Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Drugs of Abuse Induced-Subversion of the Peripheral Immune Response and Central Glial Activity: Focus on Novel Therapeutic Approaches

Author(s): Thea Magrone* and Emilio Jirillo

Volume 19, Issue 3, 2019

Page: [281 - 291] Pages: 11

DOI: 10.2174/1871530319666181129104329

Price: $65

Abstract

Background: Drugs of abuse affect both central nervous system (CNS) and peripheral immune function. Besides the involvement of dopamine and glutamate systems, chronic exposure to drugs of abuse alters immune homeostasis, promoting a pro-inflammatory status. At the same time, impaired peripheral immunity leads to an increased susceptibility to infections in drug abusers.

Discussion: There is evidence that certain drugs, such as opioids, activate microglial cells and astrocytes which, in turn, provoke central neuroinflammation. Particularly, opioids bind the Toll-like receptor (TLR)-4 with increased expression of nuclear factor kappa-light-chain-enhancer of activated B cells and release of pro-inflammatory cytokines. Peripheral mediators released by immune cells also contribute to aggravate central neuroinflammation.

Conclusion: These are based either on the inhibition of TLR-4 activation by drugs of abuse or on the correction of dopamine and glutamate pathways. Finally, a hypothetic nutraceutical intervention with polyphenols in view of their anti-inflammatory and anti-oxidant properties will be outlined as an adjuvant treatment for drugs of abuse-related disorders.

Keywords: Dopamine, drugs of abuse, glutamate, glial cells, immunity, neurotransmitters, polyphenols.

Graphical Abstract

[1]
Manchikanti, L. Prescription drug abuse: what is being done to address this new drug epidemic? Testimony before the Subcommittee on Criminal Justice, Drug Policy and Human Resources. Pain Physician, 2006, 9, 287-321.
[2]
United Nations Office of Drugs and Crime World Drug report 2010, no. ISBN 978-92-1.
[3]
Van Etten, M.L.; Anthony, J.C. Comparative epidemiology of initial drug opportunities and transitions to first use: marijuana, cocaine, hallucinogens and heroin. Drug Alcohol Depend., 1999, 54, 117-125.
[4]
Vsevolozhskaya, O.A.; Anthony, J.C. Transitioning from first drug use to dependence onset: Illustration of a multiparametric approach for comparative epidemiology. Neuropsychopharmacology, 2016, 41, 869-876.
[5]
Dick, D.M.; Riley, B.; Kendler, K.S. Nature and nurture in neuropsychiatric genetics: Where do we stand? Dialogues Clin. Neurosci., 2010, 12, 7-23.
[6]
Bubier, J.A.; Jay, J.J.; Baker, C.L.; Bergeson, S.E.; Ohno, H.; Metten, P.; Crabbe, J.C.; Chesler, E.J. Identification of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision genetics. Genetics, 2014, 197, 1377-1393.
[7]
Ciccocioppo, R. Genetically selected alcohol preferring rats to model human alcoholism. Curr. Top. Behav. Neurosci., 2013, 13, 251-269.
[8]
Crabbe, J.C.; Wahlsten, D.; Dudek, B.C. Genetics of mouse behavior: interactions with laboratory environment. Science, 1999, 284, 1670-1672.
[9]
Rubinstein, M.; Phillips, T.J.; Bunzow, J.R.; Falzone, T.L.; Dziewczapolski, G.; Zhang, G.; Fang, Y.; Larson, J.L.; McDougall, J.A.; Chester, J.A.; Saez, C.; Pugsley, T.A.; Gershanik, O.; Low, M.J.; Grandy, D.K. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell, 1997, 90, 991-1001.
[10]
Zhou, Z.; Karlsson, C.; Liang, T.; Xiong, W.; Kimura, M.; Tapocik, J.D.; Yuan, Q.; Barbier, E.; Feng, A.; Flanigan, M.; Augier, E.; Enoch, M.A.; Hodgkinson, C.A.; Shen, P.H.; Lovinger, D.M.; Edenberg, H.J.; Heilig, M.; Goldman, D. Loss of metabotropic glutamate receptor 2 escalates alcohol consumption. Proc. Natl. Acad. Sci. USA, 2013, 110, 16963-16968.
[11]
Enoch, M.A. The influence of gene-environment interactions on the development of alcoholism and drug dependence. Curr. Psychiatry Rep., 2012, 14, 150-158.
[12]
Lopez-Quintero, C.; Pérez de los Cobos, J.; Hasin, D.S.; Okuda, M.; Wang, S.; Grant, B.F.; Blanco, C. Probability and predictors of transition from first use to dependence on nicotine, alcohol, cannabis, and cocaine: results of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Drug Alcohol Depend., 2011, 115, 120-130.
[13]
Kendler, K.S.; Chen, X.; Dick, D.; Maes, H.; Gillespie, N.; Neale, M.C.; Riley, B. Recent advances in the genetic epidemiology and molecular genetics of substance use disorders. Nat. Neurosci., 2012, 15, 181-189.
[14]
Belin, D.; Mar, A.C.; Dalley, J.W.; Robbins, T.W.; Everitt, B.J. High impulsivity predicts the switch to compulsive cocaine-taking. Sci., 2008, 320, 1352-1355.
[15]
Kendler, K.S.; Prescott, C.A.; Neale, M.C.; Pedersen, N.L. Temperance board registration for alcohol abuse in a national sample of Swedish male twins, born 1902 to 1949. Arch. Gen. Psychiatry, 1997, 54, 178-184.
[16]
Tarter, R.E.; Kirisci, L.; Mezzich, A.; Cornelius, J.R.; Pajer, K.; Vanyukov, M.; Gardner, W.; Blackson, T.; Clark, D. Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. Am. J. Psychiatry, 2003, 160, 1078-1085.
[17]
de Wit, H.; Phillips, T.J. Do initial responses to drugs predict future use or abuse? Neurosci. Biobehav. Rev., 2012, 36, 1565-1576.
[18]
Connor, T.J.; McNamara, M.G.; Finn, D.; Currid, A.; O’Malley, M.; Redmond, A.M.; Kelly, J.P.; Leonard, B.E. Acute 3,4-methylenedioxymethamphetamine(MDMA) administration produces a rapid and sustained suppression of immune function in the rat. Immunopharmacology, 1998, 38, 253-260.
[19]
Connor, T.J.; Connelly, D.B.; Kelly, J.P. Methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) suppresses antigen specific IgG2a and IFN-gamma production. Immunol. Lett., 2001, 78, 67-73.
[20]
Connor, T.J.; O’Shaughnessid Kelly, J.P. Methylenedioxymethamphetamine “MDMA”; Ecstasy suppress neutrophil phagocyosis. Fundam. Clin. Pharmacol., 2004, 18(S1), 90.
[21]
de Paula, V.F.; Ribeiro, A.; Pinheiro, M.L.; Sakai, M.; Lacava, M.C.; Lapachinske, S.F.; Moreau, R.L.; Palermo-Neto, J. Methylenedioxymethamphetamine (Ecstasy) decreases neutrophil activity and alters leukocyte distribution in bone marrow, spleen and blood. Neuroimmunomodulation, 2009, 16, 191-200.
[22]
Camarasa, J.; Ros, C.; Pubill, D.; Escubedo, E. Tumour necrosis factor alpha suppression by MDMA is mediated by peripheral heteromeric nicotinic receptors. Immunopharmacol. Immunotoxicol., 2010, 32, 265-271.
[23]
Connor, T.J.; Harkin, A.; Kelly, J.P. Methylenedioxymethamphetamine suppresses production of the proinflammatory cytokine tumor necrosis factor-alpha independent of a beta-adrenoceptor-mediated increase in interleukin-10. J. Pharmacol. Exp. Ther., 2005, 312, 134-143.
[24]
Boyle, N.T.; Connor, T.J. MDMA (“Ecstasy”) suppresses the innate IFN-gamma response in vivo: A critical role for the anti-inflammatory cytokine IL-10. Eur. J. Pharmacol., 2007, 572, 228-238.
[25]
Boyle, N.T.; Connor, T.J. Methylenedioxymethamphetamine (‘Ecstasy’)-induced immunosuppression: a cause for concern? Br. J. Pharmacol., 2010, 161, 17-32.
[26]
Pacifici, R.; Zuccaro, P.; Farré, M.; Pichini, S.; Di Carlo, S.; Roset, P.N.; Ortuño, J.; Segura, J.; de la Torre, R. Immunomodulating properties of MDMA alone and in combination with alcohol: a pilot study. Life Sci., 1999, 65, PL309-PL316.
[27]
Pacifici, R.; Zuccaro, P.; Hernandez López, C.; Pichini, S.; Di Carlo, S.; Farré, M.; Roset, P.N.; Ortuño, J.; Segura, J.; Torre, R.L. Acute effects of 3,4-methylenedioxymethamphetamine alone and in combination with ethanol on the immune system in humans. J. Pharmacol. Exp. Ther., 2001, 296, 207-215.
[28]
Leweke, F.M.; Giuffrida, A.; Koethe, D.; Schreiber, D.; Nolden, B.M.; Kranaster, L.; Neatby, M.A.; Schneider, M.; Gerth, C.W.; Hellmich, M.; Klosterkötter, J.; Piomelli, D. Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: Impact of cannabis use. Schizophr. Res., 2007, 94, 29-36.
[29]
Eisenstein, T.K.; Meissler, J.J.; Wilson, Q.; Gaughan, J.P.; Adler, M.W. Anandamide and Delta9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. J. Neuroimmunol., 2007, 189, 17-22.
[30]
Lombard, C.; Hegde, V.L.; Nagarkatti, M.; Nagarkatti, P.S. Perinatal exposure to Δ9-tetrahydrocannabinol triggers profound defects in T cell differentiation and function in fetal and postnatal stages of life, including decreased responsiveness to HIV antigens. J. Pharmacol. Exp. Ther., 2011, 339, 607-617.
[31]
McKallip, R.J.; Nagarkatti, M.; Nagarkatti, P.S. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J. Immunol., 2005, 174, 3281-3289.
[32]
Newton, C.A.; Lu, T.; Nazian, S.J.; Perkins, I.; Friedman, H.; Klein, T.W. The THC-induced suppression of Th1 polarization in response to Legionella pneumophila infection is not mediated by increases in corticosterone and PGE2. J. Leukoc. Biol., 2004, 76, 854-861.
[33]
Newton, C.A.; Chou, P.J.; Perkins, I.; Klein, T.W. CB(1) and CB(2) cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J. Neuroimmune Pharmacol., 2009, 4, 92-102.
[34]
Roth, M.D.; Tashkin, D.P.; Whittaker, K.M.; Choi, R.; Baldwin, G.C. Tetrahydrocannabinol suppresses immune function and enhances HIV replication in the huPBL-SCID mouse. Life Sci., 2005, 77, 1711-1722.
[35]
Lu, H.; Kaplan, B.L.; Ngaotepprutaram, T.; Kaminski, N.E. Suppression of T cell costimulator ICOS by Delta9-tetrahydrocannabinol. J. Leukoc. Biol., 2009, 85, 322-329.
[36]
Arevalo-Martin, A.; Molina-Holgado, E.; Guaza, C.A. CB1/CB2 receptor agonist, WIN 55,212-2, exerts its therapeutic effect in a viral autoimmune model of multiple sclerosis by restoring self-tolerance to myelin. Neuropharmacology, 2012, 63, 385-393.
[37]
Pandey, R.; Hegde, V.L.; Nagarkatti, M.; Nagarkatti, P.S. Targeting cannabinoid receptors as a novel approach in the treatment of graft-versus-host disease: evidence from an experimental murine model. J. Pharmacol. Exp. Ther., 2011, 338, 819-828.
[38]
Croxford, J.L.; Wang, K.; Miller, S.D.; Engman, D.M.; Tyler, K.M. Effects of cannabinoid treatment on Chagas disease pathogenesis: balancing inhibition of parasite invasion and immunosuppression. Cell. Microbiol., 2005, 7, 1592-1602.
[39]
Hegde, V.L.; Hegde, S.; Cravatt, B.F.; Hofseth, L.J.; Nagarkatti, M.; Nagarkatti, P.S. Attenuation of experimental autoimmune hepatitis by exogenous and endogenous cannabinoids: involvement of regulatory T cells. Mol. Pharmacol., 2008, 74, 20-33.
[40]
Xu, H.; Cheng, C.L.; Chen, M.; Manivannan, A.; Cabay, L.; Pertwee, R.G.; Coutts, A.; Forrester, J.V. Anti-inflammatory property of the cannabinoid receptor-2-selective agonist JWH-133 in a rodent model of autoimmune uveoretinitis. J. Leukoc. Biol., 2007, 82, 532-541.
[41]
Servettaz, A.; Kavian, N.; Nicco, C.; Deveaux, V.; Chéreau, C.; Wang, A.; Zimmer, A.; Lotersztajn, S.; Weill, B.; Batteux, F. Targeting the cannabinoid pathway limits the development of fibrosis and autoimmunity in a mouse model of systemic sclerosis. Am. J. Pathol., 2010, 177, 187-196.
[42]
Buckley, N.E.; McCoy, K.L.; Mezey, E.; Bonner, T.; Zimmer, A.; Felder, C.C.; Glass, M.; Zimmer, A. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur. J. Pharmacol., 2000, 396, 141-149.
[43]
Muppidi, J.R.; Arnon, T.I.; Bronevetsky, Y.; Veerapen, N.; Tanaka, M.; Besra, G.S.; Cyster, J.G. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. J. Exp. Med., 2011, 208, 1941-1948.
