Abstract
Fragment based drug design (FBDD) is a structure guided ligand design approach used in the process of drug discovery. It involves identification of low molecular weight fragments as hits followed by determination of their binding mode using X-ray crystallography and/or NMR spectroscopy. X-ray protein crystallography is one of the most sensitive biophysical methods used for screening and is least prone to false positives. It also provides detailed structural information of the protein–fragment complex at the atomic level. The retrieved binding information facilitates the optimization of fragments into drug like molecules. These identified molecules bind efficiently with the target proteins and form high quality binding interactions. Fragment-based screening using X-ray crystallography is, therefore, an efficient method for identifying binding hotspots on proteins that can be further exploited by chemists and biologists for the discovery of new drugs. The recent advancements in FBDD technique are illustrated in this review along with recently published success stories of FBDD technique in drug discovery.
Keywords: Drug discovery, FBDD, NMR, X-ray crystallography, CADD, HTS.
Graphical Abstract