Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

The Design and Synthesis of Novel Phenothiazine Derivatives as Potential Cytotoxic Agents

Author(s): Yepeng Luan*, Jinyi Liu, Jianjun Gao and Jinhua Wang*

Volume 17, Issue 1, 2020

Page: [57 - 67] Pages: 11

DOI: 10.2174/1570180816666181115112236

Price: $65

Abstract

Background: Cancer incidence and mortality have been increasing and cancer is still the leading cause of death all over the world. Despite the enormous progress in cancer treatment, many patients died of ineffective chemotherapy and drug resistance. Therefore, the design and development of anti-cancer drugs with high efficiency and low toxicity is still one of the most challenging tasks. Tricyclic heterocycles, such as phenothiazine, are always important sources of scaffolds for anti-cancer drug discovery.

Methods: In this work, ten new urea-containing derivatives of phenothiazine coupled with different kinds of amine motifs at the endpoint through a three carbon long spacer were designed and synthesized. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR and HRMS. All the synthesized compounds were tested for their antitumor activity in vitro against the proliferation of PC-3 cells, and the compounds with best potency entered further cytotoxicity evaluations against other 22 human tumor cell lines. Mechanism was also studied.

Results: From all data, it showed that among all 10 target compounds, TTi-2 showed the best effect in inhibiting the proliferation of 23 human cancer cell lines while TTi-2 without obvious inhibitory effect on normal cell. Furthermore, our results also showed that TTi-2 could inhibit migration, invasion and colony formation of MDA-MB-231 cells. Finally, TTi-2 can induce arrest of cell cycle at G0/G1 phase and cell apoptosis by activating the caspase 3 activity.

Conclusion: All these results suggested that TTi-2 might be used as a promising lead compound for anticancer drug development.

Keywords: Phenothiazine, derivative, anti-cancer, design, synthesis, apoptosis.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Iyer, A.K.; Singh, A.; Ganta, S.; Amiji, M.M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1784-1802.
[http://dx.doi.org/10.1016/j.addr.2013.07.012] [PMID: 23880506]
[3]
Matthews, J.H.; Liang, X.; Paul, V.J.; Luesch, H. A complementary chemical and genomic screening approach for druggable targets in the Nrf2 pathway and small molecule inhibitors to overcome cancer cell drug resistance. ACS Chem. Biol., 2018, 13(5), 1189-1199.
[http://dx.doi.org/10.1021/acschembio.7b01025] [PMID: 29565554]
[4]
Jaszczyszyn, A.; Gąsiorowski, K.; Świątek, P.; Malinka, W.; Cieślik-Boczula, K.; Petrus, J.; Czarnik-Matusewicz, B. Chemical structure of phenothiazines and their biological activity. Pharmacol. Rep., 2012, 64(1), 16-23.
[http://dx.doi.org/10.1016/S1734-1140(12)70726-0] [PMID: 22580516]
[5]
Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem., 2011, 46(8), 3179-3189.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.013] [PMID: 21620536]
[6]
Motohashi, N.; Gollapudi, S.R.; Emrani, J.; Bhattiprolu, K.R. Antitumor properties of phenothiazines. Cancer Invest., 1991, 9(3), 305-319.
[http://dx.doi.org/10.3109/07357909109021328] [PMID: 1913233]
[7]
Darvesh, S.; Pottie, I.R.; Darvesh, K.V.; McDonald, R.S.; Walsh, R.; Conrad, S.; Penwell, A.; Mataija, D.; Martin, E. Differential binding of phenothiazine urea derivatives to wild-type human cholinesterases and butyrylcholinesterase mutants. Bioorg. Med. Chem., 2010, 18(6), 2232-2244.
[http://dx.doi.org/10.1016/j.bmc.2010.01.066] [PMID: 20181484]
[8]
Debord, J.; Merle, L.; Bollinger, J.C.; Dantoine, T. Inhibition of butyrylcholinesterase by phenothiazine derivatives. J. Enzyme Inhib. Med. Chem., 2002, 17(3), 197-202.
[http://dx.doi.org/10.1080/1475636021000003165] [PMID: 12443046]
[9]
Okumura, H.; Nakazawa, J.; Tsuganezawa, K.; Usui, T.; Osada, H.; Matsumoto, T.; Tanaka, A.; Yokoyama, S. Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells. Toxicol. Lett., 2006, 166(1), 44-52.
[http://dx.doi.org/10.1016/j.toxlet.2006.05.011] [PMID: 16814965]
[10]
Prinz, H.; Chamasmani, B.; Vogel, K.; Böhm, K.J.; Aicher, B.; Gerlach, M.; Günther, E.G.; Amon, P.; Ivanov, I.; Müller, K. N-benzoylated phenoxazines and phenothiazines: Synthesis, antiproliferative activity, and inhibition of tubulin polymerization. J. Med. Chem., 2011, 54(12), 4247-4263.
[http://dx.doi.org/10.1021/jm200436t] [PMID: 21563750]
[11]
Prinz, H.; Ridder, A.K.; Vogel, K.; Böhm, K.J.; Ivanov, I.; Ghasemi, J.B.; Aghaee, E.; Müller, K. N-Heterocyclic (4-phenylpiperazin-1-yl)methanones derived from phenoxazine and phenothiazine as highly potent inhibitors of tubulin polymerization. J. Med. Chem., 2017, 60(2), 749-766.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01591] [PMID: 28045256]
[12]
Sakagami, H.; Takahashi, H.; Yoshida, H.; Yamamura, M.; Fukuchi, K.; Gomi, K.; Motohashi, N.; Takeda, M. Induction of DNA fragmentation in human myelogenous leukaemic cell lines by phenothiazine-related compounds. Anticancer Res., 1995, 15(6B), 2533-2540.
[PMID: 8669819]
[13]
Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.028] [PMID: 28427017]
[14]
Barbieri, F.; Alama, A.; Tasso, B.; Boido, V.; Bruzzo, C.; Sparatore, F. Quinolizidinyl derivatives of iminodibenzyl and phenothiazine as multidrug resistance modulators in ovarian cancer cells. Invest. New Drugs, 2003, 21(4), 413-420.
[http://dx.doi.org/10.1023/A:1026295017158] [PMID: 14586208]
[15]
Tsakovska, I.M. QSAR and 3D-QSAR of phenothiazine type multidrug resistance modulators in P388/ADR cells. Bioorg. Med. Chem., 2003, 11(13), 2889-2899.
[http://dx.doi.org/10.1016/S0968-0896(03)00222-0] [PMID: 12788359]
[16]
Tsakovska, I.; Pajeva, I. Phenothiazines and structurally related compounds as modulators of cancer multidrug resistance. Curr. Drug Targets, 2006, 7(9), 1123-1134.
[http://dx.doi.org/10.2174/138945006778226660] [PMID: 17017890]
[17]
Latocha, M.; Zięba, A.; Polaniak, R.; Kuśmierz, D.; Nowosad, A.; Jurzak, M.; Romuk, E.; Kokocińska, M.; Sliupkas-Dyrda, E. Molecular effects of amine derivatives of phenothiazine on cancer cells C-32 and Snb-19 in vitro. Acta Pol. Pharm., 2015, 72(5), 909-915.
[PMID: 26665397]
[18]
Wang, J.; Hirose, H.; Du, G.; Chong, K.; Kiyohara, E.; Witz, I.P.; Hoon, D.S.B. P-REX1 amplification promotes progression of cutaneous melanoma via the PAK1/P38/MMP-2 pathway. Cancer Lett., 2017, 407, 66-75.
[http://dx.doi.org/10.1016/j.canlet.2017.08.001] [PMID: 28803992]
[19]
Wang, J.; Hua, W.; Huang, S.K.; Fan, K.; Takeshima, L.; Mao, Y.; Hoon, D.S. RASSF8 regulates progression of cutaneous melanoma through nuclear factor-κb. Oncotarget, 2015, 6(30), 30165-30177.
[http://dx.doi.org/10.18632/oncotarget.5030] [PMID: 26334503]
[20]
Wang, J.; Chong, K.K.; Nakamura, Y.; Nguyen, L.; Huang, S.K.; Kuo, C.; Zhang, W.; Yu, H.; Morton, D.L.; Hoon, D.S. B7-H3 associated with tumor progression and epigenetic regulatory activity in cutaneous melanoma. J. Invest. Dermatol., 2013, 133(8), 2050-2058.
[http://dx.doi.org/10.1038/jid.2013.114] [PMID: 23474948]
[21]
Wang, J.; Xu, Y.; Li, L.; Wang, L.; Yao, R.; Sun, Q.; Du, G. FOXC1 is associated with estrogen receptor alpha and affects sensitivity of tamoxifen treatment in breast cancer. Cancer Med., 2017, 6(1), 275-287.
[http://dx.doi.org/10.1002/cam4.990] [PMID: 28028927]
[22]
Aboeldahab, A.M.A.; Beshr, E.A.M.; Shoman, M.E.; Rabea, S.M.; Aly, O.M. Spirohydantoins and 1,2,4-triazole-3-carboxamide derivatives as inhibitors of histone deacetylase: Design, synthesis, and biological evaluation. Eur. J. Med. Chem., 2018, 146, 79-92.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.021] [PMID: 29396364]
[23]
Shah, N.; Mohammad, A.S.; Saralkar, P.; Sprowls, S.A.; Vickers, S.D.; John, D.; Tallman, R.M.; Lucke-Wold, B.P.; Jarrell, K.E.; Pinti, M.; Nolan, R.L.; Lockman, P.R. Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases. Pharmacol. Res., 2018, 132, 47-68.
[http://dx.doi.org/10.1016/j.phrs.2018.03.021] [PMID: 29604436]
[24]
Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res., 2007, 13(15 Pt 1), 4429-4434.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[25]
Yao, H.; He, G.; Yan, S.; Chen, C.; Song, L.; Rosol, T.J.; Deng, X. Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget, 2017, 8(1), 1913-1924.
[http://dx.doi.org/10.18632/oncotarget.12284] [PMID: 27765921]
[26]
Guestini, F.; McNamara, K.M.; Ishida, T.; Sasano, H. Triple negative breast cancer chemosensitivity and chemoresistance: Current advances in biomarkers indentification. Expert Opin. Ther. Targets, 2016, 20(6), 705-720.
[http://dx.doi.org/10.1517/14728222.2016.1125469] [PMID: 26607563]
[27]
Zhao, H.; Li, D.; Zhang, B.; Qi, Y.; Diao, Y.; Zhen, Y.; Shu, X. PP2A as the main node of therapeutic strategies and resistance reversal in triple-negative breast cancer. Molecules, 2017, 22(12)E2277
[http://dx.doi.org/10.3390/molecules22122277] [PMID: 29261144]
[28]
Doddapaneni, R.; Patel, K.; Chowdhury, N.; Singh, M. Reversal of drug-resistance by noscapine chemo-sensitization in docetaxel resistant triple negative breast cancer. Sci. Rep., 2017, 7(1), 15824.
[http://dx.doi.org/10.1038/s41598-017-15531-1] [PMID: 29158480]
[29]
Ray, P.S.; Wang, J.; Qu, Y.; Sim, M.S.; Shamonki, J.; Bagaria, S.P.; Ye, X.; Liu, B.; Elashoff, D.; Hoon, D.S.; Walter, M.A.; Martens, J.W.; Richardson, A.L.; Giuliano, A.E.; Cui, X. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res., 2010, 70(10), 3870-3876.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4120] [PMID: 20406990]

© 2025 Bentham Science Publishers | Privacy Policy