[1]
Xu S, Shu P, Zou S, et al. NFATc1 is a tumor suppressor in hepatocellular carcinoma and induces tumor cell apoptosis by activating the FasL-mediated extrinsic signaling pathway. Cancer Med 2018; 7(9): 4701-17.
[2]
Takayanagi H. The role of NFAT in osteoclast formation. Ann N Y Acad Sci 2007; 1116: 227-37.
[3]
Asagiri M, Sato K, Usami T, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 2005; 202(9): 1261-9.
[4]
Winslow MM, Pan M, Starbuck M, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 2006; 10(6): 771-82.
[5]
Kim JH, Kim N. Regulation of NFATc1 in Osteoclast Differentiation. J Bone Metab 2014; 21(4): 233-41.
[6]
Klemsz MJ, McKercher SR, Celada A, et al. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 1990; 61(1): 113-24.
[7]
Kwon OH, Lee CK, Lee YI, et al. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors. Biochem Biophys Res Commun 2005; 335(2): 437-46.
[8]
Carey JO, Posekany KJ, deVente JE, et al. Phorbol ester-stimulated phosphorylation of PU.1: Association with leukemic cell growth inhibition. Blood 1996; 87(10): 4316-24.
[9]
Nutt SL, Metcalf D, D’Amico A, et al. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 2005; 201(2): 221-31.
[10]
Carey HA, Hildreth BE III, Geisler JA, et al. Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Res 2018; 6: 8.
[11]
Ishiyama K, Yashiro T, Nakano N, et al. Involvement of PU.1 in NFATc1 promoter function in osteoclast development. Allergol Int 2015; 64(3): 241-7.
[12]
Matsumoto M, Kogawa M, Wada S, et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 2004; 279(44): 45969-79.
[13]
Sharma SM, Bronisz A, Hu R, et al. MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J Biol Chem 2007; 282(21): 15921-9.
[14]
Ishii J, Kitazawa R, Mori K, et al. Lipopolysaccharide suppresses RANK gene expression in macrophages by down-regulating PU.1 and MITF. J Cell Biochem 2008; 105(3): 896-904.
[15]
Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002; 365(Pt 3): 561-75.
[16]
Landschulz WH, Johnson PF, Adashi EY, et al. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 1988; 2(7): 786-800.
[17]
Nerlov C. The C/EBP family of transcription factors: A paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 2007; 17(7): 318-24.
[18]
Ye M, Zhang H, Amabile G, et al. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat Cell Biol 2013; 15(4): 385-94.
[19]
Ohlsson E, Schuster MB, Hasemann M, Porse BT. The multifaceted functions of C/EBPalpha in normal and malignant haematopoiesis. Leukemia 2016; 30(4): 767-75.
[20]
Jules J, Chen W, Feng X, Li YP. CCAAT/Enhancer-binding Protein alpha (C/EBPalpha) Is Important for Osteoclast Differentiation and Activity. J Biol Chem 2016; 291(31): 16390-403.
[21]
Grigoriadis AE, Wang ZQ, Cecchini MG, et al. c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994; 266(5184): 443-8.
[22]
Chen W, Zhu G, Tang J, et al. C/ebpalpha controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. J Pathol 2018; 244(3): 271-82.
[23]
Chen W, Zhu G, Jules J, et al. Monocyte-Specific Knockout of C/ebpalpha Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpalpha in Osteoclast Differentiation and Function. J Bone Miner Res 2018; 33(4): 691-703.
[24]
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423(6937): 337-42.
[25]
Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003; 4(8): 638-49.
[26]
Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1(1): 11-21.
[27]
Soderling TR, Stull JT. Structure and regulation of calcium/calmodulin-dependent protein kinases. Chem Rev 2001; 101(8): 2341-52.
[28]
Sato K, Suematsu A, Nakashima T, et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 2006; 12(12): 1410-6.
[29]
Shinohara M, Takayanagi H. Novel osteoclast signaling mechanisms. Curr Osteoporos Rep 2007; 5(2): 67-72.
[30]
Kawamura H, Arai M, Togari A. Inhibitory effect of chlorpromazine on RANKL-induced osteoclastogenesis in mouse bone marrow cells. J Pharmacol Sci 2011; 117(1): 54-62.
[31]
Ho N, Liauw JA, Blaeser F, et al. Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci 2000; 20(17): 6459-72.
[32]
Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 2009; 231(1): 241-56.
[33]
Seales EC, Micoli KJ, McDonald JM. Calmodulin is a critical regulator of osteoclastic differentiation, function, and survival. J Cell Biochem 2006; 97(1): 45-55.
[34]
Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 2003; 17(18): 2205-32.
[35]
Chang EJ, Ha J, Huang H, et al. The JNK-dependent CaMK pathway restrains the reversion of committed cells during osteoclast differentiation. J Cell Sci 2008; 121(Pt 15): 2555-64.
[36]
Kim SD, Kim HN, Lee JH, et al. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice. Biochem Pharmacol 2013; 86(6): 782-90.
[37]
Turnbull IR, Gilfillan S, Cella M, et al. Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 2006; 177(6): 3520-4.
[38]
Hamerman JA, Jarjoura JR, Humphrey MB, et al. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 2006; 177(4): 2051-5.
[39]
Mocsai A, Humphrey MB, Van Ziffle JA, et al. The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 2004; 101(16): 6158-63.
[40]
Mao D, Epple H, Uthgenannt B, et al. PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest 2006; 116(11): 2869-79.
[41]
Koga T, Inui M, Inoue K, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004; 428(6984): 758-63.
[42]
Park-Min KH, Ji JD, Antoniv T, et al. IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immunol 2009; 183(4): 2444-55.
[43]
Awumey EM, Moonga BS, Sodam BR, et al. Molecular and functional evidence for calcineurin-A alpha and beta isoforms in the osteoclast: Novel insights into cyclosporin A action on bone resorption. Biochem Biophys Res Commun 1999; 254(1): 248-52.
[44]
Sun L, Moonga BS, Lu M, et al. Molecular cloning, expression, and function of osteoclastic calcineurin Aalpha. Am J Physiol Renal Physiol 2003; 284(3): F575-83.
[45]
Hirotani H, Tuohy NA, Woo JT, et al. The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 2004; 279(14): 13984-92.
[46]
Song R, Li J, Zhang J, et al. Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif. Biochimie 2017; 142158-67.
[47]
Kuroda Y, Hisatsune C, Nakamura T, et al. Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc Natl Acad Sci USA 2008; 105(25): 8643-8.
[48]
Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3(6): 889-901.
[49]
Tomida T, Hirose K, Takizawa A, et al. NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J 2003; 22(15): 3825-32.
[50]
Stern PH. The calcineurin-NFAT pathway and bone: intriguing new findings. Mol Interv 2006; 6(4): 193-6.