[1]
Fountoulaki, S.; Daikopoulou, V.; Gkizis, P.L.; Tamiolakis, I.; Armatas, G.S.; Lykakis, I.N. Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles. ACS Catal., 2014, 4, 3504-3511.
[2]
Mu, Y.; Yu, H.Q.; Zheng, J.C.; Zhang, S.J.; Sheng, G.P. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere, 2004, 54, 789-794.
[3]
van der Zee, F.P.; Lettinga, G.; Field, J.A. Azo dye decolourisation by anaerobic granular sludge. Chemosphere, 2001, 44, 1169-1176.
[4]
Nielsen, P.H.; Christensen, T.H. Variability of biological degradation of phenolic hydrocarbons in an aerobic aquifer determined by laboratory batch experiments. J. Contam. Hydrol., 1994, 17, 55-67.
[5]
Zolfigol, M.A.; Amani, K.; Ghorbani-Choghamarani, A.; Hajjami, M.; Ayazi-Nasrabadi, R.; Jafari, S. Catal. Commun., 2008, 9, 1739-1744.
[6]
Shi, F.; Tse, M.K.; Marga-Matina Pohl, A.; Brűckner, S.; Zhang, M. Beller. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed., 2007, 46, 8866-8868.
[8]
Feng, H.; Li, Y.; Lin, S.; Van der Eycken, E.V.; Song, G. Nano Cu-catalyzed efficient and selective reduction of nitroarenes under combined microwave and ultrasound irradiation. Sustain. Chem. Process, 2014, 2, 14.
[9]
Pradhan, N.; Pal, A.; Pal, T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir, 2001, 17, 1800-1802.
[10]
Saha, A.; Ranu, B.C. Highly chemoselective reduction of aromatic nitro compounds by copper nanoparticles/ammonium formate. J. Org. Chem., 2008, 73, 6867-6870.
[11]
Chen, W.; Zhang, Z.; Li, X.; Wu, D.; Xue, Y.; Li, L. Reducing DBPs formation in chlorination of Br-containing Diclofenac via Fe-Cu-MCM-41/O3 peroxidation: Efficiency, characterization DBPs precursors and mechanism. J. Taiwan Inst. Chem. Eng., 2018, 84, 101-109.
[12]
Rahaim, R.J.; Maleczka, R.E. Pd-Catalyzed silicon hydride reductions of aromatic and aliphatic nitro groups. Org. Lett., 2005, 7, 5087-5090.
[13]
Shil, A.K.; Das, P. Solid supported platinum (0) nanoparticles catalyzed chemo-selective reduction of nitroarenes to N-arylhydroxylamines. Green Chem., 2013, 15, 3421-3428.
[14]
Schabel, T.; Belger, C.; Plietker, B. A mild chemoselective ru-catalyzed reduction of alkynes, ketones, and nitro compounds. Org. Lett., 2013, 15, 2858-2861.
[15]
Shokouhimehr, M.; Kim, T.; Jun, S.W.; Shin, K.; Jang, Y.; Kim, B.H.; Kim, J.; Hyeon, T. Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Appl. Catal. A, 2014, 476, 133-139.
[16]
Shokouhimehr, M. Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts, 2015, 5, 534-560.
[17]
Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B.C. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem. Commun. , 2012, 48, 7982-7984.
[18]
de Noronha, R.G.; Romão, C.C.; Fernandes, A.C. Highly chemo- and regioselective reduction of aromatic nitro compounds using the system silane/oxo-rhenium complexes. J. Org. Chem., 2009, 74, 6960-6964.
[19]
Peng, Q.; Zhang, Y.; Shi, F.; Deng, Y. Fe2O3-supported nano-gold catalyzed one-pot synthesis of N-alkylated anilines from nitroarenesand alcohols. Chem. Commun. , 2011, 47, 6476-6478.
[20]
Liawa, B.J.; Chen, Y.Z. Catalysis of ultrafine Cu-B catalyst for hydrogenation of olefinic and carbonyl groups. Appl. Catal. A Gen., 2000, 196, 199-207.
[21]
Jung, K.; Joo, O. Preparation of Cu/ZnO/M2O3 (M = Al, Cr) catalyst to stabilize Cu/ZnO catalyst in methanol dehydrogenation. Catal. Lett., 2002, 84, 21-25.
[22]
Venugopal, A.; Palgunadi, J.; Jung, K.D.; Joo, O.S.; Shin, C. Cu–Zn–Cr2O3 catalysts for dimethyl ether synthesis: Structure and activity relationship. Catal. Lett., 2008, 123, 142.
[23]
Li, J.; Liu, C.; Liu, Y. Mater. J. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem., 2012, 22, 8426.
[24]
Goyal, A.; Bansal, S.; Singhal, S. Facile reduction of nitrophenols: Comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int. J. Hydrogen Energy, 2014, 39, 4895-4908.
[25]
Hosseini, S.A.; Niaei, A.; Salari, D.; Nabavi, S.R. Nanocrystalline AMn2O4 (A=Co, Ni, Cu) spinels for remediation of volatile organic compounds-synthesis, characterization and catalytic performance. Ceram. Int., 2012, 38, 1655-1661.
[26]
Dhak, D.; Pramanik, P. Particle size comparison of soft‐chemically prepared transition metal (Co, Ni, Cu, Zn) aluminate spinels. J. Am. Ceram. Soc., 2006, 89, 1014-1102.
[27]
Cho, C.M.; Noh, J.H.; Cho, I.; An, J.; Hong, K.S. Low‐temperature hydrothermal synthesis of pure BiFeO3 nanopowders using triethanolamine and their applications as visible‐light photocatalysts. J. Am. Ceram. Soc., 2008, 91, 3753-3755.
[28]
Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, B , 1996, 15, 627-637.
[29]
Tsuchiya, H.; Fujimoto, S.; Chihara, O.; Shibata, T. Semiconductive behavior of passive films formed on pure Cr and Fe–Cr alloys in sulfuric acid solution. Electrochim. Acta, 2002, 47, 4357-4366.
[30]
Nassar, M.Y.; Ahmed, I.S.; Samir, I. A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochim. Acta, 2014, 131, 329-334.
[31]
Onfroy, T.; Clet, G.; Houalla, M. Correlations between acidity, surface structure, and catalytic activity of niobium oxide supported on zirconia. J. Phys. Chem. B, 2005, 109, 14588-14594.
[32]
Gao, X.; Wachs, I.E.; Wong, M.S.Y.; Ying, J.Y. Structural and reactivity properties of Nb–MCM-41: Comparison with that of highly dispersed Nb2O5/SiO2 catalysts. J. Catal., 2001, 203, 18-24.
[33]
Olhero, S.M.; Ganesh, I.; Torres, P.M.C.; Ferreira, J.M.F. Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing. Langmuir, 2008, 24, 9525-9530.
[34]
Puriwat, J.; Chaitree, W.; Suriye, K.; Dokjampa, S.; Praserthdam, P.; Panpranot, J. Elucidation of the basicity dependence of 1-butene isomerization on MgO/Mg(OH)2 catalysts. Catal. Commun., 2010, 12, 80-85.
[35]
Acharyya, S.S.; Ghosh, S.; Bal, R. Fabrication of three-dimensional (3D) raspberry-like copper chromite spinel catalyst in a facile hydrothermal route and its activity in selective hydroxylation of benzene to phenol. ACS Appl. Mater. Interfaces, 2014, 6, 14451-14459.
[36]
Bajaj, R.; Sharma, M.; Bahadur, D. Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans., 2013, 42, 6736-6744.
[37]
Usoltseva, N.V.; Korobochkin, V.V.; Balmashnov, M.A.; Dolinina, A.S. Solution transformation of the products of AC electrochemical metal oxidation. Procedia Chem., 2015, 15, 84-89.
[38]
Ying, J.Y.; Benziger, J.B.; Gleiter, H. Photoacoustic infrared spectroscopy of nanoclusters Al2O3clusters and cluster-assembled solids. Phys. Rev. B , 1993, 48, 1830-1836.
[39]
Kannan, S.; Ferreira, J.M.F. Synthesis and thermal stability of hydroxyapatite−β-tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine. Chem. Mater., 2006, 18, 198-203.
[40]
Dotzauer, D.M.; Bhattacharjee, S.; Wen, Y.; Bruening, M.L. Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds. Langmuir, 2009, 25, 1865-1871.
[41]
Shin, H. Huh, S. Au/Au@Polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes. ACS Appl. Mater. Interfaces, 2012, 4, 6324-6331.
[42]
Zhang, F.; Liu, N.; Zhao, P.; Sun, J.; Wang, P.; Ding, W.; Liu, J.; Jin, J.; Ma, J. Gold on amine-functionalized magnetic nanoparticles: A novel and efficient catalyst for hydrogenation reactions. Appl. Surf. Sci., 2012, 263, 471-475.
[43]
Kozuch, S.; Martin, J.M.L. What makes for a bad catalytic cycle? A theoretical study on the suzuki−miyaura reaction within the energetic span model. ACS Catal., 2011, 1, 246-253.
[44]
Ye, W.; Yu, J.; Zhou, Y.; Gao, D.; Wang, D.; Wang, D.; Xue, D. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl. Catal. B. Environ.,, 2016, 181, 371-378.
[45]
Ghosh, S.K.; Mandal, M.; Kundu, S.; Nath, S.; Pal, T. Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A, 2004, 268, 61-66.
[46]
Karaoğlu, E. özel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Sözeri, H. Synthesis and characterization of NiFe2O4–Pd magnetically recyclable catalyst for hydrogenation reaction. Mater. Res. Bull., 2012, 47, 4316-4321.
[47]
Zhang, Y.; Yuan, X.; Wang, Y.; Chen, Y. One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. J. Mater. Chem., 2012, 22, 7245-7251.
[49]
Feng, J.; Su, L.; Ma, Y.; Ren, C.; Guo, Q.; Chen, X. CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol. Chem. Eng. J., 2013, 221, 16-24.
[50]
Kemp, W. Organic Spectroscopy, 3rd ed; , 1991, pp. 58-72.
[51]
Mukherjee, K.S.; Mukhopadhyay, B. Organic Spectroscopy through Solved Problems., New Central Book Agancy (P) Ltd,. 2015, 23-25.
[52]
Lan, H.; Wang, A.; Liu, R.; Liu, H.; Qu, J. Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. J. Hazard. Mater., 2015, 285, 167-172.
[53]
Liang, H.; Chen, W.; Jiang, X.; Xu, X.; Xu, B.; Wang, Z. Synthesis of 2D hollow hematite microplatelets with tuneable porosity and their comparative photocatalytic activities. J. Mater. Chem. A ., 2014, 2, 4340-4346.
[54]
Corma, A.; Concepci, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., 2007, 119, 7404-7407.