Review Article

碳纳米洋葱:生物医学中有价值的一类碳纳米材料

卷 26, 期 38, 2019

页: [6915 - 6929] 页: 15

弟呕挨: 10.2174/0929867326666181126113957

价格: $65

摘要

纳米材料的开发是重要的研究领域,因为它提供了具有独特性质的材料的途径,可用于改善生活质量。 多层富勒烯,也称为碳纳米洋葱(CNOs),是一类令人兴奋的纳米结构,具有极大的通用性和适用性。 他们在技术和生物医学的多个领域找到了应用。 这篇评论强调了CNOs在生物医学应用中的潜在优势,包括但不限于生物成像和传感。 它们良好的生物相容性使其成为开发新型保健设备的有前途的平台。

关键词: 碳纳米洋葱,成像,纳米材料,传感,毒理学,纳米医学。

[1]
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol., 2004, 22(1), 47-52.
[http://dx.doi.org/10.1038/nbt927] [PMID: 14704706]
[2]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, 107, 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[3]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[4]
Baptista, F.R.; Belhout, S.A.; Giordani, S.; Quinn, S.J. Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev., 2015, 44(13), 4433-4453.
[http://dx.doi.org/10.1039/C4CS00379A] [PMID: 25980819]
[5]
Bartelmess, J.; Quinn, S.J.; Giordani, S. Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev., 2015, 44(14), 4672-4698.
[http://dx.doi.org/10.1039/C4CS00306C] [PMID: 25406743]
[6]
Baldrighi, M.; Trusel, M.; Tonini, R.; Giordani, S. Carbon nanomaterials interfacing with neurons: an in vivo perspective. Front. Neurosci., 2016, 10, 250.
[http://dx.doi.org/10.3389/fnins.2016.00250] [PMID: 27375413]
[7]
Ruggiero, A.; Villa, C.H.; Bander, E.; Rey, D.A.; Bergkvist, M.; Batt, C.A.; Manova-Todorova, K.; Deen, W.M.; Scheinberg, D.A.; McDevitt, M.R. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. USA, 2010, 107(27), 12369-12374.
[http://dx.doi.org/10.1073/pnas.0913667107] [PMID: 20566862]
[8]
Kobayashi, H.; Brechbiel, M.W. Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug Deliv. Rev., 2005, 57(15), 2271-2286.
[http://dx.doi.org/10.1016/j.addr.2005.09.016] [PMID: 16290152]
[9]
Florek, J.; Caillard, R.; Kleitz, F. Evaluation of mesoporous silica nanoparticles for oral drug delivery - current status and perspective of MSNs drug carriers. Nanoscale, 2017, 9(40), 15252-15277.
[http://dx.doi.org/10.1039/C7NR05762H] [PMID: 28984885]
[10]
Bhatia, S.N.; Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol., 2014, 32(8), 760-772.
[http://dx.doi.org/10.1038/nbt.2989] [PMID: 25093883]
[11]
Sivasankar, M. Brief Review on nano robots in bio medical applications. Adv. Robot. Automat., 2012, 1, 1.
[http://dx.doi.org/10.4172/2168-9695.1000101]
[12]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[13]
Mura, S.; Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev., 2012, 64(13), 1394-1416.
[http://dx.doi.org/10.1016/j.addr.2012.06.006] [PMID: 22728642]
[14]
Zamboni, W.C.; Torchilin, V.; Patri, A.K.; Hrkach, J.; Stern, S.; Lee, R.; Nel, A.; Panaro, N.J.; Grodzinski, P. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin. Cancer Res., 2012, 18(12), 3229-3241.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2938] [PMID: 22669131]
[15]
Chauhan, V.P.; Jain, R.K. Strategies for advancing cancer nanomedicine. Nat. Mater., 2013, 12(11), 958-962.
[http://dx.doi.org/10.1038/nmat3792] [PMID: 24150413]
[16]
van der Meel, R.; Vehmeijer, L.J.; Kok, R.J.; Storm, G.; van Gaal, E.V. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv. Drug Deliv. Rev., 2013, 65(10), 1284-1298.
[http://dx.doi.org/10.1016/j.addr.2013.08.012] [PMID: 24018362]
[17]
Iijima, S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J. Cryst. Growth, 1980, 50(3), 675-683.
[http://dx.doi.org/10.1016/0022-0248(80)90013-5]
[18]
Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature, 1992, 359(6397), 707-709.
[http://dx.doi.org/10.1038/359707a0] [PMID: 11536508]
[19]
Camisasca, A.; Giordani, S. Carbon nano-onions in biomedical applications: promising theranostic agents. Inorg. Chim. Acta, 2017, 468, 67-76.
[http://dx.doi.org/10.1016/j.ica.2017.06.009]
[20]
Palkar, A.; Melin, F.; Cardona, C.M.; Elliott, B.; Naskar, A.K.; Edie, D.D.; Kumbhar, A.; Echegoyen, L. Reactivity differences between carbon nano onions (CNOs) prepared by different methods. Chem. Asian J., 2007, 2(5), 625-633.
[http://dx.doi.org/10.1002/asia.200600426] [PMID: 17465408]
[21]
Ugarte, D. Onion-Like graphitic particles. Carbon, 1995, 33(7), 989-993.
[http://dx.doi.org/10.1016/0008-6223(95)00027-B]
[22]
Xu, B.S.; Tanaka, S-I. Formation of giant onion-like fullerenes under Al nanoparticles by electron irradiation. Acta Mater., 1998, 46(15), 5249-5257.
[http://dx.doi.org/10.1016/S1359-6454(98)00221-3]
[23]
Alekseyev, N.I.; Dyuzhev, G.A. Fullerene formation in an arc discharge. Carbon, 2003, 41(7), 1343-1348.
[http://dx.doi.org/10.1016/S0008-6223(03)00058-7]
[24]
Sano, N.; Wang, H.; Alexandrou, I.; Chhowalla, M.; Teo, K.B.K.; Amaratunga, G.A.J.; Iimura, K. Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys., 2002, 92(5), 2783-2788.
[http://dx.doi.org/10.1063/1.1498884]
[25]
Sano, N.; Wang, H.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G.A.J. Synthesis of carbon ‘onions’ in water. Nature, 2001, 414(6863), 506-507.
[http://dx.doi.org/10.1038/35107141] [PMID: 11734841]
[26]
Borgohain, R.; Yang, J.; Selegue, J.P.; Kim, D.Y. Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions. Carbon, 2014, 66, 272-284.
[http://dx.doi.org/10.1016/j.carbon.2013.09.001]
[27]
Kuznetsov, V.L.; Chuvilin, A.L.; Butenko, Y.V.; Mal’kov, I.Y.; Titov, V.M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett., 1994, 222(4), 343-348.
[http://dx.doi.org/10.1016/0009-2614(94)87072-1]
[28]
Kuznetsov, V.L.; Zilberberg, I.L.; Butenko, Y.V.; Chuvilin, A.L.; Segall, B. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. J. Appl. Phys., 1999, 86(2), 863-870.
[http://dx.doi.org/10.1063/1.370816]
[29]
Zou, Q.; Wang, M.; Li, Y.; Zhao, Y.; Zou, L. Fabrication of onion-like carbon from nanodiamond by annealing. Sci. China Ser. E-Tech. Sci., 2009, 52(12), 3683-3689.
[30]
Chen, J.; Deng, S.Z.; Chen, J.; Yu, Z.X.; Xu, N.S. Graphitization of nanodiamond powder annealed in argon ambient. Appl. Phys. Lett., 1999, 74(24), 3651-3653.
[http://dx.doi.org/10.1063/1.123211]
[31]
Xie, F.Y.; Xie, W.G.; Gong, L.; Zhang, W.H.; Chen, S.H.; Zhang, Q.Z.; Chen, J. Surface characterization on graphitization of nanodiamond powder annealed in nitrogen ambient. Surf. Interface Anal., 2010, 42(9), 1514-1518.
[http://dx.doi.org/10.1002/sia.3350]
[32]
Aleksenski, A.E. BaÏdakova, M.V.; Vul’, A.Y.; DideÏkin, A.T.; SiklitskiÏ, V.I.; Vul’, S.P. Effect of hydrogen on the structure of ultradisperse diamond. Phys. Solid State, 2000, 42(8), 1575-1578.
[http://dx.doi.org/10.1134/1.1307073]
[33]
Mykhailiv, O.; Lapinski, A.; Molina-Ontoria, A.; Regulska, E.; Echegoyen, L.; Dubis, A.T.; Plonska-Brzezinska, M.E. Influence of the synthetic conditions on the structural and electrochemical properties of carbon nano-onions. ChemPhysChem, 2015, 16(10), 2182-2191.
[http://dx.doi.org/10.1002/cphc.201500061] [PMID: 26017555]
[34]
Tomita, S.; Sakurai, T.; Ohta, H.; Fujii, M.; Hayashi, S. Structure and electronic properties of carbon onions. J. Chem. Phys., 2001, 114(17), 7477-7482.
[http://dx.doi.org/10.1063/1.1360197]
[35]
Tomita, S.; Fujii, M.; Hayashi, S.; Yamamoto, K. Electron energy-loss spectroscopy of carbon onions. Chem. Phys. Lett., 1999, 305(3-4), 225-229.
[http://dx.doi.org/10.1016/S0009-2614(99)00374-7]
[36]
Bogdanov, K.; Fedorov, A.; Osipov, V.; Enoki, T.; Takai, K.; Hayashi, T.; Ermakov, V.; Moshkalev, S.; Baranov, A. Annealing-induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies. Carbon, 2014, 73, 78-86.
[http://dx.doi.org/10.1016/j.carbon.2014.02.041]
[37]
Zeiger, M.; Jäckel, N.; Weingarth, D.; Presser, V. Vacuum or flowing argon: What is the best synthesis atmosphere for nanodiamond-derived carbon onions for supercapacitor electrodes? Carbon, 2015, 94, 507-517.
[http://dx.doi.org/10.1016/j.carbon.2015.07.028]
[38]
Choi, E.Y.; Kim, C.K. Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci. Rep., 2017, 7(1), 4178.
[http://dx.doi.org/10.1038/s41598-017-04597-6] [PMID: 28646193]
[39]
Lin, Y.; Zhu, Y.; Zhang, B.; Kim, Y.A.; Endo, M.; Su, D.S. Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 21805-21841.
[http://dx.doi.org/10.1039/C5TA03141A]
[40]
Camisasca, A.; Sacco, A.; Brescia, R.; Giordani, S. Boron/nitrogen-codoped carbon nano-onion electrocatalysts for the oxygen reduction reaction. ACS Applied Nano Materials, 2018, 1(10), 5763-5773.
[http://dx.doi.org/10.1021/acsanm.8b01430]
[41]
Zhao, N.; Cui, Q.; He, C.; Shi, C.; Li, J.; Li, H.; Du, X. Synthesis of carbon nanostructures with different morphologies by CVD of methane. Mater. Sci. Eng. A, 2007, 460-461, 255-260.
[http://dx.doi.org/10.1016/j.msea.2007.01.051]
[42]
He, C.N.; Tian, F.; Liu, S.J.; Du, Z.J.; Liu, C.J.; Li, F.; Chen, S.Q. Characterization and magnetic property of carbon coated metal nanoparticles and hollow carbon onions fabricated by CVD of methane. Mater. Lett., 2008, 62(21-22), 3697-3699.
[http://dx.doi.org/10.1016/j.matlet.2008.04.031]
[43]
Yang, Y.; Liu, X.; Guo, X.; Wen, H.; Xu, B. Synthesis of nano onion-like fullerenes by chemical vapor deposition using an iron catalyst supported on sodium chloride. J. Nanopart. Res., 2010, 13(5), 1979-1986.
[http://dx.doi.org/10.1007/s11051-010-9951-0]
[44]
He, C.N.; Zhao, N.; Du, X.; Shi, C.; Ding, J.; Li, J.; Li, Y. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum. Scr. Mater., 2006, 54(4), 689-693.
[http://dx.doi.org/10.1016/j.scriptamat.2005.09.058]
[45]
He, C.N.; Zhao, N.; Shi, C.; Du, X.; Li, J. Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts. Mater. Chem. Phys., 2006, 97(1), 109-115.
[http://dx.doi.org/10.1016/j.matchemphys.2005.07.059]
[46]
Du, A.B.; Liu, X.G.; Fu, D.J.; Han, P.D.; Xu, B.S. Onion-like fullerenes synthesis from coal. Fuel, 2007, 86(1-2), 294-298.
[http://dx.doi.org/10.1016/j.fuel.2006.05.031]
[47]
Chen, X.H.; Deng, F.M.; Wang, J.X.; Yang, H.S.; Wu, G.T.; Zhang, X.B.; Peng, J.C.; Li, W.Z. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem. Phys. Lett., 2001, 336(3), 201-204.
[http://dx.doi.org/10.1016/S0009-2614(01)00085-9]
[48]
Huang, J.Y.; Yasuda, H.; Mori, H. Highly curved carbon nanostructures produced by ball-milling. Chem. Phys. Lett., 1999, 303(1), 130-134.
[http://dx.doi.org/10.1016/S0009-2614(99)00131-1]
[49]
Chen, X.H.; Yang, H.S.; Wu, G.T.; Wang, M.; Deng, F.M.; Zhang, X.B.; Peng, J.C.; Li, W.Z. Generation of curved or closed-shell carbon nanostructures by ball-milling of graphite. J. Cryst. Growth, 2000, 218(1), 57-61.
[http://dx.doi.org/10.1016/S0022-0248(00)00486-3]
[50]
Cabioc’h, T.; Jaouen, M.; Thune, E.; Gu’erin, P.; Fayoux, C.; Denanot, M.F. Carbon onions formation by high-dose carbon ion implantation into copper and silver. Surf. Coat. Tech., 2000, 128-129, 43-50.
[http://dx.doi.org/10.1016/S0257-8972(00)00655-1]
[51]
Dorobantu, D.; Bota, P.M.; Boerasu, I.; Bojin, D.; Enachescu, M. Pulse laser ablation system for carbon nano-onions fabrication. Surg. Eng. Appl. Electrochem., 2014, 50(5), 390-394.
[http://dx.doi.org/10.3103/S1068375514050044]
[52]
Hou, S-S.; Chung, D-H.; Lin, T-H. High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon, 2009, 47(4), 938-947.
[http://dx.doi.org/10.1016/j.carbon.2008.11.054]
[53]
Bystrzejewski, M.; Rummeli, M.H.; Gemming, T.; Lange, H.; Huczko, A. Catalyst-free synthesis of onion-like carbon nanoparticles. N. Carbon Mater., 2010, 25(1), 1-8.
[http://dx.doi.org/10.1016/S1872-5805(09)60011-1]
[54]
Choucair, M.; Stride, J.A. The gram-scale synthesis of carbon onions. Carbon, 2012, 50(3), 1109-1115.
[http://dx.doi.org/10.1016/j.carbon.2011.10.023]
[55]
Du, J.; Liu, Z.; Li, Z.; Han, B.; Sun, Z.; Huang, Y. Carbon onions synthesized via thermal reduction of glycerin with magnesium. Mater. Chem. Phys., 2005, 93(1), 178-180.
[http://dx.doi.org/10.1016/j.matchemphys.2005.03.012]
[56]
Kobayashi, T.; Sekine, T.; He, H. Formation of carbon onion from heavily shocked SiC. Chem. Mater., 2003, 15(14), 2681-2683.
[http://dx.doi.org/10.1021/cm030238x]
[57]
Yan, Y.; Yang, H.; Zhang, F.; Tu, B.; Zhao, D. Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules. Carbon, 2007, 45(11), 2209-2216.
[http://dx.doi.org/10.1016/j.carbon.2007.06.049]
[58]
Sonkar, S.K.; Roy, M.; Babar, D.G.; Sarkar, S. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale, 2012, 4(24), 7670-7675.
[http://dx.doi.org/10.1039/c2nr32408c] [PMID: 23099536]
[59]
Ghosh, M.; Sonkar, S.K.; Saxena, M.; Sarkar, S. Carbon nano-onions for imaging the life cycle of Drosophila melanogaster. Small, 2011, 7(22), 3170-3177.
[http://dx.doi.org/10.1002/smll.201101158] [PMID: 22012886]
[60]
Sonkar, S.K.; Ghosh, M.; Roy, M.; Begum, A.; Sarkar, S. Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain-an in vivo study from unicellular E. coli to multicellular C. elegans. Mater. Express, 2012, 2(2), 105-114.
[http://dx.doi.org/10.1166/mex.2012.1064]
[61]
Dubey, P.; Tripathi, K.M.; Sonkar, S.K. Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Advances, 2014, 4(12), 5838.
[http://dx.doi.org/10.1039/c3ra45261a]
[62]
Bartelmess, J.; Giordani, S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J. Nanotechnol., 2014, 5, 1980-1998.
[http://dx.doi.org/10.3762/bjnano.5.207] [PMID: 25383308]
[63]
Chen, R.J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc., 2001, 123(16), 3838-3839.
[http://dx.doi.org/10.1021/ja010172b] [PMID: 11457124]
[64]
Lou, X.; Daussin, R.; Cueno, S.; Duwez, A-S.; Pagnoulle, C.; Detrembleur, C.; Bailly, C.; Jerome, R. Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes. Chem. Mater., 2004, 16(21), 4005-4011.
[http://dx.doi.org/10.1021/cm0492585]
[65]
Zheng, M.; Jagota, A.; Semke, E.D.; Diner, B.A.; McLean, R.S.; Lustig, S.R.; Richardson, R.E.; Tassi, N.G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater., 2003, 2(5), 338-342.
[http://dx.doi.org/10.1038/nmat877] [PMID: 12692536]
[66]
Bartelmess, J.; Frasconi, M.; Balakrishnan, P.B.; Signorelli, A.; Echegoyen, L.; Pellegrino, T.; Giordani, S. Non-covalent functionalization of carbon nano-onions with pyrene-BODIPY dyads for biological imaging. RSC Advances, 2015, 5(62), 50253-50258.
[http://dx.doi.org/10.1039/C5RA07683H]
[67]
Liu, K.; Zhang, J-J.; Cheng, F-F.; Zheng, T-T.; Wang, C.; Zhu, J-J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J. Mater. Chem., 2011, 21(32), 12034.
[http://dx.doi.org/10.1039/c1jm10749f]
[68]
Flavin, K.; Chaur, M.N.; Echegoyen, L.; Giordani, S. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and “click” chemistry. Org. Lett., 2010, 12(4), 840-843.
[http://dx.doi.org/10.1021/ol902939f] [PMID: 20092266]
[69]
Yang, M.; Flavin, K.; Kopf, I.; Radics, G.; Hearnden, C.H.; McManus, G.J.; Moran, B.; Villalta-Cerdas, A.; Echegoyen, L.A.; Giordani, S.; Lavelle, E.C. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small, 2013, 9(24), 4194-4206.
[http://dx.doi.org/10.1002/smll.201300481] [PMID: 23839951]
[70]
Kim, H.N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev., 2011, 40(1), 79-93.
[http://dx.doi.org/10.1039/C0CS00058B] [PMID: 21107482]
[71]
de Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97(5), 1515-1566.
[http://dx.doi.org/10.1021/cr960386p] [PMID: 11851458]
[72]
Xu, Z.; Kim, S.K.; Yoon, J. Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006-2009. Chem. Soc. Rev., 2010, 39(5), 1457-1466.
[http://dx.doi.org/10.1039/b918937h] [PMID: 20419201]
[73]
Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev., 2010, 39(10), 3936-3953.
[http://dx.doi.org/10.1039/b910560n] [PMID: 20818454]
[74]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[75]
Gunaseelan, S.; Gunaseelan, K.; Deshmukh, M.; Zhang, X.; Sinko, P.J. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv. Drug Deliv. Rev., 2010, 62(4-5), 518-531.
[http://dx.doi.org/10.1016/j.addr.2009.11.021] [PMID: 19941919]
[76]
Bartelmess, J.; De Luca, E.; Signorelli, A.; Baldrighi, M.; Becce, M.; Brescia, R.; Nardone, V.; Parisini, E.; Echegoyen, L.; Pompa, P.P.; Giordani, S. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging. Nanoscale, 2014, 6(22), 13761-13769.
[http://dx.doi.org/10.1039/C4NR04533E] [PMID: 25286147]
[77]
Giordani, S.; Bartelmess, J.; Frasconi, M.; Biondi, I.; Cheung, S.; Grossi, M.; Wu, D.; Echegoyen, L.; O’Shea, D.F. NIR fluorescence labelled carbon nano-onions: synthesis, analysis and cellular imaging. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(42), 7459-7463.
[http://dx.doi.org/10.1039/C4TB01087F]
[78]
Lettieri, S.; Camisasca, A.; d’Amora, M.; Diaspro, A.; Uchida, T.; Nakajima, Y.; Yanagisawa, K.; Maekawa, T.; Giordani, S. Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging. RSC Advances, 2017, 7(72), 45676-45681.
[http://dx.doi.org/10.1039/C7RA09442F]
[79]
Frasconi, M.; Maffeis, V.; Bartelmess, J.; Echegoyen, L.; Giordani, S. Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods Appl. Fluoresc., 2015, 3(4)044005
[http://dx.doi.org/10.1088/2050-6120/3/4/044005] [PMID: 29148503]
[80]
Pakhira, B.; Ghosh, M.; Allam, A.; Sarkar, S. Carbon nano onions cross the blood brain barrier. RSC Advances, 2016, 6(35), 29779-29782.
[http://dx.doi.org/10.1039/C5RA23534K]
[81]
Fang, B.; Wang, D.; Huang, M.; Yu, G.; Li, H. Hypothesis on the relationship between the change in intracellular pH and incidence of sporadic Alzheimer’s disease or vascular dementia. Int. J. Neurosci., 2010, 120(9), 591-595.
[http://dx.doi.org/10.3109/00207454.2010.505353] [PMID: 20707633]
[82]
Nolan, E.M.; Lippard, S.J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev., 2008, 108(9), 3443-3480.
[http://dx.doi.org/10.1021/cr068000q] [PMID: 18652512]
[83]
Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol., 2005, 20(2), 351-360.
[http://dx.doi.org/10.1016/j.etap.2005.03.007] [PMID: 21783611]
[84]
Breczko, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite. Electrochim. Acta, 2012, 72, 61-67.
[http://dx.doi.org/10.1016/j.electacta.2012.03.177]
[85]
Luszczyn, J.; Plonska-Brzezinska, M.E.; Palkar, A.; Dubis, A.T.; Simionescu, A.; Simionescu, D.T.; Kalska-Szostko, B.; Winkler, K.; Echegoyen, L. Small noncytotoxic carbon nano-onions: first covalent functionalization with biomolecules. Chemistry, 2010, 16(16), 4870-4880.
[http://dx.doi.org/10.1002/chem.200903277] [PMID: 20340115]
[86]
Bartolome, J.P.; Echegoyen, L.; Fragoso, A. Reactive carbon nano-onion modified glassy carbon surfaces as DNA sensors for human papillomavirus oncogene detection with enhanced sensitivity. Anal. Chem., 2015, 87(13), 6744-6751.
[http://dx.doi.org/10.1021/acs.analchem.5b00924] [PMID: 26067834]
[87]
Lettieri, S.; d’Amora, M.; Camisasca, A.; Diaspro, A.; Giordani, S. Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics. Beilstein J. Nanotechnol., 2017, 8, 1878-1888.
[http://dx.doi.org/10.3762/bjnano.8.188] [PMID: 29046835]
[88]
Bartolome, J.P.; Fragoso, A. Electrochemical detection of nitrite and ascorbic acid at glassy carbon electrodes modified with carbon nano-onions bearing electroactive moieties. Inorg. Chim. Acta, 2017, 468, 223-231.
[http://dx.doi.org/10.1016/j.ica.2017.06.024]
[89]
Frasconi, M.; Marotta, R.; Markey, L.; Flavin, K.; Spampinato, V.; Ceccone, G.; Echegoyen, L.; Scanlan, E.M.; Giordani, S. Multi-Functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry, 2015, 21(52), 19071-19080.
[http://dx.doi.org/10.1002/chem.201503166] [PMID: 26577582]
[90]
Brown, E.; Verkade, P. The use of markers for correlative light electron microscopy. Protoplasma, 2010, 244(1-4), 91-97.
[http://dx.doi.org/10.1007/s00709-010-0165-1] [PMID: 20524017]
[91]
Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N.V.; Aslam, M. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl. Surf. Sci., 2018, 442, 332-341.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.124]
[92]
Sok, V.; Fragoso, A. Preparation and characterization of alkaline phosphatase, horseradish peroxidase, and glucose oxidase conjugates with carboxylated carbon nano-onions. Prep. Biochem. Biotechnol., 2018, 48(2), 136-143.
[http://dx.doi.org/10.1080/10826068.2017.1405025] [PMID: 29215950]
[93]
Tripathi, K.M.; Bhati, A.; Singh, A.; Gupta, N.R.; Verma, S.; Sarkar, S.; Sonkar, S.K. From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Advances, 2016, 6(44), 37319-37329.
[http://dx.doi.org/10.1039/C6RA04030F]
[94]
Zuaznabar-Gardona, J.C.; Fragoso, A. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes. Sens. Actuators B Chem., 2018, 273, 664-671.
[http://dx.doi.org/10.1016/j.snb.2018.06.103]
[95]
Singh, V. Natural source derived carbon nano-onions as electrode material for sensing applications. Diamond Related Materials, 2018, 87, 202-207.
[http://dx.doi.org/10.1016/j.diamond.2018.06.007]
[96]
Maffeis, V.; McCourt, R.O.; Petracca, R.; Laethem, O.; Camisasca, A.; Colavita, P.E.; Giordani, S.; Scanlan, E.M. Photocatalytic initiation of radical thiol-ene reactions using carbon-Bi2O3 nanocomposites. ACS Applied Nano Materials, 2018, 1(8), 4120-4126.
[http://dx.doi.org/10.1021/acsanm.8b00870]
[97]
Marchesano, V.; Ambrosone, A.; Bartelmess, J.; Strisciante, F.; Tino, A.; Echegoyen, L.; Tortiglione, C.; Giordani, S. Impact of carbon nano-onions on Hydra vulgaris as a model organism for nanoecotoxicology. Nanomaterials (Basel), 2015, 5(3), 1331-1350.
[http://dx.doi.org/10.3390/nano5031331] [PMID: 28347067]
[98]
D’ Amora, M.; Rodio, M.; Bartelmess, J.; Sancataldo, G.; Brescia, R.; Cella Zanacchi, F.; Diaspro, A.; Giordani, S. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Sci. Rep., 2016, 6, 33923.
[http://dx.doi.org/10.1038/srep33923] [PMID: 27671377]
[99]
Usenko, C.Y.; Harper, S.L.; Tanguay, R.L. Fullerene C60 exposure elicits an oxidative stress response in embryonic Zebrafish. Toxicol. Appl. Pharmacol., 2008, 229(1), 44-55.
[http://dx.doi.org/10.1016/j.taap.2007.12.030] [PMID: 18299140]
[100]
Wang, Z.G.; Zhou, R.; Jiang, D.; Song, J.E.; Xu, Q.; Si, J.; Chen, Y.P.; Zhou, X.; Gan, L.; Li, J.Z.; Zhang, H.; Liu, B. Toxicity of graphene quantum dots in zebrafish embryo. Biomed. Environ. Sci., 2015, 28(5), 341-351.
[http://dx.doi.org/10.3967/bes2015.048] [PMID: 26055561]
[101]
d’Amora, M.; Camisasca, A.; Lettieri, S.; Giordani, S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials (Basel), 2017, 7(12), 414.
[http://dx.doi.org/10.3390/nano7120414] [PMID: 29186817]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy