[1]
Patel, S.A.; Minn, A.J. Combination cancer therapy with immune checkpoint blockade: Mechanisms and strategies. Immunity, 2018, 48(3), 417-433.
[2]
Bryan, J.T.; Buckland, B.; Hammond, J.; Jansen, K.U. Prevention of cervical cancer: Journey to develop the first human papillomavirus virus-like particle vaccine and the next generation vaccine. Curr. Opin. Chem. Biol., 2016, 32, 34-47.
[3]
Chang, M.H.; You, S.L.; Chen, C.J.; Liu, C.J.; Lai, M.W.; Wu, T.C.; Wu, S.F.; Lee, C.M.; Yang, S.S.; Chu, H.C.; Wang, T.E.; Chen, B.W.; Chuang, W.L.; Soon, M.S.; Lin, C.Y.; Chiou, S.T.; Kuo, H.S.; Chen, D.S. Long-term effects of hepatitis B immunization of infants in preventing liver cancer. Gastroenterology, 2016, 151(3), 472-480.
[4]
Van-der-Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van-den-Eynde, B.; Knuth, A.; Boon, T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991, 254(5038), 1643-1647.
[5]
Sondak, V.K.; Sosman, J.A. Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: Melacine. Semin. Cancer Biol., 2003, 13(6), 409-415.
[6]
Rassweiler, J. Re: Ten-year survival analysis for renal carcinoma patients treated with an autologous tumour lysate vaccine in an adjuvant setting. Eur. Urol., 2012, 61(1), 219-220.
[7]
Wen, Y.J.; Min, R.; Tricot, G.; Barlogie, B.; Yi, Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: Promising effector cells for immunotherapy. Blood, 2002, 99(9), 3280-3285.
[8]
Cornelissen, R.; Hegmans, J.P.; Maat, A.P.; Kaijen-Lambers, M.E.; Bezemer, K.; Hendriks, R.W.; Hoogsteden, H.C.; Aerts, J.G. Extended tumor control after dendritic cell vaccination with low-dose cyclophosphamide as adjuvant treatment in patients with malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med., 2016, 193(9), 1023-1031.
[9]
Higano, C.S.; Corman, J.M.; Smith, D.C.; Centeno, A.S.; Steidle, C.P.; Gittleman, M.; Simons, J.W.; Sacks, N.; Aimi, J.; Small, E.J. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer, 2008, 113(5), 975-984.
[10]
Schwartzentruber, D.J.; Lawson, D.H.; Richards, J.M.; Conry, R.M.; Miller, D.M.; Treisman, J.; Gailani, F.; Riley, L.; Conlon, K.; Pockaj, B.; Kendra, K.L.; White, R.L.; Gonzalez, R.; Kuzel, T.M.; Curti, B.; Leming, P.D.; Whitman, E.D.; Balkissoon, J.; Reintgen, D.S.; Kaufman, H.; Marincola, F.M.; Merino, M.J.; Rosenberg, S.A.; Choyke, P.; Vena, D.; Hwu, P. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med., 2011, 364(22), 2119-2127.
[11]
Rosalia, R.A.; Quakkelaar, E.D.; Redeker, A.; Khan, S.; Camps, M.; Drijfhout, J.W.; Silva, A.L.; Jiskoot, W.; van Hall, T.; Van-Veelen, P.A.; Janssen, G.; Franken, K.; Cruz, L.J.; Tromp, A.; Oostendorp, J.; Van-der Burg, S.H.; Ossendorp, F.; Melief, C.J. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur. J. Immunol., 2013, 43(10), 2554-2565.
[12]
Masuko, K.; Wakita, D.; Togashi, Y.; Kita, T.; Kitamura, H.; Nishimura, T. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): Preparation and immunological analysis of vaccine efficacy. Immunol. Lett., 2015, 163(1), 102-112.
[13]
Carbone, D.P.; Ciernik, I.F.; Kelley, M.J.; Smith, M.C.; Nadaf, S.; Kavanaugh, D.; Maher, V.E.; Stipanov, M.; Contois, D.; Johnson, B.E.; Pendleton, C.D.; Seifert, B.; Carter, C.; Read, E.J.; Greenblatt, J.; Top, L.E.; Kelsey, M.I.; Minna, J.D.; Berzofsky, J.A. Immunization with mutant p53- and K-ras-derived peptides in cancer patients: Immune response and clinical outcome. J. Clin. Oncol., 2005, 23(22), 5099-5107.
[14]
Okuyama, R.; Aruga, A.; Hatori, T.; Takeda, K.; Yamamoto, M. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. OncoImmunology, 2013, 2(11), e27010.
[15]
Bowen, W.S.; Svrivastava, A.K.; Batra, L.; Barsoumian, H.; Shirwan, H. Current challenges for cancer vaccine adjuvant development. Expert Rev. Vaccines, 2018, 17(3), 207-215.
[16]
Yen, H.H.; Scheerlinck, J.P. Co-delivery of plasmid-encoded cytokines modulates the immune response to a DNA vaccine delivered by in vivo electroporation. Vaccine, 2007, 25(14), 2575-2582.
[17]
Thalmensi, J.; Pliquet, E.; Liard, C.; Escande, M.; Bestetti, T.; Julithe, M.; Kostrzak, A.; Pailhes-Jimenez, A.S.; Bourges, E.; Loustau, M.; Caumartin, J.; Lachgar, A.; Huet, T.; Wain-Hobson, S.; Langlade-Demoyen, P. Anticancer DNA vaccine based on human telomerase reverse transcriptase generates a strong and specific T cell immune response. OncoImmunology, 2016, 5(3), e1083670.
[18]
Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; Brown, A.S.; Marcozzi-Pierce, K.; Shah, D.; Slager, A.M.; Sylvester, A.J.; Khan, A.; Broderick, K.E.; Juba, R.J.; Herring, T.A.; Boyer, J.; Lee, J.; Sardesai, N.Y.; Weiner, D.B.; Bagarazzi, M.L. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet (London, England), 2015, 386(10008), 2078-2088.
[19]
Santos, P.M.; Butterfield, L.H. Dendritic cell-based cancer vaccines. J. Immunol., 2018, 200(2), 443-449.
[20]
Dong, W.; Wei, R.; Shen, H.; Ni, Y.; Meng, L.; Du, J. Combination of DC vaccine and conventional chemotherapeutics. Anticancer. Agents Med. Chem., 2016, 16(5), 558-567.
[21]
Hardin, M.O.; Vreeland, T.J.; Clifton, G.T.; Hale, D.F.; Herbert, G.S.; Greene, J.M.; Jackson, D.O.; Berry, J.E.; Nichols, P.; Yin, S.; Yu, X.; Wagner, T.E.; Peoples, G.E. Tumor lysate particle loaded dendritic cell vaccine: Preclinical testing of a novel personalized cancer vaccine. Immunotherapy, 2018, 10(5), 373-382.
[22]
Grunwitz, C.; Kranz, L.M. mRNA cancer vaccines-messages that prevail. Curr. Top. Microbiol. Immunol., 2017, 405, 145-164.
[23]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y.; Frohlich, M.W.; Schellhammer, P.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[24]
Garu, A.; Moku, G.; Gulla, S.K.; Chaudhuri, A. Genetic Immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol. Ther., 2016, 24(2), 385-397.
[25]
Calderon-Gonzalez, R.; Bronchalo-Vicente, L.; Freire, J.; Frande-Cabanes, E.; Alaez-Alvarez, L.; Gomez-Roman, J.; Yanez-Diaz, S.; Alvarez-Dominguez, C. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a listeria peptide proposed against metastatic melanoma. Oncotarget, 2016, 7(13), 16855-16865.
[26]
Kandalaft, L.E.; Powell, D.J., Jr; Chiang, C.L.; Tanyi, J.; Kim, S.; Bosch, M.; Montone, K.; Mick, R.; Levine, B.L.; Torigian, D.A.; June, C.H.; Coukos, G. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. OncoImmunology, 2013, 2(1), e22664.
[27]
Schuler, P.J.; Harasymczuk, M.; Visus, C.; Deleo, A.; Trivedi, S.; Lei, Y.; Argiris, A.; Gooding, W.; Butterfield, L.H.; Whiteside, T.L.; Ferris, R.L. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin. Cancer Res., 2014, 20(9), 2433-2444.
[28]
Lasky, J.L., III; Panosyan, E.H.; Plant, A.; Davidson, T.; Yong, W.H.; Prins, R.M.; Liau, L.M.; Moore, T.B. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res., 2013, 33(5), 2047-2056.
[29]
Hunn, M.K.; Bauer, E.; Wood, C.E.; Gasser, O.; Dzhelali, M.; Ancelet, L.R.; Mester, B.; Sharples, K.J.; Findlay, M.P.; Hamilton, D.A.; Hermans, I.F. Dendritic cell vaccination combined with temozolomide retreatment: Results of a phase I trial in patients with recurrent glioblastoma multiforme. J. Neurooncol., 2015, 121(2), 319-329.
[30]
Vermeulen, L.; Sprick, M.R.; Kemper, K.; Stassi, G.; Medema, J.P. Cancer stem cells--old concepts, new insights. Cell Death Differ., 2008, 15(6), 947-958.
[31]
Garcia-Rubino, M.E.; Lozano-Lopez, C.; Campos, J.M. Inhibitors of cancer stem cells. Anticancer. Agents Med. Chem., 2016, 16(10), 1230-1239.
[32]
Ghisolfi, L.; Keates, A.C.; Hu, X.; Lee, D.K.; Li, C.J. Ionizing radiation induces stemness in cancer cells. PLoS One, 2012, 7(8), e43628.
[33]
Hu, X.; Ghisolfi, L.; Keates, A.C.; Zhang, J.; Xiang, S.; Lee, D.K.; Li, C.J. Induction of cancer cell stemness by chemotherapy. Cell Cycle (Georgetown, Tex.),, 2012, 11(14), 2691-2698.
[34]
Mooney, C.J.; Hakimjavadi, R.; Fitzpatrick, E.; Kennedy, E.; Walls, D.; Morrow, D.; Redmond, E.M.; Cahill, P.A. Hedgehog and resident vascular stem cell fate. Stem Cells Int., 2015, 2015, 468428.
[35]
Huang, J.; Kalderon, D. Coupling of hedgehog and hippo pathways promotes stem cell maintenance by stimulating proliferation. J. Cell Biol., 2014, 205(3), 325-338.
[36]
Famili, F.; Brugman, M.H.; Taskesen, E.; Naber, B.E.; Fodde, R.; Staal, F.J. High levels of canonical wnt signaling lead to loss of stemness and increased differentiation in hematopoietic stem cells. Stem Cell Reports, 2016, 6(5), 652-659.
[37]
Mah, I.K.; Soloff, R.; Hedrick, S.M.; Mariani, F.V. Atypical PKC-iota controls stem cell expansion via regulation of the notch pathway. Stem Cell Reports, 2015, 5(5), 866-880.
[38]
Lu, L.; Tao, H.; Chang, A.E.; Hu, Y.; Shu, G.; Chen, Q.; Egenti, M.; Owen, J.; Moyer, J.S.; Prince, M.E.; Huang, S.; Wicha, M.S.; Xia, J.C.; Li, Q. Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. OncoImmunology, 2015, 4(3), e990767.
[39]
Hu, Y.; Lu, L.; Xia, Y.; Chen, X.; Chang, A.E.; Hollingsworth, R.E.; Hurt, E.; Owen, J.H.; Moyer, J.S.; Prince, M.E.; Dai, F.; Bao, Y.; Wang, Y.; Whitfield, J.; Xia, J.; Huang, S.; Wicha, M.S.; Li, Q. Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res., 2016, 76(16), 4661-4672.
[40]
Zhao, F.; He, X.; Sun, J.; Wu, D.; Pan, M.; Li, M.; Wu, S.; Zhang, R.; Yan, C.; Dou, J. Cancer stem cell vaccine expressing ESAT-6-gpi and IL-21 inhibits melanoma growth and metastases. Am. J. Transl. Res., 2015, 7(10), 1870-1882.
[41]
Duarte, S.; Momier, D.; Baque, P.; Casanova, V.; Loubat, A.; Samson, M.; Guigonis, J.M.; Staccini, P.; Saint-Paul, M.C.; De Lima, M.P.; Carle, G.F.; Pierrefite-Carle, V. Preventive cancer stem cell-based vaccination reduces liver metastasis development in a rat colon carcinoma syngeneic model. Stem Cells (Dayton, Ohio), 2013, 31(3), 423-432.
[42]
Lin, M.; Yuan, Y.Y.; Liu, S.P.; Shi, J.J.; Long, X.A.; Niu, L.Z.; Chen, J.B.; Li, Q.; Xu, K.C. Prospective study of the safety and efficacy of a pancreatic cancer stem cell vaccine. J. Cancer Res. Clin. Oncol., 2015, 141(10), 1827-1833.
[43]
Lin, M.; Li, S.Y.; Xu, K.C.; Liu, Z.P.; Mu, F.; Yuan, Y.Y.; Wang, X.H.; Chen, J.B.; Li, Q. Safety and efficacy study of lung cancer stem cell vaccine. Immunol. Res., 2015, 62(1), 16-22.
[44]
Marra, A.; Ferrone, C.; Fusciello, C.; Scognamiglio, G.; Ferrone, S.; Pepe, S.; Perri, F.; Sabbatino, F. Translational research in cutaneous melanoma: New therapeutic perspectives. Anticancer. Agents Med. Chem., 2017, 18(2), 166-181.
[45]
Oyama, T.; Ran, S.; Ishida, T.; Nadaf, S.; Kerr, L.; Carbone, D.P.; Gabrilovich, D.I. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J. Immunol., 1998, 160(3), 1224-1232.
[46]
Ohm, J.E.; Carbone, D.P. VEGF as a mediator of tumor-associated immunodeficiency. Immunol. Res., 2001, 23(2-3), 263-272.
[47]
Osada, T.; Chong, G.; Tansik, R.; Hong, T.; Spector, N.; Kumar, R.; Hurwitz, H.I.; Dev, I.; Nixon, A.B.; Lyerly, H.K.; Clay, T.; Morse, M.A. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother., 2008, 57(8), 1115-1124.
[48]
Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R.; Cunningham, H.T.; Meny, G.M.; Nadaf, S.; Kavanaugh, D.; Carbone, D.P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med., 1996, 2(10), 1096-1103.
[49]
Terme, M.; Colussi, O.; Marcheteau, E.; Tanchot, C.; Tartour, E.; Taieb, J. Modulation of immunity by antiangiogenic molecules in cancer. Clin. Dev. Immunol., 2012, 2012, 492920.
[50]
Neagu, M.R.; Reardon, D.A. Rindopepimut vaccine and bevacizumab combination therapy: Improving survival rates in relapsed glioblastoma patients? Immunotherapy, 2015, 7(6), 603-606.
[51]
Yang, D.H.; Park, J.S.; Jin, C.J.; Kang, H.K.; Nam, J.H.; Rhee, J.H.; Kim, Y.K.; Chung, S.Y.; Choi, S.J.; Kim, H.J.; Chung, I.J.; Lee, J.J. The dysfunction and abnormal signaling pathway of dendritic cells loaded by tumor antigen can be overcome by neutralizing VEGF in multiple myeloma. Leuk. Res., 2009, 33(5), 665-670.
[52]
Bagcchi, S. Sunitinib still first-line therapy for metastatic renal cancer. Lancet Oncol., 2014, 15(10), e420.
[53]
Potapova, O.; Laird, A.D.; Nannini, M.A.; Barone, A.; Li, G.; Moss, K.G.; Cherrington, J.M.; Mendel, D.B. Contribution of individual targets to the antitumor efficacy of the multitargeted receptor tyrosine kinase inhibitor SU11248. Mol. Cancer Ther., 2006, 5(5), 1280-1289.
[54]
Hipp, M.M.; Hilf, N.; Walter, S.; Werth, D.; Brauer, K.M.; Radsak, M.P.; Weinschenk, T.; Singh-Jasuja, H.; Brossart, P. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood, 2008, 111(12), 5610-5620.
[55]
Nizard, M.; Roussel, H.; Diniz, M.O.; Karaki, S.; Tran, T.; Voron, T.; Dransart, E.; Sandoval, F.; Riquet, M.; Rance, B.; Marcheteau, E.; Fabre, E.; Mandavit, M.; Terme, M.; Blanc, C.; Escudie, J.B.; Gibault, L.; Barthes, F.L.P.; Granier, C.; Ferreira, L.C.S.; Badoual, C.; Johannes, L.; Tartour, E. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun., 2017, 8, 15221.
[56]
Finlay, D.; Cantrell, D.A. Metabolism, migration and memory in cytotoxic T cells. Nat. Rev. Immunol., 2011, 11(2), 109-117.
[57]
Araki, K.; Turner, A.P.; Shaffer, V.O.; Gangappa, S.; Keller, S.A.; Bachmann, M.F.; Larsen, C.P.; Ahmed, R. mTOR regulates memory CD8 T-cell differentiation. Nature, 2009, 460(7251), 108-112.
[58]
Wang, Y.; Sparwasser, T.; Figlin, R.; Kim, H.L. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition. Cancer Res., 2014, 74(8), 2217-2228.
[59]
Wang, Y.; Wang, X.Y.; Subjeck, J.R.; Shrikant, P.A.; Kim, H.L. Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br. J. Cancer, 2011, 104(4), 643-652.
[60]
Nagini, S. Breast cancer: Current molecular therapeutic targets and new players. Anticancer. Agents Med. Chem., 2017, 17(2), 152-163.
[61]
Ina, K.; Kataoka, T.; Ando, T. The use of lentinan for treating gastric cancer. Anticancer. Agents Med. Chem., 2013, 13(5), 681-688.
[62]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[63]
Wolpoe, M.E.; Lutz, E.R.; Ercolini, A.M.; Murata, S.; Ivie, S.E.; Garrett, E.S.; Emens, L.A.; Jaffee, E.M.; Reilly, R.T. HER-2/neuspecific
monoclonal antibodies collaborate with HER-2/neu-targeted
granulocyte macrophage colony-stimulating factor secreting whole
cell vaccination to augment CD8+ T cell effector function and tumorfree
survival in Her-2/neu-transgenic mice. J. Immunol., (Baltimore,
Md., 1950),, 2003, 171(4), 2161-2169.
[64]
Disis, M.L.; Wallace, D.R.; Gooley, T.A.; Dang, Y.; Slota, M.; Lu, H.; Coveler, A.L.; Childs, J.S.; Higgins, D.M.; Fintak, P.A.; Dela-Rosa, C.; Tietje, K.; Link, J.; Waisman, J.; Salazar, L.G. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J. Clin. Oncol., 2009, 27(28), 4685-4692.
[65]
Chen, G.; Gupta, R.; Petrik, S.; Laiko, M.; Leatherman, J.M.; Asquith, J.M.; Daphtary, M.M.; Garrett-Mayer, E.; Davidson, N.E.; Hirt, K.; Berg, M.; Uram, J.N.; Dauses, T.; Fetting, J.; Duus, E.M.; Atay-Rosenthal, S.; Ye, X.; Wolff, A.C.; Stearns, V.; Jaffee, E.M.; Emens, L.A. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer Immunol. Res., 2014, 2(10), 949-961.
[66]
Bekaii-Saab, T.S.; Roda, J.M.; Guenterberg, K.D.; Ramaswamy, B.; Young, D.C.; Ferketich, A.K.; Lamb, T.A.; Grever, M.R.; Shapiro, C.L.; Carson, W.E., III A phase I trial of paclitaxel and trastuzumab in combination with interleukin-12 in patients with HER2/neu-expressing malignancies. Mol. Cancer Ther., 2009, 8(11), 2983-2991.
[67]
Romero, P.; Banchereau, J.; Bhardwaj, N.; Cockett, M.; Disis, M.L.; Dranoff, G.; Gilboa, E.; Hammond, S.A.; Hershberg, R.; Korman, A.J.; Kvistborg, P.; Melief, C.; Mellman, I.; Palucka, A.K.; Redchenko, I.; Robins, H.; Sallusto, F.; Schenkelberg, T.; Schoenberger, S.; Sosman, J.; Tureci, O.; Van-den-Eynde, B.; Koff, W.; Coukos, G. The Human Vaccines Project: A roadmap for cancer vaccine development. Sci. Transl. Med., 2016, 8(334), 334ps9.
[68]
Liu, Y. Neoantigen: A long march toward cancer immunotherapy. Clin. Cancer Res., 2016, 22(11), 2602-2604.
[69]
Lu, Y.C.; Robbins, P.F. Targeting neoantigens for cancer immunotherapy. Int. Immunol., 2016, 28(7), 365-370.
[70]
Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olive, O.; Carter, T.A.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gjini, E.; Stevens, J.; Lane, W.J.; Javeri, I.; Nellaiappan, K.; Salazar, A.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neuberg, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for melanoma patients. Nature, 2017, 547(7662), 217-221.
[71]
Ye, Z.; Qian, Q.; Jin, H.; Qian, Q. Cancer vaccine: Learning lessons from immune checkpoint inhibitors. J. Cancer, 2018, 9(2), 263-268.
[72]
Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science, 2015, 348(6230), 69-74.
[73]
Gubin, M.M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J.P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C.D.; Krebber, W.J.; Mulder, G.E.; Toebes, M.; Vesely, M.D.; Lam, S.S.; Korman, A.J.; Allison, J.P.; Freeman, G.J.; Sharpe, A.H.; Pearce, E.L.; Schumacher, T.N.; Aebersold, R.; Rammensee, H.G.; Melief, C.J.; Mardis, E.R.; Gillanders, W.E.; Artyomov, M.N.; Schreiber, R.D. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515(7528), 577-581.
[74]
Yadav, M.; Jhunjhunwala, S.; Phung, Q.T.; Lupardus, P.; Tanguay, J.; Bumbaca, S.; Franci, C.; Cheung, T.K.; Fritsche, J.; Weinschenk, T.; Modrusan, Z.; Mellman, I.; Lill, J.R.; Delamarre, L. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 2014, 515(7528), 572-576.
[75]
Hundal, J.; Carreno, B.M.; Petti, A.A.; Linette, G.P.; Griffith, O.L.; Mardis, E.R.; Griffith, M. pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. Gen. Med., 2016, 8(1), 11.
[76]
Carreno, B.M.; Magrini, V.; Becker-Hapak, M.; Kaabinejadian, S.; Hundal, J.; Petti, A.A.; Ly, A.; Lie, W.R.; Hildebrand, W.H.; Mardis, E.R.; Linette, G.P. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015, 348(6236), 803-808.
[77]
Pritchard, A.L.; Burel, J.G.; Neller, M.A.; Hayward, N.K.; Lopez, J.A.; Fatho, M.; Lennerz, V.; Wolfel, T.; Schmidt, C.W. Exome sequencing to predict neoantigens in melanoma. Cancer Immunol. Res., 2015, 3(9), 992-998.
[78]
Katsnelson, A. Mutations as munitions: Neoantigen vaccines get a closer look as cancer treatment. Nat. Med., 2016, 22(2), 122-124.
[79]
Schenkelberg, T.; Kieny, M.P.; Bianco, A.E.; Koff, W.C. Building the human vaccines project: Strategic management recommendations and summary report of the 15-16 July 2014 business workshop. Expert Rev. Vaccines, 2015, 14(5), 629-636.
[80]
Lenschow, D.J.; Walunas, T.L.; Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol., 1996, 14, 233-258.
[81]
Mohamed, H.; Eltobgy, M.; Abdel-Rahman, O. Immune checkpoints aberrations and malignant mesothelioma: Assessment of prognostic value and evaluation of therapeutic potentials. Anticancer. Agents Med. Chem., 2017, 17(9), 1228-1233.
[82]
Boise, L.H.; Minn, A.J.; Noel, P.J.; June, C.H.; Accavitti, M.A.; Lindsten, T.; Thompson, C.B. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity, 1995, 3(1), 87-98.
[83]
Linsley, P.S.; Greene, J.L.; Brady, W.; Bajorath, J.; Ledbetter, J.A.; Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1(9), 793-801.
[84]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[85]
Chen, L.; Han, X. Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J. Clin. Invest., 2015, 125(9), 3384-3391.
[86]
Hawkes, E.A.; Grigg, A.; Chong, G. Programmed cell death-1 inhibition in lymphoma. Lancet Oncol., 2015, 16(5), e234-e245.
[87]
Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S.; Dronca, R.; Gangadhar, T.C.; Patnaik, A.; Zarour, H.; Joshua, A.M.; Gergich, K.; Elassaiss-Schaap, J.; Algazi, A.; Mateus, C.; Boasberg, P.; Tumeh, P.C.; Chmielowski, B.; Ebbinghaus, S.W.; Li, X.N.; Kang, S.P.; Ribas, A. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med., 2013, 369(2), 134-144.
[88]
Valsecchi, M.E. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, 373(13), 1270.
[89]
Van-Der-Burg, S.H.; Arens, R.; Ossendorp, F.; Van-Hall, T.; Melief, C.J. Vaccines for established cancer: Overcoming the challenges posed by immune evasion. Nat. Rev. Cancer, 2016, 16(4), 219-233.
[90]
Rekoske, B.T.; Olson, B.M.; McNeel, D.G. Antitumor vaccination of prostate cancer patients elicits PD-1/PD-L1 regulated antigen-specific immune responses. OncoImmunology, 2016, 5(6), e1165377.
[91]
Fu, J.; Malm, I.J.; Kadayakkara, D.K.; Levitsky, H.; Pardoll, D.; Kim, Y.J. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res., 2014, 74(15), 4042-4052.
[92]
Hailemichael, Y.; Woods, A.; Fu, T.; He, Q.; Nielsen, M.C.; Hasan, F.; Roszik, J.; Xiao, Z.; Vianden, C.; Khong, H.; Singh, M.; Sharma, M.; Faak, F.; Moore, D.; Dai, Z.; Anthony, S.M.; Schluns, K.S.; Sharma, P.; Engelhard, V.H.; Overwijk, W.W. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J. Clin. Invest., 2018, 128(4), 1338-1354.
[93]
Overwijk, W.W. Cancer vaccines in the era of checkpoint blockade: The magic is in the adjuvant. Curr. Opin. Immunol., 2017, 47, 103-109.
[94]
Xue, W.; Metheringham, R.L.; Brentville, V.A.; Gunn, B.; Symonds, P.; Yagita, H.; Ramage, J.M.; Durrant, L.G. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade. OncoImmunology, 2016, 5(6), e1169353.
[95]
Liu, Z.; Zhou, H.; Wang, W.; Fu, Y.X.; Zhu, M. A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. OncoImmunology, 2016, 5(6), e1147641.
[96]
Gibney, G.T.; Kudchadkar, R.R.; DeConti, R.C.; Thebeau, M.S.; Czupryn, M.P.; Tetteh, L.; Eysmans, C.; Richards, A.; Schell, M.J.; Fisher, K.J.; Horak, C.E.; Inzunza, H.D.; Yu, B.; Martinez, A.J.; Younos, I.; Weber, J.S. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin. Cancer Res., 2015, 21(4), 712-720.
[97]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; Van-Den-Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbe, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[98]
Van-Elsas, A.; Hurwitz, A.A.; Allison, J.P. Combination immunotherapy of B16 melanoma using anti-Ctotoxic T Lymphocyte-Associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med., 1999, 190(3), 355-366.
[99]
Eertwegh, A.V.D.; Versluis, J. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: A phase 1 dose-escalation trial. Lancet Oncol., 2012, 13(5), 509-517.
[100]
Gatti-Mays, M.E.; Redman, J.M.; Collins, J.M.; Bilusic, M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum. Vaccin. Immunother., 2017, 13(11), 2561-2574.