[44]
Springs, A.E.; Karmaus, P.W.; Crawford, R.B.; Kaplan, B.L.; Kaminski, N.E. Effects of targeted deletion of cannabinoid receptors CB1 and CB2 on immune competence and sensitivity to immune modulation by Delta9-tetrahydrocannabinol. J. Leukoc. Biol., 2008, 84, 1574-1584.
[45]
Agudelo, M.; Newton, C.; Widen, R.; Sherwood, T.; Nong, L.; Friedman, H.; Klein, T.W. Cannabinoid receptor 2 (CB2) mediates immunoglobulin class switching from IgM to IgE in cultures of murine-purified B lymphocytes. J. Neuroimmune Pharmacol., 2008, 3, 35-42.
[46]
El-Gohary, M.; Eid, M.A. Effect of cannabinoid ingestion (in the form of bhang) on the immune system of high school and university students. Hum. Exp. Toxicol., 2004, 23, 149-156.
[47]
Mao, J.T.; Huang, M.; Wang, J.; Sharma, S.; Tashkin, D.P.; Dubinett, S.M. Cocaine down-regulates IL-2-induced peripheral blood lymphocyte IL-8 and IFN-gamma production. Cell. Immunol., 1996, 172, 217-223.
[48]
Gan, X.; Zhang, L.; Newton, T.; Chang, S.L.; Ling, W.; Kermani, V.; Berger, O.; Graves, M.C.; Fiala, M. Cocaine infusion increases interferon-gamma and decreases interleukin-10 in cocaine-dependent subjects. Clin. Immunol. Immunopathol., 1998, 89, 181-190.
[49]
Irwin, M.R.; Olmos, L.; Wang, M.; Valladares, E.M.; Motivala, S.J.; Fong, T.; Newton, T.; Butch, A.; Olmstead, R.; Cole, S.W. Cocaine dependence and acute cocaine induce decreases of monocyte proinflammatory cytokine expression across the diurnal period: autonomic mechanisms. J. Pharmacol. Exp. Ther., 2007, 320, 507-515.
[50]
Halpern, J.H.; Sholar, M.B.; Glowacki, J.; Mello, N.K.; Mendelson, J.H.; Siegel, A.J. Diminished interleukin-6 response to proinflammatory challenge in men and women after intravenous cocaine administration. J. Clin. Endocrinol. Metab., 2003, 88, 1188-1193.
[51]
Maza-Quiroga, R.; García-Marchena, N.; Romero-Sanchiz, P.; Barrios, V.; Pedraz, M.; Serrano, A.; Nogueira-Arjona, R.; Ruiz, J.J.; Soria, M.; Campos, R.; Chowen, J.A.; Argente, J.; Torrens, M.; López-Gallardo, M.; Marco, E.M.; Rodríguez de Fonseca, F.; Pavón, F.J.; Araos, P. Evaluation of plasma cytokines in patients with cocaine use disorders in abstinence identifies transforming growth factor alpha (TGFα) as a potential biomarker of consumption and dual diagnosis. PeerJ, 2017, 5, e3926.
[52]
Vannacci, A.; Giannini, L.; Passani, M.B.; Di Felice, A.; Pierpaoli, S.; Zagli, G.; Fantappiè, O.; Mazzanti, R.; Masini, E.; Mannaioni, P.F. The endocannabinoid 2-arachidonylglycerol decreases the immunological activation of Guinea pig mast cells: involvement of nitric oxide and eicosanoids. J. Pharmacol. Exp. Ther., 2004, 311, 256-264.
[53]
Melis, M.; Frau, R.; Kaliva, P.W.; Spencer, S.; Chioma, V.; Zamberletti, E.; Rubino, T.; Parolaro, D. New vistas on cannabis use disorder. Neuropharmacology, 2017, 124, 62-72.
[54]
Muller, N.; Ackeheil, M. Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1998, 22, 1-33.
[55]
Zalcman, S.; Green-Johnson, J.M.; Murray, L.; Nance, D.M.; Dyck, D.; Anisman, H.; Greenberg, A.H. Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res., 1994, 643, 40-49.
[56]
DeLisi, L.E. The significance of age of onset for schizophrenia. Schizophr. Bull., 1992, 18, 209-215.
[57]
Borovcanin, M.; Jovanovic, I.; Radosavljevic, G.; Djukic Dejanovic, S.; Bankovic, D.; Arsenijevic, N.; Lukic, M.L. Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. J. Psychiatr. Res., 2012, 46, 1421-1426.
[58]
Crespo-Facorro, B.; Carrasco-Marín, E.; Pérez-Iglesias, R.; Pelayo-Terán, J.M.; Fernandez-Prieto, L.; Leyva-Cobián, F.; Vázquez-Barquero, J.L. Interleukin-12 plasma levels in drug-naïve patients with a first episode of psychosis: effects of antipsychotic drugs. Psychiatry Res., 2008, 158, 206-216.
[59]
Müller, N.; Riedel, M.; Ackenheil, M.; Schwarz, M.J. Cellular and humoral immune system in schizophrenia: A conceptual re-evaluation. World J. Biol. Psychiatry, 2000, 1, 173-179.
[60]
Suárez-Pinilla, P.; López-Gil, J.; Crespo-Facorro, B. Immune system: a possible nexus between cannabinoids and psychosis. Brain Behav. Immun., 2014, 40, 269-282.
[61]
Gan, X.; Zhang, L.; Berger, O.; Stins, M.F.; Way, D.; Taub, D.D.; Chang, S.L.; Kim, K.S.; House, S.D.; Weinand, M.; Witte, M.; Graves, M.C.; Fiala, M. Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin. Immunol., 1999, 91, 68-76.
[62]
Yao, H.; Yang, Y.; Kim, K.J.; Bethel-Brown, C.; Gong, N.; Funa, K.; Gendelman, H.E.; Su, T.P.; Wang, J.Q.; Buch, S. Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: Implication for increased monocyte transmigration. Blood, 2010, 115, 4951-4962.
[63]
Freire-Garabal, M.; Balboa, J.L.; Núñez, M.J.; Castaño, M.T.; Llovo, J.B.; Fernández-Rial, J.C.; Belmonte, A. Effects of amphetamine on T-cell immune response in mice. Life Sci., 1991, 49(16), PL107-PL112.
[64]
Núñez, M.J.; Fernández-Rial, J.C.; Couceiro, J.; Suárez, J.A.; Gómez-Fernández, D.E.; Rey-Méndez, M.; Freire-Garabal, M. Effects of amphetamine on influenza virus infection in mice. Life Sci., 1993, 52(10), PL73-PL78.
[65]
Hernández-Cervantes, R.; Méndez-Dìaz, M.; Prospéro-Garcia, O.; Morales-Montor, J. immunoregulatory role of cannabinoids during infectious disease. Neuroimmunomodulation, 2017, 24, 183-199.
[66]
Pacifici, R.; Zuccaro, P.; Farré, M.; Poudevida, S.; Abanades, S.; Pichini, S.; Langohr, K.; Segura, J.; de la Torre, R. Combined immunomodulating properties of 3,4-methylenedioxymethamphetamine (MDMA) and cannabis in humans. Addiction, 2007, 102, 931-936.
[67]
Parrott, A.C.; Buchanan, T.; Scholey, A.B.; Heffernan, T.; Ling, J.; Rodgers, J. Ecstasy/MDMA attributed problems reported by novice, moderate and heavy recreational users. Hum. Psychopharmacol., 2002, 17, 309-312.
[68]
Jeynes, K.D.; Gibson, E.L. The importance of nutrition in aiding recovery from substance use disorders: A review. Drug Alcohol Depend., 2017, 179, 229-239.
[69]
Varela, P.; Marcos, A.; Ripoll, S.; Santacruz, I.; Requejo, A.M. Effects of human immunodeficiency virus infection and detoxification time on anthropometric measurements and dietary intake of male drug addicts. Am. J. Clin. Nutr., 1997, 66, 509S-514S.
[70]
Sukop, P.H.; Kessler, F.H.; Valerio, A.G.; Escobar, M.; Castro, M.; Diemen, L.V. Wernicke’s encephalopathy in crack-cocaine addiction. Med. Hypotheses, 2016, 89, 68-71.
[71]
Neale, J.; Nettleton, S.; Pickering, L.; Fisher, J. Eating patterns among heroin users: a qualitative study with implications for nutritional interventions. Addiction, 2012, 107, 635-641.
[72]
White, R. Drugs and nutrition: how side effects can influence nutritional intake. Proc. Nutr. Soc., 2010, 69, 558-564.
[73]
Magrone, T.; Perez de Heredia, F.; Jirillo, E.; Morabito, G.; Marcos, A.; Serafini, M. Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can. J. Physiol. Pharmacol., 2013, 91, 387-396.
[74]
Magrone, T.; Jirillo, E. disorders of innate immunity in human ageing and effects of nutraceutical administration. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14, 272-282.
[75]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive leaf extracts act as modulators of the human immune response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18, 85-93.
[76]
Barbadoro, P.; Annino, I.; Ponzio, E.; Romanelli, R.M.; D’Errico, M.M.; Prospero, E.; Minelli, A. Fish oil supplementation reduces cortisol basal levels and perceived stress: a randomized, placebo-controlled trial in abstinent alcoholics. Mol. Nutr. Food Res., 2013, 57, 1110-1114.
[77]
Buydens-Branchey, L.; Branchey, M.; Hibbeln, J.R. Low plasma levels of docosahexaenoic acid are associated with an increased relapse vulnerability in substance abusers. Am. J. Addict., 2009, 18, 73-80.
[78]
McCarty, M.F. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med. Hypotheses, 2013, 80, 456-462.
[79]
Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35, 217-238.
[80]
Deutch, A.Y. Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: Implications for schizophrenia and Parkinson’s disease. J. Neural. Transm. Gen. Sect., 1993, 91, 197-221.
[81]
Kauer, J.A. Learning mechanisms in addiction: Synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu. Rev. Physiol., 2004, 66, 447-475.
[82]
Jones, S.; Bonci, A. Synaptic plasticity and drug addiction. Curr. Opin. Pharmacol., 2005, 5, 20-25.
[83]
Lacagnina, M.J.; Rivera, P.D.; Bilbo, S.D. Glial and neuroimmune mechanisms as critical modulators of drug use and abuse. Neuropsychopharmacology, 2017, 42, 156-177.
[84]
Bachtell, R.K.; Jones, J.D.; Heinzerling, K.G.; Beardsley, P.M.; Comer, S.D. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend., 2017, 180, 156-170.
[85]
Hutchinson, M.R.; Lewis, S.S.; Coats, B.D.; Rezvani, N.; Zhang, Y.; Wieseler, J.L.; Somogyi, A.A.; Yin, H.; Maier, S.F.; Rice, K.C.; Watkins, L.R. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience, 2010, 167, 880-893.
[86]
Schwarz, J.M.; Bilbo, S.D. Adolescent morphine exposure affects long-term microglial function and later-life relapse liability in a model of addiction. J. Neurosci., 2013, 33, 961-971.
[87]
El-Hage, N.; Gurwell, J.A.; Singh, I.N.; Knapp, P.E.; Nath, A.; Hauser, K.F. Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia, 2005, 50, 91-106.
[88]
El-Hage, N.; Wu, G.; Wang, J.; Ambati, J.; Knapp, P.E.; Reed, J.L.; Bruce-Keller, A.J.; Hauser, K.F. HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia, 2006, 53, 132-146.
[89]
Niwa, M.; Nitta, A.; Yamada, Y.; Nakajima, A.; Saito, K.; Seishima, M.; Noda, Y.; Nabeshima, T. Tumor necrosis factor-alpha and its inducer inhibit morphine-induced rewarding effects and sensitization. Biol. Psychiatry, 2007, 62, 658-668.
[90]
Sawaya, B.E.; Deshmane, S.L.; Mukerjee, R.; Fan, S.; Khalili, K. TNF alpha production in morphine-treated human neural cells is NF-kappaB-dependent. J. Neuroimmune Pharmacol., 2009, 4, 140-149.
[91]
Hutchinson, M.R.; Northcutt, A.L.; Hiranita, T.; Wang, X.; Lewis, S.S.; Thomas, J.; van Steeg, K.; Kopajtic, T.A.; Loram, L.C.; Sfregola, C.; Galer, E.; Miles, N.E.; Bland, S.T.; Amat, J.; Rozeske, R.R.; Maslanik, T.; Chapman, T.R.; Strand, K.A.; Fleshner, M.; Bachtell, R.K.; Somogyi, A.A.; Yin, H.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J. Neurosci., 2012, 32, 11187-11200.
[92]
Tanda, G.; Mereu, M.; Hiranita, T.; Quarterman, J.C.; Coggiano, M.; Katz, J.L. Lack of specific involvement of (+)-Naloxone and (+)-Naltrexone on the reinforcing and neurochemical effects of cocaine and opioids. Neuropsychopharmacology, 2016, 41, 2772-2781.
[93]
Hutchinson, M.R.; Northcutt, A.L.; Chao, L.W.; Kearney, J.J.; Zhang, Y.; Berkelhammer, D.L.; Loram, L.C.; Rozeske, R.R.; Bland, S.T.; Maier, S.F.; Gleeson, T.T.; Watkins, L.R. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav. Immun., 2008, 22, 1248-1256.
[94]
Bland, S.T.; Hutchinson, M.R.; Maier, S.F.; Watkins, L.R.; Johnson, K.W. The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav. Immun., 2009, 23, 492-497.
[95]
Eidson, L.N.; Inoue, K.; Young, L.J.; Tansey, M.G.; Murphy, A.Z. Toll-like receptor 4 mediates morphine-induced neuroinflammation and tolerance via soluble tumor necrosis factor signaling. Neuropsychopharmacology, 2017, 42, 661-670.
[96]
Ozawa, T.; Nakagawa, T.; Shige, K.; Minami, M.; Satoh, M. Changes in the expression of glial glutamate transporters in the rat brain accompanied with morphine dependence and naloxone-precipitated withdrawal. Brain Res., 2001, 905, 254-258.
[97]
Shen, H.W.; Scofield, M.D.; Boger, H.; Hensley, M.; Kalivas, P.W. Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J. Neurosci., 2014, 34, 5649-5657.
[98]
Nakagawa, T.; Fujio, M.; Ozawa, T.; Minami, M.; Satoh, M. Effect of MS-153, a glutamate transporter activator, on the conditioned rewarding effects of morphine, methamphetamine and cocaine in mice. Behav. Brain Res., 2005, 156, 233-239.
[99]
Rawls, S.M.; Zielinski, M.; Patel, H.; Sacavage, S.; Baron, D.A.; Patel, D. Beta-lactam antibiotic reduces morphine analgesic tolerance in rats through GLT-1 transporter activation. Drug Alcohol Depend., 2010, 107, 261-263.
[100]
Jastrzębska, J.; Frankowska, M.; Filip, M.; Atlas, D. N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement. Psychopharmacology (Berl.), 2016, 233, 3437-3448.
[101]
Murray, J.E.; Everitt, B.J.; Belin, D. N-Acetylcysteine reduces early- and late-stage cocaine seeking without affecting cocaine taking in rats. Addict. Biol., 2012, 17, 437-440.
[102]
Crews, F.T.; Walter, T.J.; Coleman, L.G., Jr; Vetreno, R.P. Toll-like receptor signaling and stages of addiction. Psychopharmacology (Berl.), 2017, 234, 1483-1498.
[103]
Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; Amat, J.; Larson, G.; Cooper, D.C.; Huang, Y.; O’Neill, C.E.; Yin, H.; Zahniser, N.R.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Watkins, L.R. DAT isn’t all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol. Psychiatry, 2015, 20, 1525-1537.
[104]
Poland, R.S.; Hahn, Y.; Knapp, P.E.; Beardsley, P.M.; Bowers, M.S. Ibudilast attenuates expression of behavioral sensitization to cocaine in male and female rats. Neuropharmacology, 2016, 109, 281-292.
[105]
Thomsen, M.; Caine, S.B. Psychomotor stimulant effects of cocaine in rats and 15 mouse strains. Exp. Clin. Psychopharmacol., 2011, 19, 321-341.
[106]
Sarruf, D.A. Yu. F.; Nguyen, H.T.; Williams, D.L.; Printz, R.L.; Niswender, K.D.; Schwartz, M.W. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology, 2009, 150, 707-712.
[107]
de Guglielmo, G.; Melis, M.; De Luca, M.A.; Kallupi, M.; Li, H.W.; Niswender, K.; Giordano, A.; Senzacqua, M.; Somaini, L.; Cippitelli, A.; Gaitanaris, G.; Demopulos, G.; Damadzic, R.; Tapocik, J.; Heilig, M.; Ciccocioppo, R. PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. Neuropsychopharmacology, 2015, 40, 927-937.
[108]
de Guglielmo, G.; Kallupi, M.; Scuppa, G.; Demopulos, G.; Gaitanaris, G.; Ciccocioppo, R. Pioglitazone attenuates the opioid withdrawal and vulnerability to relapse to heroin seeking in rodents. Psychopharmacology (Berl.), 2017, 234, 223-234.
[109]
Jones, J.D.; Sullivan, M.A.; Manubay, J.M.; Mogali, S.; Metz, V.E.; Ciccocioppo, R.; Comer, S.D. The effects of pioglitazone, a PPARγ receptor agonist, on the abuse liability of oxycodone among nondependent opioid users. Physiol. Behav., 2016, 159, 33-39.
[110]
Schmitz, J.M.; Green, C.E.; Hasan, K.M.; Vincent, J.; Suchting, R.; Weaver, M.F.; Moeller, F.G.; Narayana, P.A.; Cunningham, K.A.; Dineley, K.T.; Lane, S.D. PPAR-gamma agonist pioglitazone modifies craving intensity and brain white matter integrity in patients with primary cocaine use disorder: a double-blind randomized controlled pilot trial. Addiction, 2017, 112, 1861-1868.
[111]
Cooper, Z.D.; Johnson, K.W.; Pavlicova, M.; Glass, A.; Vosburg, S.K.; Sullivan, M.A.; Manubay, J.M.; Martinez, D.M.; Jones, J.D.; Saccone, P.A.; Comer, S.D. The effects of ibudilast, a glial activation inhibitor, on opioid withdrawal symptoms in opioid-dependent volunteers. Addict. Biol., 2016, 21, 895-903.
[112]
Metz, V.E.; Jones, J.D.; Manubay, J.; Sullivan, M.A.; Mogali, S.; Segoshi, A.; Madera, G.; Johnson, K.W.; Comer, S.D. Effects of ibudilast on the subjective, reinforcing, and analgesic effects of oxycodone in recently detoxified adults with opioid dependence. Neuropsychopharmacology, 2017, 42, 1825-1832.
[113]
DeYoung, D.Z.; Heinzerling, K.G.; Swanson, A.N.; Tsuang, J.; Furst, B.A.; Yi, Y.; Wu, Y.N.; Moody, D.E.; Andrenyak, D.M.; Shoptaw, S.J. Safety of intravenous methamphetamine administration during ibudilast treatment. J. Clin. Psychopharmacol., 2016, 36, 347-354.
[114]
Sofuoglu, M.; Mooney, M.; Kosten, T.; Waters, A.; Hashimoto, K. Minocycline attenuates subjective rewarding effects of dextroamphetamine in humans. Psychopharmacology (Berl.), 2011, 213, 61-68.
[115]
Ciraulo, D.A.; Sarid-Segal, O.; Knapp, C.M.; Ciraulo, A.M.; LoCastro, J.; Bloch, D.A.; Montgomery, M.A.; Leiderman, D.B.; Elkashef, A. Efficacy screening trials of paroxetine, pentoxifylline, riluzole, pramipexole and venlafaxine in cocaine dependence. Addiction, 2005, 100, 12-22.
[116]
Amen, S.L.; Piacentine, L.B.; Ahmad, M.E.; Li, S.J.; Mantsch, J.R.; Risinger, R.C.; Baker, D.A. Repeated N-acetyl cysteine reduces cocaine seeking in rodents and craving in cocaine-dependent humans. Neuropsychopharmacology, 2011, 36, 871-878.
[117]
LaRowe, S.D.; Kalivas, P.W.; Nicholas, J.S.; Randall, P.K.; Mardikian, P.N.; Malcolm, R.J. A double-blind placebo-controlled trial of N-acetylcysteine in the treatment of cocaine dependence. Am. J. Addict., 2013, 22, 443-452.
[118]
Back, S.E.; McCauley, K.L.; Korte, K.J.; Gros, D.F.; Leavitt, V.; Gray, K.M.; Hamner, M.B.; DeSantis, S.M.; Malcolm, R.; Brady, K.T.; Kalivas, P.W. A Double-blind randomized controlled pilot trial of N-acetylcysteine in veterans with PTSD and substance use disorders. J. Clin. Psychiatry, 2016, 77, e1439-e1446.
[119]
Mousavi, S.G.; Sharbafchi, M.R.; Salehi, M.; Peykanpour, M.; Karimian Sichani, N.; Maracy, M. The efficacy of N-acetylcysteine in the treatment of methamphetamine dependence: a double-blind controlled, crossover study. Arch. Iran Med., 2015, 18, 28-33.
[120]
Magrone, T.; Jirillo, E. Prebiotics and Probiotics in Aging Population: Effects on the Immune-Gut Microbiota Axis. In: Molecular Basis of Nutrition and Aging: A Volume in the Molecular Nutrition Series;, Malavolta, M.; Mocchegiani, E., Eds.; Elsevier. 2016, pp. 681-692.
[121]
Jeynes, K.D.; Gibson, E.L. The importance of nutrition in aiding recovery from substance use disorders: A review. Drug Alcohol Depend., 2017, 179, 229-239.
[122]
Bourke, C.D.; Berkley, J.A.; Prendergast, A.J. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol., 2016, 37(6), 386-398.
[123]
Magrone, T.; Kumazawa, Y.; Jirillo, E. Polyphenol-mediated beneficial effects in healthy status and disease with special references to immune-based mechanisms. In: Polyphenols in Human Health and Disease;, Watson, R.R.; Preedy, V.; Zibaldi, S., Eds.; Elsevier:. 2014, Vol. 1, pp. 467-479.
[124]
Magrone, T.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E. In vitro effects of nickel on healthy non-allergic peripheral blood mononuclear cells. The role of red grape polyphenols. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17, 166-173.
[125]
Magrone, T.; Candore, G.; Caruso, C.; Jirillo, E.; Covelli, V. Polyphenols from red wine modulate immune responsiveness: biological and clinical significance. Curr. Pharm. Des., 2008, 14, 2733-2748.
[126]
Magrone, T.; Jirillo, E.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Fontana, S.; Laforgia, F.; Donvito, I.; Campanella, A.; Silvestris, F.; De Pergola, G. Immune profile of obese people and in vitro effects of red grape polyphenols on peripheral blood mononuclear cells. Oxid. Med. Cell. Longev., 2017, 2017, 9210862.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy