Review Article

诱导多能干细胞在心血管疾病中的潜在应用

卷 20, 期 7, 2019

页: [763 - 774] 页: 12

弟呕挨: 10.2174/1389450120666181211164147

价格: $65

摘要

由于心血管疾病(CVDs)在过去几十年中具有高发病率和残疾率,因此已成为全球领先的死亡原因之一。目前,已经在实验性CVD疗法中广泛研究了诱导性多能干细胞(iPSC),其具有形成新鲜心肌的潜力并改善受损心脏的功能。此外,作为新型疾病模型的iPSC衍生的心肌细胞(CM)在药物筛选,药物安全性评估以及疾病的病理学机制的探索中发挥重要作用。此外,已经进行了许多研究以阐明iPSC及其衍生细胞在CVD治疗中的生物学基础。它们的分子机制与旁分泌因子的释放,miRNA的调节,新组织的机械支持,特定途径和特定酶的激活等有关。此外,一些小化学分子和合适的生物支架在提高效率方面发挥了积极作用。 iPSC移植本文回顾了iPSCs在CVD治疗中的发展和局限性,总结了iPSCs在CVD中应用的最新研究成果。

关键词: 诱导多能干细胞,细胞疗法,心血管疾病,心肌,病理机制,生物支架。

图形摘要

[1]
Ilic D, Devito L, Miere C, Codognotto S. Human embryonic and induced pluripotent stem cells in clinical trials. British medical bulletin 2015; 116: 19-27.
[2]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY) 2007; 318(5858): 1917-20.
[3]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[4]
Yang M, Liu Y, Hou W, et al. Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer. Nanoscale 2017; 9(1): 334-40.
[5]
Saito H, Okita K, Chang AE, Ito F. Adoptive transfer of cd8+ t cells generated from induced pluripotent stem cells triggers regressions of large tumors along with immunological memory. Cancer Res 2016; 76(12): 3473-83.
[6]
Yao X, Salingova B, Dani C. Brown-like adipocyte progenitors derived from human ips cells: a new tool for anti-obesity drug discovery and cell-based therapy? Handbook of experimental pharmacology 2018.
[7]
Matsa E, Burridge PW, Yu KH, et al. Transcriptome profiling of patient-specific human ipsc-cardiomyocytes predicts individual drug safety and efficacy responses In Vitro. Cell Stem Cell 2016; 19(3): 311-25.
[8]
Yamanaka S, Takahashi K. Induction of pluripotent stem cells from mouse fibroblast cultures. Tanpakushitsu kakusan koso Protein Nucleic Acid Enzyme 2006; 51(15): 2346-51.
[9]
Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science (New York, NY) 2007; 318(5858): 1920-3.
[10]
Yang W, Mills JA, Sullivan S, et al. iPSC reprogramming from human peripheral blood using sendai virus mediated gene transfer. stembook. cambridge (ma): Harvard stem cell institute copyright: (c) 2012 Wenli Yang, Jason A. Mills, Spencer Sullivan, Ying Liu, Deborah L. French, and Paul Gadue.; 2008.
[11]
Cai J, DeLaForest A, Fisher J, et al. Protocol for directed differentiation of human pluripotent stem cells toward a hepatocyte fate. StemBook. Cambridge (MA): Harvard Stem Cell Institute Copyright: (c) 2012 Uri Ben-Davi and Nissim Benvenisty 2008.
[12]
Sommer AG, Rozelle SS, Sullivan S, et al. Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector. J Vis Exp 2012; (68): 4327.
[13]
Heng BC, Richards M. Induced pluripotent stem cells (ipsc)--can direct delivery of transcription factors into the cytosol overcome the perils of permanent genetic modification? Minimally invasive therapy & allied technologies. MITAT 2008; 17(5): 326-7.
[14]
Tam PP. human stem cells can differentiate in post-implantation mouse embryos. Cell Stem Cell 2016; 18(1): 3-4.
[15]
Sundberg M, Bogetofte H, Lawson T, et al. Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells (Dayton, Ohio) 2013; 31(8): 1548-62.
[16]
Hitomi H, Kasahara T, Katagiri N, et al. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice. Sci Transl Med 2017; 9(409)
[17]
Sakai-Takemura F, Narita A, Masuda S, et al. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Scientific Reports 2018; 8(1): 6555.
[18]
Kooreman NG, Kim Y, de Almeida PE, et al. autologous ipsc-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell 2018; 22(4): 501-13.e7.
[19]
Turner M, Leslie S, Martin NG, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 2013; 13(4): 382-4.
[20]
Stacey GN, Crook JM, Hei D, Ludwig T. Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells? Cell Stem Cell 2013; 13(4): 385-8.
[21]
Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008; 118(5): 507-17.
[22]
Yan B, Abdelli LS, Singla DK. Transplanted induced pluripotent stem cells improve cardiac function and induce neovascularization in the infarcted hearts of db/db mice. Mol Pharmaceutics 2011; 8(5): 1602-10.
[23]
Taura D, Sone M, Homma K, et al. Induction and isolation of vascular cells from human induced pluripotent stem cells--brief report. Arterioscler Thromb Vasc Biol 2009; 29(7): 1100-3.
[24]
Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 2008; 118(5): 498-506.
[25]
Zhang F, Song G, Li X, et al. Transplantation of iPSc ameliorates neural remodeling and reduces ventricular arrhythmias in a post-infarcted swine model. J Cell Biochem 2014; 115(3): 531-9.
[26]
Mauritz C, Martens A, Rojas SV, et al. Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J 2011; 32(21): 2634-41.
[27]
Miao Q, Shim W, Tee N, et al. iPSC-derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium. J Cell Mol Med 2014; 18(8): 1644-54.
[28]
Gu M, Nguyen PK, Lee AS, et al. Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 2012; 111(7): 882-93.
[29]
Wang Y, Huang W, Liang J, et al. Suicide gene-mediated sequencing ablation revealed the potential therapeutic mechanism of induced pluripotent stem cell-derived cardiovascular cell patch post-myocardial infarction. Antioxid Redox Signal 2014; 21(16): 2177-91.
[30]
Huang W, Dai B, Wen Z, et al. Molecular strategy to reduce in vivo collagen barrier promotes entry of NCX1 positive inducible pluripotent stem cells (iPSC(NCX(1)(+))) into ischemic (or injured) myocardium. PLoS One 2013; 8(8): e70023.
[31]
Dai B, Huang W, Xu M, et al. Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent stem cell engraftment and angiomyogenesis for improvement of left ventricular function. J Am Coll Cardiol 2011; 58(20): 2118-27.
[32]
Higuchi T, Miyagawa S, Pearson JT, et al. Functional and electrical integration of induced pluripotent stem cell-derived cardiomyocytes in a myocardial infarction rat heart. Cell Transplant 2015; 24(12): 2479-89.
[33]
Chang D, Wen Z, Wang Y, et al. Ultrastructural features of ischemic tissue following application of a bio-membrane based progenitor cardiomyocyte patch for myocardial infarction repair. PLoS One 2014; 9(10): e107296.
[34]
Shiba Y, Gomibuchi T, Seto T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nat 2016; 538(7625): 388-91.
[35]
Wang X, Chun YW, Zhong L, et al. A temperature-sensitive, self-adhesive hydrogel to deliver iPSC-derived cardiomyocytes for heart repair. Int J Cardiol 2015; 190: 177-80.
[36]
Francis MP, Breathwaite E, Bulysheva AA, et al. Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures. Acta Biomater 2017; 52: 92-104.
[37]
Chow A, Stuckey DJ, Kidher E, et al. Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Reports 2017; 9(5): 1415-22.
[38]
Rojas SV, Martens A, Zweigerdt R, et al. Transplantation effectiveness of induced pluripotent stem cells is improved by a fibrinogen biomatrix in an experimental model of ischemic heart failure. Tissue Eng Part A 2015; 21(13-14): 1991-2000.
[39]
Liu T, Zhang R, Guo T, et al. Cardiotrophin-1 promotes cardiomyocyte differentiation from mouse induced pluripotent stem cells via JAK2/STAT3/Pim-1 signaling pathway. J Geriatr Cardiol 2015; 12(6): 591-9.
[40]
Kirby RJ, Divlianska DB, Whig K, et al. Discovery of novel small-molecule inducers of heme oxygenase-1 that protect human ipsc-derived cardiomyocytes from oxidative stress. J Pharmacol Exp Ther 2018; 364(1): 87-96.
[41]
Rojas SV, Kensah G, Rotaermel A, et al. Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS One 2017; 12(5): e0173222.
[42]
Adamiak M, Cheng G, Bobis-Wozowicz S, et al. Induced pluripotent stem cell (ipsc)-derived extracellular vesicles are safer and more effective for cardiac repair than ipscs. Circulation Res 2018; 122(2): 296-309.
[43]
Tachibana A, Santoso MR, Mahmoudi M, et al. Paracrine effects of the pluripotent stem cell-derived cardiac myocytes salvage the injured myocardium. Circulation Res 2017; 121(6): e22-36.
[44]
Ye L, Chang YH, Xiong Q, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 2014; 15(6): 750-61.
[45]
Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011; 9(1): 17-23.
[46]
Kim K, Zhao R, Doi A, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 2011; 29(12): 1117-9.
[47]
Zhang L, Guo J, Zhang P, et al. Derivation and high engraftment of patient-specific cardiomyocyte sheet using induced pluripotent stem cells generated from adult cardiac fibroblast. Circulation Heart Fail 2015; 8(1): 156-66.
[48]
Ong SG, Huber BC, Lee WH, et al. Microfluidic single-cell analysis of transplanted human induced pluripotent stem cell-derived cardiomyocytes after acute myocardial infarction. Circulation 2015; 132(8): 762-71.
[49]
Ja KP, Miao Q, Zhen Tee NG, et al. iPSC-derived human cardiac progenitor cells improve ventricular remodelling via angiogenesis and interstitial networking of infarcted myocardium. J Cell Mol Med 2016; 20(2): 323-32.
[50]
Zhao X, Chen H, Xiao D, et al. Comparison of non-human primate versus human induced pluripotent stem cell-derived cardiomyocytes for treatment of myocardial infarction. Stem Cell Reports 2018; 10(2): 422-35.
[51]
Yu T, Miyagawa S, Miki K, et al. In vivo differentiation of induced pluripotent stem cell-derived cardiomyocytes. Circulation J 2013; 77(5): 1297-306.
[52]
Aggarwal P, Turner A, Matter A, et al. Cardiomyocytes in a cardiac hypertrophy model. PLoS One 2014; 9(9): e108051.
[53]
Zhang Y, Liang X, Liao S, et al. Potent paracrine effects of human induced pluripotent stem cell-derived mesenchymal stem cells attenuate doxorubicin-induced cardiomyopathy. Scientific Reports 2015; 5: 11235.
[54]
Bernardo ME, Fibbe WE. Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell 2013; 13(4): 392-402.
[55]
Martens A, Rojas SV, Baraki H, et al. Substantial early loss of induced pluripotent stem cells following transplantation in myocardial infarction. Artif Organs 2014; 38(11): 978-84.
[56]
Schmidt C, Wiedmann F. Kallenberger, et al. Stretch-activated two-pore-domain (K2P) potassium channels in the heart: Focus on atrial fibrillation and heart failure. Prog Biophys Mol Biol 2017; 130(Pt B): 233-43.
[57]
Chai S, Wan X, Nassal DM, et al. Contribution of two-pore K(+) channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 312(6): H1144-h53.
[58]
Hou L, Coller J, Natu V, Hastie TJ, Huang NF. Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia. Acta Biomater 2016; 44: 188-99.
[59]
Masumoto H, Nakane T, Tinney JP, et al. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Scientific Reports 2016; 6: 29933.
[60]
Iseoka H, Miyagawa S, Fukushima S, et al. Pivotal role of non-cardiomyocytes in electromechanical and therapeutic potential of induced pluripotent stem cell-derived engineered cardiac tissue. Tissue Eng Part A 2018; 24(3-4): 287-300.
[61]
Rojas SV, Meier M, Zweigerdt R, et al. Multimodal imaging for in vivo evaluation of induced pluripotent stem cells in a murine model of heart failure. Artif Organs 2017; 41(2): 192-9.
[62]
Judge LM, Perez-Bermejo JA, Truong A, et al. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2017; 2(14)
[63]
Wu H, Lee J, Vincent LG, et al. Epigenetic regulation of phosphodiesterases 2a and 3a underlies compromised beta-adrenergic signaling in an ipsc model of dilated cardiomyopathy. Cell Stem Cell 2015; 17(1): 89-100.
[64]
Sayer G, Bhat G. The renin-angiotensin-aldosterone system and heart failure. Cardiol Clin 2014; 32(1): 21-32.
[65]
Jiang X, Sucharov J, Stauffer BL. Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 312(4): H818-h26.
[66]
Sucharov CC, Mariner PD, Nunley KR, et al. A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. Am J Physiol Heart Circ Physiol 2006; 291(3): H1299-308.
[67]
Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124(5): 2136-46.
[68]
Hashem SI, Perry CN, Bauer M, et al. Brief report: Oxidative stress mediates cardiomyocyte apoptosis in a human model of danon disease and heart failure. Stem Cells (Dayton, Ohio) 2015; 33(7): 2343-50.
[69]
Abarbanell AM, Wang Y, Herrmann JL, et al. Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2010; 298(5): H1529-36.
[70]
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 2013; 10(3): 301-12.
[71]
Zhang H, Xiang M, Meng D, Sun N, Chen S. Inhibition of Myocardial Ischemia/Reperfusion Injury by Exosomes Secreted from Mesenchymal Stem Cells. Stem Cells Int 2016; 2016: 4328362.
[72]
Pennella S, Reggiani Bonetti L, Migaldi M, et al. Does stem cell therapy induce myocardial neoangiogenesis? Histological evaluation in an ischemia/reperfusion animal model. J Cardiovasc Med 2017; 18(4): 277-82.
[73]
Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 2015; 192: 61-9.
[74]
Chen Z, Li Y, Yu H, et al. Isolation of extracellular vesicles from stem cells. Methods Mol Biol 2017; 1660: 389-94.
[75]
Zhu W, Gao L, Zhang J. Pluripotent stem cell derived cardiac cells for myocardial repair. J Vis Exp 2017; (120).
[76]
Wei W, Liu Y, Zhang Q, et al. Danshen-enhanced cardioprotective effect of cardioplegia on ischemia reperfusion injury in a human-induced pluripotent stem cell-derived cardiomyocytes model. Artif Organs 2017; 41(5): 452-60.
[77]
Devalla HD, Gelinas R, Aburawi EH, Beqqali A. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol Med 2016; 8(12): 1390-408.
[78]
Chaudhari U, Nemade H, Wagh V, et al. Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment. Arch Toxicol 2016; 90(11): 2763-77.
[79]
Necela BM, Axenfeld BC, Serie DJ, et al. The antineoplastic drug, trastuzumab, dysregulates metabolism in iPSC-derived cardiomyocytes. Clin Transl Med 2017; 6(1): 5.
[80]
Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell 2013; 152(6): 1237-51.
[81]
Anand P, Brown JD, Lin CY, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 2013; 154(3): 569-82.
[82]
Spiltoir JI, Stratton MS, Cavasin MA, et al. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol 2013; 63: 175-9.
[83]
Duan Q, McMahon S. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci Transl Med 2017; 9(390)
[84]
Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 2013; 10(9): 531-47.
[85]
Schmitt JP, Kamisago M, Asahi M, et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Sci 2003; 299(5611): 1410-3.
[86]
Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003; 111(6): 869-76.
[87]
Karakikes I, Stillitano F, Nonnenmacher M, Tzimas C, Sanoudou D. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun 2015; 6: 6955.
[88]
Broughton KM, Li J, Sarmah E, et al. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol 2016; 311(1): H107-17.
[89]
Jonsson MK, Vos MA, Mirams GR, et al. Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J Mol Cell Cardiol 2012; 52(5): 998-1008.
[90]
Doss MX, Di Diego JM, Goodrow RJ, et al. Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr). PLoS One 2012; 7(7): e40288.
[91]
Bett GC, Kaplan AD, Lis A, et al. Electronic “expression” of the inward rectifier in cardiocytes derived from human-induced pluripotent stem cells. Heart Rhythm 2013; 10(12): 1903-10.
[92]
Huebsch N, Loskill P, Deveshwar N, et al. Miniaturized ips-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci Rep 2016; 6: 24726.
[93]
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448(7151): 313-7.
[94]
Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Sci 2008; 322(5903): 945-9.
[95]
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008; 322(5903): 949-53.
[96]
Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009; 458(7239): 771-5.
[97]
Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458(7239): 766-70.
[98]
Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136(5): 964-77.
[99]
Mackey LC, Annab LA, Yang J, et al. Epigenetic enzymes, age, and ancestry regulate the efficiency of human ipsc reprogramming. Stem Cells 2018; 36(11): 1697-708.
[100]
Tu J, Tian G, Cheung HH, Wei W, Lee TL. Gas5 is an essential lncRNA regulator for self-renewal and pluripotency of mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther 2018; 9(1): 71.
[101]
Medhekar SK, Shende VS, Chincholkar AB. Recent stem cell advances: cord blood and induced pluripotent stem cell for cardiac regeneration- a review. Int J Stem Cells 2016; 9(1): 21-30.
[102]
Kensah G, Roa Lara A, Dahlmann J, et al. Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 2013; 34(15): 1134-46.
[103]
Xu XQ, Graichen R, Soo SY, et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 2008; 76(9): 958-70.
[104]
Tohyama S, Fujita J, Hishiki T, et al. Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab 2016; 23(4): 663-74.
[105]
El Harane N, Kervadec A, Bellamy V, et al. Acellular therapeutic approach for heart failure: In vitro production of extracellular vesicles from human cardiovascular progenitors. Eur Heart J 2018; 39(20): 1835-47.
[106]
Kawamura T, Miyagawa S, Fukushima S, et al. Cardiomyocytes derived from mhc-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in mhc-matched non-human primates. Stem Cell Reports 2016; 6(3): 312-20.
[107]
Sugita S, Iwasaki Y, Makabe K, et al. Successful transplantation of retinal pigment epithelial cells from mhc homozygote ipscs in mhc-matched models. Stem Cell Reports 2016; 7(4): 635-48.
[108]
Sugita S, Iwasaki Y, Makabe K, et al. Lack of t cell response to ipsc-derived retinal pigment epithelial cells from hla homozygous donors. Stem Cell Reports 2016; 7(4): 619-34.
[109]
Lo Sardo V, Ferguson W. Influence of donor age on induced pluripotent stem cells. Nat Biotechnol 2017; 35(1): 69-74.
[110]
Kang E, Wang X, Tippner-Hedges R, et al. Age-related accumulation of somatic mitochondrial dna mutations in adult-derived human ipscs. Cell Stem Cell 2016; 18(5): 625-36.
[111]
Chen W, Liu N, Zhang H, et al. Sirt6 promotes dna end joining in ipscs derived from old mice. Cell Reports 2017; 18(12): 2880-92.
[112]
Merkle FT, Ghosh S, Kamitaki N, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 2017; 545(7653): 229-33.
[113]
Cyranoski D. ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature 2018; 557(7707): 619-20.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy