescato, R.; Waser, B.; Weber, W.A.; Reubi, J.C.; Maecke, H.R. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: The chelate makes the difference. J. Nucl. Med., 2011, 52, 1110-1118.
[69]
Fani, M.; Braun, F.; Waser, B.; Beetschen, K.; Cescato, R.; Erchegyi, J.; Rivier, J.E.; Weber, W.A.; Maecke, H.R.; Reubi, J.C. Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications. J. Nucl. Med., 2012, 53, 1481-1489.
[70]
Dalm, S.U.; Martens, J.W.; Sieuwerts, A.M.; van Deurzen, C.H.; Koelewijn, S.J.; de Blois, E.; Maina, T.; Nock, B.A.; Brunel, L.; Fehrentz, J.A.; Martinez, J.; de Jong, M.; Melis, M. In vitro and in vivo application of radiolabeled gastrin-releasing peptide receptor ligands in breast cancer. J. Nucl. Med., 2015, 56, 752-757.
[71]
Nicolas, G.P.; Mansi, R.; McDougall, L.; Kaufmann, J.; Bouterfa, H.; Wild, D.; Fani, M. Biodistribution, pharmacokinetics, and dosimetry of (177)Lu-, (90)Y-, and (111)In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist (177)Lu-DOTATATE: The mass effect. J. Nucl. Med., 2017, 58, 1435-1441.
[72]
Garin, E.; Le Jeune, F.; Devillers, A.; Cuggia, M.; de Lajarte-Thirouard, A.S.; Bouriel, C.; Boucher, E.; Raoul, J.L. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J. Nucl. Med., 2009, 50, 858-864.
[73]
Tirosh, A.; Papadakis, G.Z.; Millo, C.; Hammoud, D.; Sadowski, S.M.; Herscovitch, P.; Pacak, K.; Marx, S.J.; Yang, L.; Nockel, P.; Shell, J.; Green, P.; Keutgen, X.M.; Patel, D.; Nilubol, N.; Kebebew, E. Prognostic utility of Total (68)Ga-DOTATATE-Avid tumor volume in patients with neuroendocrine tumors. Gastroenterology, 2018, 154, 998-1008 . e1001
[74]
Naswa, N.; Sharma, P.; Soundararajan, R.; Karunanithi, S.; Nazar, A.H.; Kumar, R.; Malhotra, A.; Bal, C. Diagnostic performance of somatostatin receptor PET/CT using 68Ga-DOTANOC in gastrinoma patients with negative or equivocal CT findings. Abdom. Imaging, 2013, 38, 552-560.
[75]
Breeman, W.A.; de Jong, M.; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.; Visser, T.J.; Krenning, E.P. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur. J. Nucl. Med., 2001, 28, 1421-1429.
[76]
Teunissen, J.J.; Kwekkeboom, D.J.; de Jong, M.; Esser, J.P.; Valkema, R.; Krenning, E.P. Endocrine tumours of the gastrointestinal tract. Peptide receptor radionuclide therapy. Best Pract. Res. Clin. Gastroenterol., 2005, 19, 595-616.
[77]
Bushnell, D. Treatment of metastatic carcinoid tumors with radiolabeled biologic molecules. J. Natl. Compr. Canc. Netw., 2009, 7, 760-764.
[78]
Kwekkeboom, D.J.; Krenning, E.P.; Lebtahi, R.; Komminoth, P.; Kos-Kudla, B.; de Herder, W.W.; Plockinger, U. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology, 2009, 90, 220-226.
[79]
Imhof, A.; Brunner, P.; Marincek, N.; Briel, M.; Schindler, C.; Rasch, H.; Macke, H.R.; Rochlitz, C.; Muller-Brand, J.; Walter, M.A. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J. Clin. Oncol., 2011, 29, 2416-2423.
[80]
Seregni, E.; Maccauro, M.; Coliva, A.; Castellani, M.R.; Bajetta, E.; Aliberti, G.; Vellani, C.; Chiesa, C.; Martinetti, A.; Bogni, A.; Bombardieri, E. Treatment with tandem [(90)Y]DOTA-TATE and [(177)Lu] DOTA-TATE of neuroendocrine tumors refractory to conventional therapy: preliminary results. Q. J. Nucl. Med. Mol. Imaging, 2010, 54, 84-91.
[81]
Haug, A.R.; Auernhammer, C.J.; Wangler, B.; Schmidt, G.P.; Uebleis, C.; Goke, B.; Cumming, P.; Bartenstein, P.; Tiling, R.; Hacker, M. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J. Nucl. Med., 2010, 51, 1349-1356.
[82]
Haug, A.R.; Assmann, G.; Rist, C.; Tiling, R.; Schmidt, G.P.; Bartenstein, P.; Hacker, M. [Quantification of immunohistochemical expression of somatostatin receptors in neuroendocrine tumors using 68Ga-DOTATATE PET/CT]. Radiologe, 2010, 50, 349-354.
[83]
Ruf, J.; Schiefer, J.; Furth, C.; Kosiek, O.; Kropf, S.; Heuck, F.; Denecke, T.; Pavel, M.; Pascher, A.; Wiedenmann, B.; Amthauer, H. 68Ga-DOTATOC PET/CT of neuroendocrine tumors: spotlight on the CT phases of a triple-phase protocol. J. Nucl. Med., 2011, 52, 697-704.
[84]
Ruf, J.; Heuck, F.; Schiefer, J.; Denecke, T.; Elgeti, F.; Pascher, A.; Pavel, M.; Stelter, L.; Kropf, S.; Wiedenmann, B.; Amthauer, H. Impact of Multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology, 2010, 91, 101-109.
[85]
Degnan, A.J.; Tadros, S.S.; Tocchio, S. Pediatric neuroendocrine carcinoid tumors: Review of diagnostic imaging findings and recent advances. AJR Am. J. Roentgenol., 2017, 208, 868-877.
[86]
Castleberry, R.P. Neuroblastoma. Eur. J. Cancer, 1997, 33, 1430-1437.
[87]
Kroiss, A.; Putzer, D.; Uprimny, C.; Decristoforo, C.; Gabriel, M.; Santner, W.; Kranewitter, C.; Warwitz, B.; Waitz, D.; Kendler, D.; Virgolini, I.J. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38, 865-873.
[88]
Naswa, N.; Sharma, P.; Gupta, S.K.; Karunanithi, S.; Reddy, R.M.; Patnecha, M.; Lata, S.; Kumar, R.; Malhotra, A.; Bal, C. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary? Clin. Nucl. Med., 2014, 39, e27-e34.
[89]
Haug, A.; Auernhammer, C.J.; Wangler, B.; Tiling, R.; Schmidt, G.; Goke, B.; Bartenstein, P.; Popperl, G. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36, 765-770.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy