Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

The Influence of Ultra-Low Concentrations of Potassium Anphen on the Bioenergetic Characteristics of Mitochondria

Author(s): Zhigacheva Irina*, Volodkin Aleksandr and Rasulov Maksud

Volume 16, Issue 4, 2020

Page: [537 - 542] Pages: 6

DOI: 10.2174/1573407214666181116093909

Price: $65

Abstract

Background: One of the main sources of ROS in stress conditions is the mitochondria. Excessive generation of ROS leads to oxidation of thiol groups of proteins, peroxidation of membrane lipids and swelling of the mitochondria. In this regard, there is a need to search for preparationsadaptogens that increase the body's resistance to stress factors. Perhaps, antioxidants can serve as such adaptogens. This work aims at studying the effect of antioxidant; the potassium anphen in a wide range of concentrations on the functional state of 6 day etiolated pea seedlings mitochondria (Pisum sativum L).

Methods: The functional state of mitochondria was studied per rates of mitochondria respiration, by the level of lipid peroxidation and study of fatty acid composition of mitochondrial membranes by chromatography technique.

Results: Potassium anphen in concentrations of 10-5 - 10-8 M and 10-13-10-16 prevented the activation of LPO in the mitochondrial membranes of pea seedlings, increased the oxidation rates of NAD-dependent substrates and succinate in the respiratory chain of mitochondria that probably pointed to the anti-stress properties of the drug. Indeed, the treatment of pea seeds with the preparation in concentrations of 10-13 M prevented the inhibition of growth of seedlings in conditions of water deficiency.

Conclusion: It is assumed that the dose dependence of the biological effects of potassium anphen and the manifestation of these effects in ultra-low concentrations are due to its ability in water solutions to form a hydrate containing molecular ensembles (structures).

Keywords: 2-carboxy-2-(N-acetylamino)-3-(3', 5'-di-tert-butyl-4'-hydroxyphenyl)-propanate potassium, LPO, mitochondria, molecular ensembles, peroxidation.

Graphical Abstract

[1]
Wang, Y.; Sunwoo, H.; Cherian, G.; Sim, J.S. Fatty acid determination in chicken egg yolk: A comparison of different methods. Poult. Sci., 2000, 79(8), 1168-1171.
[http://dx.doi.org/10.1093/ps/79.8.1168] [PMID: 10947186]
[2]
Gao, C.; Xing, D.; Li, L.; Zhang, L. Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta, 2008, 227(4), 755-767.
[http://dx.doi.org/10.1007/s00425-007-0654-4] [PMID: 17972096]
[3]
Rodríguez, M.; Canales, E.; Borrás-Hidalgo, O. Molecular aspects of abiotic stress in plants. Biotecnol. Apl., 2005, 22(1), 1-10.
[4]
Zorov, D.B.; Isaev, N.K.; Plotnikov, E.Yu.; Zorova, L.D.; Stelmashook, E.V.; Vasileva, A.K.; Arkhangelskaya, A.A.; Khrjapenkova, T.G. The mitochondrion as Janus Bifrons. Biochemistry (Mosc.), 2007, 72(10), 1115-1126. [Rus].
[http://dx.doi.org/10.1134/S0006297907100094] [PMID: 18021069]
[5]
Schlame, M.; Ren, M.; Xu, Y.; Greenberg, M.L.; Haller, I. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids, 2005, 138(1-2), 38-49.
[http://dx.doi.org/10.1016/j.chemphyslip.2005.08.002] [PMID: 16226238]
[6]
Genova, M.L.; Lenaz, G. Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta, 2014, 1837(4), 427-443.
[http://dx.doi.org/10.1016/j.bbabio.2013.11.002] [PMID: 24246637]
[7]
Petereit, J.; Katayama, K.; Lorenz, C.; Ewert, L.; Schertl, P.; Kitsche, A.; Wada, H.; Frentzen, M.; Braun, H.P.; Eubel, H. Cardiolipin supports respiratory enzymes in plants in different ways. Front. Plant Sci., 2017, 8, 72.
[http://dx.doi.org/10.3389/fpls.2017.00072] [PMID: 28228763]
[8]
Zhigacheva, I.V.; Binyukov, V.I.; Mil, E.M. partial loss of cytochrome c by mitochondria of pea seedlings under conditions of water scarcity. Int. J. Sci. Res. Sci. Eng. Technol., 2016, 2(5), 369-376.
[9]
Taylor, N.L.; Day, D.A.; Millar, A.H. Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. J. Exp. Bot., 2004, 55(394), 1-10.
[http://dx.doi.org/10.1093/jxb/erh001] [PMID: 14645387]
[10]
Rehman, S.; Khan, H. Advances in antioxidant potential of natural alkaloids. Curr. Bioact. Compd., 2017, 13(2), 101-108.
[http://dx.doi.org/10.2174/1573407212666160614075157]
[11]
Zhigacheva, I.V. Adaptogens decrease the generation of reactive oxygen species by mitochondria.Concepts and Applications; Nova Science publishers: New-York, 2013, pp. 465-480.
[http://dx.doi.org/10.1201/b16302-14]
[12]
Popov, V.N.; Ruge, E.K.; Starkov, A.A. Effect of electron transport inhibitors on the formation of reactive oxygen species in the oxidation of succinate by pea mitochondria. Biochemistry, 2003, 68(7), 910-916. [Rus].
[PMID: 12946256]
[13]
Carreau, J.P.; Dubacq, J.P. Adaptation of macroscal method to the microscale for fatty acid methyl transesterification of biological lipid extracts. J. Chromatogr. A, 1979, 151, 384-390.
[http://dx.doi.org/10.1016/S0021-9673(00)88356-9]
[14]
Golovina, R.V.; Kuzmenko, T.E. thermodynamic evaluation interaction of fatty acid methyl esters with polar and nonpolar stationary phases, based on their retention Indices Chromatographia. Chromatography (Basel), 1977, 10, 545-546.
[http://dx.doi.org/10.1007/BF02262915]
[15]
Fletcher, B.L.; Dillard, C.J.; Tappel, A.L. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal. Biochem., 1973, 52(1), 1-9.
[http://dx.doi.org/10.1016/0003-2697(73)90327-8] [PMID: 4696687]
[16]
Miller, G.; Suzuki, N.; Ciftci-Yilmaz, S.; Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ., 2010, 33(4), 453-467.
[http://dx.doi.org/10.1111/j.1365-3040.2009.02041.x] [PMID: 19712065]
[17]
Selote, D.S.; Bharti, S.; Khanna-Chopra, R. Drought acclimation reduces O2*- accumulation and lipid peroxidation in wheat seedlings. Biochem. Biophys. Res. Commun., 2004, 314(3), 724-729.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.157] [PMID: 14741695]
[18]
Gigon, A.; Matos, A.R.; Laffray, D.; Zuily-Fodil, Y.; Pham-Thi, A.T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann. Bot., 2004, 94(3), 345-351.
[http://dx.doi.org/10.1093/aob/mch150] [PMID: 15277243]
[19]
Kumar, V.; Kaithwas, G.; Anwar, F.; Rahman, M.; Patel, D.K.; Singh, Y.; Verma, A. effect of variable doses of Paederia foetida L. combat against experimentally- induced systemic and topical inflammation in Wistar Rats. Curr. Bioact. Compd., 2018, 14(1), 70-79.
[http://dx.doi.org/10.2174/1573407213666161214122912]
[20]
Leone, A.; Costa, A.; Grillo, S.; Tucci, M.; Horvarth, I.; Vigh, L. Acclimation to low water potential determines changes in membrane fatty acid composition and fluidity in potato cells. Plant Cell Environ., 1996, 19, 1103-1109.
[http://dx.doi.org/10.1111/j.1365-3040.1996.tb00218.x]
[21]
Makarenko, S.P.; Konstantinov, Yu.M.; Kotimchenko, S.V.; Konenkina, T.A.; Arziev, A.S. Fatty acid composition of mitochondrial membrane lipids. Zea mays and Elymus sibiricus. Plant Physiol., 2003, 50(4), 487-492.
[22]
Yun-ping, G.; Li, Jia-rui. Changes of fatty acids composition of membrane lipids, ethylene release and lipoxygenase activity in leaves of apricot under drought. J. Zhejiang University (Agrical & Life Sci), 2002, 28(5), 513-517.
[23]
Generozova, I.P.; Shugaev, A.G. Respiratory metabolism of mitochondria of pea seedlings of different age under conditions of water deficiency. Plant Physiol., 2012, 59, 262-273.
[24]
Okçu, G.; Kaya, M.D.; Atak, M. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk. J. Agric. For., 2005, 29, 237-242.
[25]
Ashmarin, I.P.; Korazeeva, E.P.; Lelekova, T.V. Efficiency of ultra-low doses of endogenous bioregulators and immunoactive compounds. J. Microbiol. Epidemiol. Immunobiol., 2005, 3, 109-116.
[26]
Burlakova, E.B.; Konradov, A.A.; Mal’tseva, E.L. Effect of ultra-low doses of biologically active substances and low-intensity physical factors. Chem. Phys., 2003, 22, 21-40.
[27]
Burlakova, E.B.; Antioxidants. Rus. Chem, J. Mendeleev Chemical Society of the Russian Fed-eration, 2009, 51(1), 3-12.
[28]
Ryzhkina, I.S.; Murtazina, L.I.; Kiseleva, Yu.V.; Konovalov, A.I. Properties of supramolecular nanoassociates formed in aqueous solutions of low and ultralow concentrations of biologically active substances. Rep. Acad. Sci., 2009, 428(4), 487-491.
[29]
Volod’kin, A.A.; Zaikov, G.E.; Burlakova, E.B.; Lomakin, S.M. Quantum-chemical calculation in studying the properties of 2-(carboxy)-2-(N-acetyl-amine)-3-(-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propionate sodium and potassium and biological environment. In Organic chemistry. Biochemistry, Biotechnology, and Renewable Resoures and Development, 2013, 24, 271-283.
[30]
Volodkin, A.A.; Zaikov, G.E.; Lomakin, S.M.; Yaroshevskaya, Kh.M. Computer simulation of the structure and properties of nanoassocyates of 2-carboxy-2- (N-acetylamino) -3- (3′, 5′-di-tert-butyl-4′-hydroxyphenyl)-propanate of potassium. Bulletin Technol. Univ., 2016, 19(14), 19-22.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy