Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Review Article

Neuroproteomics in Paving the Pathway for Drug Abuse Research

Author(s): Muhammad Naveed*, Attha Tallat, Ayesha Butt, Maria Khalid, Marium Shehzadi, Nida Bashir, Komal Kafait Ullah Malik, Shafia Tufail and Faisal Nouroz

Volume 16, Issue 4, 2019

Page: [256 - 266] Pages: 11

DOI: 10.2174/1570164616666181127144621

Price: $65

Abstract

Neuroproteomics, as a sub-discipline of proteomics, has enlightened the pathway for the study of different complicated diseases and brain disorders. Since four decades, various analytical and quantitative techniques have been used to cure problems related to brain and memory. Brain has a complex structure with various cells and cell types, the expressing proteins and suppressing factors too. Drug addiction is one of the main health concerns as it causes physiological changes in brain and affects its different parts. Some of these drugs like cocaine, marijuana, nicotine and alcohol not only affect memory and brain cells but also lead to expression and suppression of unwanted and beneficial proteins respectively. A variety of techniques involving separation techniques, quantification techniques and analytical techniques are used along with the combination of bioinformatics and magical tools for analyzing different aspects of brain parts especially proteome of the brain cells. Moreover, different animal models preferably those resembling human beings are routinely used in neuroproteomics to study the effects of different drugs on the brain proteome. Different experiments have already been performed by the researchers on drug abuse that helped massively in estimating not only the effects of drug addiction on the brain of highly complex organisms (human beings) but also to propose different therapeutics.

Keywords: Neuro-proteomics, separation techniques, challenges, animal models, brain structure, drug addiction.

Graphical Abstract

[1]
Ramadan, N.; Ghazale, H.; El-Sayyad, M.; El-Haress, M.; Kobeissy, F.H. Neuroproteomics studies: Challenges and updates. Neuroproteomics: Methods Protocols, 2017, 1598, 3-19.
[2]
Shinde, N.C.; Chitlange, N.R.; Tate, A.B.; Gomase, V.S. Neuroproteomics: A novel field overcoming neurological disorders. Bioinfo. J. Proteomics, 2011, 1(1), 1-5.
[3]
Burchmore, R. Neuroproteomics. Expert Rev. Proteomics, 2010, 7(3), 331-332.
[4]
Li, M.D. Neuroproteomics and its applications in research on nicotine and other drugs of abuse.. In tobacco smoking addiction: Epidemiology,genetics, mechanisms, and treatment, Springer: ; , 2018, pp. 215-242.
[5]
Alzate, O. Neuroproteomics. 1st Ed. Frontiers of neuroscience series. CRC Press, Boca Raton (FL) , 2009; p. 345.
[6]
Bayés, A.; Grant, S.G. Neuroproteomics: Understanding the molecular organization and complexity of the brain. Nat. Rev. Neurosci., 2009, 10(9), 635-646.
[7]
Shoemaker, L.D.; Achrol, A.S.; Sethu, P.; Steinberg, G.K.; Chang, S.D. Clinical neuroproteomics and biomarkers: from basic research to clinical decision making. Neurosurgery, 2011, 70(3), 518-525.
[8]
Kobeissy, F.; Mouhieddine, T.H.; Nokkari, A.; Itani, M.; Mouhieddine, M.; Zhang, Z.; Zhu, R.; Gold, M.S.; Wang, K.K.; Mechref, Y. Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, methamphetamine and MDMA. Transl. Proteom., 2014, 3, 38-52.
[9]
Ortega, M.; Calva-Nieves, J.; Zamora, A.; Gelman, P.; Palma, B. Addictions, genomics and proteomics. Salud Ment., 2012, 35, 129-137.
[10]
Butterfield, D.A.; Boyd‐Kimball, D.; Castegna, A. Proteomics in Alzheimer’s disease: Insights into potential mechanisms of neurodegeneration. J. Neurochem., 2003, 86(6), 1313-1327.
[11]
Devic, I.; Hwang, H.; Edgar, J.S.; Izutsu, K.; Presland, R.; Pan, C.; Goodlett, D.R.; Wang, Y.; Armaly, J.; Tumas, V. Salivary α-synuclein and DJ-1: Potential biomarkers for Parkinson’s disease. Brain, 2011, 134(7), e178.
[12]
Srivastava, G.; Singh, K.; Tiwari, M.N.; Singh, M.P. Proteomics in Parkinson’s disease: Current trends, translational snags and future possibilities. Expert Rev. Proteomics, 2010, 7(1), 127-139.
[13]
Ottens, A.K.; Kobeissy, F.H.; Golden, E.C.; Zhang, Z.; Haskins, W.E.; Chen, S.S.; Hayes, R.L.; Wang, K.K.; Denslow, N.D. Neuroproteomics in neurotrauma. Mass Spectrom. Rev., 2006, 25(3), 380-408.
[14]
Kobeissy, F.H.; Guingab-Cagmat, J.D.; Zhang, Z.; Moghieb, A.; Glushakova, O.Y.; Mondello, S.; Boutté, A.M.; Anagli, J.; Rubenstein, R.; Bahmad, H. Neuroproteomics and systems biology approach to identify temporal biomarker changes post experimental traumatic brain injury in rats. Front. Neurol., 2016, 7, 198.
[15]
Andrade, E.C.; Krueger, D.D.; Nairn, A.C. Recent advances in neuroproteomics. Curr. Opin. Mol. Ther., 2007, 9(3), 270.
[16]
Bell, R.L.; Rodd, Z.A.; Lumeng, L.; Murphy, J.M.; McBride, W.J. The alcohol‐preferring P rat and animal models of excessive alcohol drinking. Addict. Biol., 2006, 11(3‐4), 270-288.
[17]
Zhu, R.; Yang, T.; Kobeissy, F.; Mouhieddine, T.H.; Raad, M.; Nokkari, A.; Gold, M.S.; Wang, K.K.; Mechref, Y. The effect of chronic methamphetamine exposure on the hippocampal and olfactory bulb neuroproteomes of rats. PLoS One, 2016, 11(4), e0151034.
[18]
Miller, N.; Greene, K.; Dydinski, A.; Gerlai, R. Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav. Brain Res., 2013, 240, 192-196.
[19]
Mathur, P.; Guo, S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol. Dis., 2010, 40(1), 66-72.
[20]
Henry, P.K.; Murnane, K.S.; Votaw, J.R.; Howell, L.L. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav., 2010, 4(3), 212-219.
[21]
Wang, J.; Yuan, W.; Li, M.D. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: A review of proteomics analyses. Mol. Neurobiol., 2011, 44(3), 269-286.
[22]
Li, M.D.; Wang, J. Neuroproteomics and its applications in research on nicotine and other drugs of abuse. Proteomics Clin. Appl., 2007, 1(11), 1406-1427.
[23]
Santa, C.; Anjo, S.I.; Mendes, V.M.; Manadas, B. Neuroproteomics-LC-MS quantitative approaches.In Recent advances in proteomics research; InTech, November 11 2015.
[24]
Lull, M.E.; Freeman, W.M.; VanGuilder, H.D.; Vrana, K.E. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend., 2010, 107(1), 11-22.
[25]
Picciotto, M.R.; Mineur, Y.S. Molecules and circuits involved in nicotine addiction: The many faces of smoking. Neuropharmacology, 2014, 76, 545-553.
[26]
Mulcahy, M.J.; Wang, J.H.; Lester, H.A. Region specific proteomic analysis of murine brain after chronic nicotine or menthol.FASEB J., 2017, 31(S1), 991-1.
[27]
Spanagel, R.; Bartsch, D.; Brors, B.; Dahmen, N.; Deussing, J.; Eils, R.; Ende, G.; Gallinat, J.; Gebicke-Haerter, P.; Heinz, A. An integrated genome research network for studying the genetics of alcohol addiction. Addict. Biol., 2010, 15(4), 369-379.
[28]
Bell, R.L.; Rodd, Z.A.; Lumeng, L.; Murphy, J.M.; McBride, W.J. The alcohol‐preferring P rat and animal models of excessive alcohol drinking. Addict. Biol., 2006, 11(3-4), 270-288.
[29]
Hu, S.; Ide, J.S.; Chao, H.H.; Zhornitsky, S.; Fischer, K.A.; Wang, W.; Zhang, S.; Chiang-shan, R.L. Resting state functional connectivity of the amygdala and problem drinking in non-dependent alcohol drinkers. Drug Alcohol Depend., 2018, 185, 173-180.
[30]
Liu, L-W.; Lu, J.; Wang, X-H.; Fu, S-K.; Li, Q.; Lin, F-Q. Neuronal apoptosis in morphine addiction and its molecular mechanism. Int. J. Clin. Exp. Med., 2013, 6(7), 540-545.
[31]
Chen, S.L.; Tao, P.L.; Chu, C.H.; Chen, S.H.; Wu, H.E.; Tseng, L.F.; Hong, J.S.; Lu, R.B. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats. J. Neuroimmune Pharmacol., 2012, 7(2), 444-453.
[32]
Volkow, N.; Benveniste, H.; McLellan, A.T. Use and misuse of opioids in chronic pain. Annu. Rev. Med., 2018, 69, 451-465.
[33]
Velazquez-Sanchez, C.; Ferragud, A.; Renau-Piqueras, J.; Canales, J.J. Therapeutic-like properties of a dopamine uptake inhibitor in animal models of amphetamine addiction. Int. J. Neuropsychopharmacol., 2011, 14(5), 655-665.
[34]
Kobeissy, F.H.; Mitzelfelt, J.D.; Fishman, I.; Morgan, D.; Gaskins, R.; Zhang, Z.; Gold, M.S.; Wang, K.K. Methods in drug abuse models: Comparison of different models of methamphetamine paradigms. Psychiat. Disord.: Methods Protocols, 2012, 829, 269-278.
[35]
Bodzon-Kulakowska, A.; Paruch, M.; Drabik, A.; Suder, P. From proteomic studies to molecular pathways-proteins involved in response to methamphetamine administration. Curr. Proteomics, 2017, 14(4), 277-286.
[36]
Shorter, D.; Kosten, T.R. Novel pharmacotherapeutic treatments for cocaine addiction. BMC Med., 2011, 9(1), 119.
[37]
Cao, L.; Glazyrin, A.; Kumar, S.; Kumar, A. Role of autophagy in HIV pathogenesis and drug abuse. Mol. Neurobiol., 2017, 54(8), 5855-5867.
[38]
Dunn, M.J. Gel electrophoresis of proteins, 1st ed; Elsevier: Amsterdam, 2014, p. 422.
[39]
Rantala, M.; Paakkarinen, V.; Aro, E.M. Analysis of thylakoid membrane protein complexes by blue native gel electrophoresis. J. Vis. Exp., 2018, 139
[http://dx.doi.org/10.3791/58369]
[40]
Boodhun, N. Protein analysis: Key to the future. Biotechniques, 2018, 64(5), 197-201.
[41]
Wang, B.; Hom, G.; Zhou, S.; Guo, M.; Li, B.; Yang, J.; Monnier, V.M.; Fan, X. The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. Aging Cell, 2017, 16(2), 244-261.
[42]
Trim, P.J. Rodent whole-body sectioning and MALDI mass spectrometry imaging. Methods Mol. Biol., 2017, 1618, 175-189.
[43]
Zhang, L.; Elias, J.E. Relative protein quantification using tandem mass tag mass spectrometry.In Proteomics; Springer, Humana Press: NY, 2017, pp. 185-198.
[44]
Craft, G.E.; Chen, A.; Nairn, A.C. Recent advances in quantitative neuroproteomics. Methods, 2013, 61(3), 186-218.
[45]
Eggers, L.F.; Schwudke, D. Shotgun lipidomics approach for clinical samples.In Clinical Metabolomics; Springer, 2018, pp. 163-174.
[46]
Abul-Husn, N.S.; Devi, L.A. Neuroproteomics of the synapse and drug addiction. J. Pharmacol. Exp. Ther., 2006, 318(2), 461-468.
[47]
Colucci-D’Amato, L.; Farina, A.; Vissers, J.P.; Chambery, A. Quantitative neuroproteomics: Classical and novel tools for studying neural differentiation and function. Stem Cell Rev. Rep., 2011, 7(1), 77-93.
[48]
Garbis, S.; Lubec, G.; Fountoulakis, M. Limitations of current proteomics technologies. J. Chromatogr. A, 2005, 1077(1), 1-18.
[49]
Williams, K.; Wu, T.; Colangelo, C.; Nairn, A.C. Recent advances in neuroproteomics and potential application to studies of drug addiction. Neuropharmacology, 2004, 47, 148-166.
[50]
Shevchenko, G.; Konzer, A.; Musunuri, S.; Bergquist, J. Neuroproteomics tools in clinical practice. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(7), 705-717.
[51]
Katare, D.P.; Malik, H.; Abdin, M. Neuroproteomics: Advancement and challenges for biomarker discovery in neurodegenerative diseases. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 14.
[52]
Lozupone, M.; Seripa, D.; Stella, E.; La Montagna, M.; Solfrizzi, V.; Quaranta, N.; Veneziani, F.; Cester, A.; Sardone, R.; Bonfiglio, C. Innovative biomarkers in psychiatric disorders: A major clinical challenge in psychiatry. Expert Rev. Proteomics, 2017, 14(9), 809-824.
[53]
Twiss, J.L.; Fainzilber, M. Neuroproteomics: How many angels can be identified in an extract from the head of a pin? Mol. Cell. Proteomics, 2016, 15(2), 341-343.
[54]
Häggmark, A.; Schwenk, J.M.; Nilsson, P. Neuroproteomic profiling of human body fluids. Proteomics Clin. Appl., 2016, 10(4), 485-502.
[55]
Alaaeddine, R.; Fayad, M.; Nehme, E.; Bahmad, H.F.; Kobeissy, F. The emerging role of proteomics in precision medicine: Applications in neurodegenerative diseases and neurotrauma.In Personalised Medicine; Springer: Cham, 2017, pp. 59-70.
[56]
Liu, Y.; Qing, H.; Deng, Y. Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int. J. Mol. Sci., 2014, 15(5), 7865-7882.
[57]
Dayon, L.; Hainard, A.; Licker, V.; Turck, N.; Kuhn, K.; Hochstrasser, D.F.; Burkhard, P.R.; Sanchez, J.C. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem., 2008, 80(8), 2921-2931.
[58]
Micheva, K.D.; Bruchez, M.P. The gain in brain: Novel imaging techniques and multiplexed proteomic imaging of brain tissue ultrastructure. Curr. Opin. Neurobiol., 2012, 22(1), 94-100.
[59]
Drabik, A.; Bierczynska‐Krzysik, A.; Bodzon‐Kulakowska, A.; Suder, P.; Kotlinska, J.; Silberring, J. Proteomics in neurosciences. Mass Spectrom. Rev., 2007, 26(3), 432-450.
[60]
Hanrieder, J.; Malmberg, P.; Ewing, A.G. Spatial neuroproteomics using imaging mass spectrometry. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(7), 718-731.
[61]
Kitchen, R.R.; Rozowsky, J.S.; Gerstein, M.B.; Nairn, A.C. Decoding neuroproteomics: Integrating the genome, translatome and functional anatomy. Nat. Neurosci., 2014, 17(11), 1491-1499.
[62]
Szoko, N.; McShane, A.J.; Natowicz, M.R. Proteomic explorations of autism spectrum disorder. Autism Res., 2017, 10(9), 1460-1469.
[63]
Lubec, G. Advances in neuroproteomics. Proteomics Clin. Appl., 2007, 1(11), 1339-1341.
[64]
Szoko, N.; McShane, A.J.; Natowicz, M.R. Proteomic explorations of autism spectrum disorder. Autism Res., 2017, 10(9), 1460-1469.
[65]
Brunner, A.M.; Tweedie-Cullen, R.Y.; Mansuy, I.M. Epigenetic modifications of the neuroproteome. Proteomics, 2012, 12(15-16), 2404-2420.
[66]
English, J.A.; Pennington, K.; Dunn, M.J.; Cotter, D.R. The neuroproteomics of schizophrenia. Biol. Psychiatry, 2011, 69(2), 163-172.
[67]
Hampel, H.; Vergallo, A.; Bonuccelli, U.; Lista, S.; Initiative, A.P.M. Turning point towards blood biomarker-guided targeted therapy for precision medicine in Alzheimer’s disease. J. Prev. Alzheimers Dis., 2018, 5(3), 160-164.
[68]
Reig-Viader, R.; Bayés, À. Quantitative in-depth profiling of the postsynaptic density proteome to understand the molecular mechanisms governing synaptic physiology and pathology; Curr. Proteomic Approaches Appl. Brain Funct, 2017, pp. 255-280.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy