Abstract
Blood-borne drug molecules are transported through as well as around cells in tissue. For small molecule drugs with a molar weight < 1000, the wall of the capillary blood vessels in tumors usually is not a barrier. Just after a rise in the drug concentration in the blood, the cells closest to the microvessels are exposed to the highest drug concentrations. Short or long lasting concentration gradients away from the capillary vessels will develop. Since in a tumor the distance to the nearest blood vessel can be relatively large, inefficient transport of drugs to some cancer cells may limit drug efficacy. Studies on in vitro drug gradients have given insight into the factors determining this transport. Small intercellular distances, high cellular drug influx and low drug efflux rates, and high intracellular and extracellular drug binding favor the development of drug gradients. In the absence of drug metabolism, gradients “level out” over time and may reverse as the blood concentration drops. Understanding the drug transport process from the microvessels to every cancer cell will be important for optimizing cancer chemotherapy. Cancer cells that can “hide” for the drug may lead to regrowth of the tumor.
Keywords: drug transport, microcirculation, drug delivery, spheroids, multicellular layers, drug gradients
Current Pharmaceutical Design
Title: Tissue Transport of Anti-cancer Drugs
Volume: 8 Issue: 22
Author(s): Jan Lankelma
Affiliation:
Keywords: drug transport, microcirculation, drug delivery, spheroids, multicellular layers, drug gradients
Abstract: Blood-borne drug molecules are transported through as well as around cells in tissue. For small molecule drugs with a molar weight < 1000, the wall of the capillary blood vessels in tumors usually is not a barrier. Just after a rise in the drug concentration in the blood, the cells closest to the microvessels are exposed to the highest drug concentrations. Short or long lasting concentration gradients away from the capillary vessels will develop. Since in a tumor the distance to the nearest blood vessel can be relatively large, inefficient transport of drugs to some cancer cells may limit drug efficacy. Studies on in vitro drug gradients have given insight into the factors determining this transport. Small intercellular distances, high cellular drug influx and low drug efflux rates, and high intracellular and extracellular drug binding favor the development of drug gradients. In the absence of drug metabolism, gradients “level out” over time and may reverse as the blood concentration drops. Understanding the drug transport process from the microvessels to every cancer cell will be important for optimizing cancer chemotherapy. Cancer cells that can “hide” for the drug may lead to regrowth of the tumor.
Export Options
About this article
Cite this article as:
Lankelma Jan, Tissue Transport of Anti-cancer Drugs, Current Pharmaceutical Design 2002; 8 (22) . https://dx.doi.org/10.2174/1381612023393512
DOI https://dx.doi.org/10.2174/1381612023393512 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Impact of p53 arg72pro SNP on Breast Cancer Risk in North Indian Population
Current Genomics Targeting the p53-Family in Cancer and Chemosensitivity: Triple Threat
Current Drug Targets Antimicrobial Activity of Molluscan Hemocyanins from Helix and Rapana Snails
Current Pharmaceutical Biotechnology Meet Our Editorial Board Member:
Current Pharmaceutical Design Perspectives in Tissue Microarrays
Combinatorial Chemistry & High Throughput Screening Label Free Ultrasmall Fluoromagnetic Ferrite-clusters for Targeted Cancer Imaging and Drug Delivery
Current Drug Delivery Hydroxysteroid Dehydrogenase (17β -HSD3, 17β-HSD5, and 3α-HSD3) Inhibitors:Extragonadal Regulation of Intracellular Sex Steroid Hormone Levels
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Targeting Bacterial Secretion Systems: Benefits of Disarmament in the Microcosm
Infectious Disorders - Drug Targets The ALK Gene, An Attractive Target for Inhibitor Development
Current Topics in Medicinal Chemistry A Systematic Review of Genes Involved in the Inverse Resistance Relationship Between Cisplatin and Paclitaxel Chemotherapy: Role of BRCA1
Current Cancer Drug Targets Aberrant DNA Methylation and Prostate Cancer
Current Genomics COX Selectivity and Animal Models for Colon Cancer
Current Pharmaceutical Design Impact of Cellular Senescence in Aging and Cancer
Current Pharmaceutical Design Choline Kinase Active Site Provides Features for Designing Versatile Inhibitors
Current Topics in Medicinal Chemistry Newer Approaches to the Discovery of Glitazones
Mini-Reviews in Organic Chemistry Small Molecule Kinase Inhibitors as Anti-Cancer Therapeutics
Mini-Reviews in Medicinal Chemistry Advent and Maturation of Regenerative Medicine
Current Stem Cell Research & Therapy Photodynamic Therapy: The Light Treatment for Cutaneous Non- Melanoma Malignancies
Current Cancer Therapy Reviews Role of Class II Nuclear Receptors in Liver Carcinogenesis
Anti-Cancer Agents in Medicinal Chemistry Amyloidosis and Auto-Inflammatory Syndromes
Current Drug Targets - Inflammation & Allergy