Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Bioactive Polyphenols as Promising Natural Medicinal Agents Against Cancer: The Emerging Trends and Prospective Goals

Author(s): Om Prakash, Shazia Usmani*, Amresh Gupta, Ruchi Singh, Namrata Singh and Akash Ved

Volume 16, Issue 3, 2020

Page: [243 - 264] Pages: 22

DOI: 10.2174/1573407214666181030122046

Price: $65

Abstract

Background: There is much epidemiological evidence that fruits, vegetables, medicinal plants, and their phytochemicals could lower the progression and development of various forms of cancer. The plants are active reservoirs for novel chemical entities and provide a promising resource for the management of cancer.

Methods: Several analyses have signified that bioactive flavonoids and phenolic acids might be widely practiced for the management as well as therapy of numerous carcinomas.

A large number of research works are now focusing on natural polyphenolic compounds and trying to find out new and more effective treatment strategies for cancer patients.

Results: The probable mechanism comprises anti-oxidant, anti-inflammation, apoptosis and induces inhibition of cell proliferation along with genomic phenomena elaborated in cancer therapy.

Conclusion: In the last five years, studies investigated the antitumor potential of common polyphenolic groups (phenolic acids, flavonoids, lignins, resveratrol, stilbene, quercetin etc.) exploring the prospective mechanism, based on epidemiological data thus reporting therapeutic evidence and various clinical examinations.

Keywords: Anti-cancer, polyphenols, flavonoids, apoptosis, antioxidant, anti-inflammation.

Graphical Abstract

[1]
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop., 2017, 20, 1689-1699.
[http://dx.doi.org/10.1080/10942912.2016.1220393]
[4]
Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients, 2016, 8(3), 156.
[http://dx.doi.org/10.3390/nu8030156] [PMID: 26978396]
[5]
Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules, 2010, 15(12), 8602-8617.
[http://dx.doi.org/10.3390/molecules15128602] [PMID: 21116229]
[6]
Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.; Xie, J.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods, 2013, 5, 260-266.
[http://dx.doi.org/10.1016/j.jff.2012.10.015]
[7]
Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford), 2010, 2010bap024
[http://dx.doi.org/10.1093/database/bap024] [PMID: 20428313]
[8]
Kausar, H.; Jeyabalan, J.; Aqil, F.; Chabba, D.; Sidana, J.; Singh, I.P.; Gupta, R.C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., 2012, 325(1), 54-62.
[http://dx.doi.org/10.1016/j.canlet.2012.05.029] [PMID: 22659736]
[9]
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[10]
Shi, J.; Liu, F.; Zhang, W.; Liu, X.; Lin, B.; Tang, X. Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol. Rep., 2015, 33(6), 2972-2980.
[http://dx.doi.org/10.3892/or.2015.3889] [PMID: 25845434]
[11]
Rigalli, J.P.; Tocchetti, G.N.; Arana, M.R.; Villanueva, S.S.; Catania, V.A.; Theile, D.; Ruiz, M.L.; Weiss, J. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett., 2016, 376(1), 165-172.
[http://dx.doi.org/10.1016/j.canlet.2016.03.040] [PMID: 27033456]
[12]
Wang, H.; Zhang, H.; Tang, L.; Chen, H.; Wu, C.; Zhao, M.; Yang, Y.; Chen, X.; Liu, G. Resveratrol inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology, 2013, 303, 139-146.
[http://dx.doi.org/10.1016/j.tox.2012.09.017] [PMID: 23146760]
[13]
Li, F.; Li, S.; Li, H.B.; Deng, G.F.; Ling, W.H.; Xu, X.R. Antiproliferative activities of tea and herbal infusions. Food Funct., 2013, 4(4), 530-538.
[http://dx.doi.org/10.1039/c2fo30252g] [PMID: 23307138]
[14]
Li, F.; Li, S.; Li, H.; Deng, G.; Ling, W.; Wu, S.; Xu, X.; Chen, F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods, 2013, 5, 1298-1309.
[http://dx.doi.org/10.1016/j.jff.2013.04.016]
[15]
Christensen, K.Y.; Naidu, A.; Parent, M.E.; Pintos, J.; Abrahamowicz, M.; Siemiatycki, J.; Koushik, A. The risk of lung cancer related to dietary intake of flavonoids. Nutr. Cancer, 2012, 64(7), 964-974.
[http://dx.doi.org/10.1080/01635581.2012.717677] [PMID: 23061904]
[16]
Woo, H.D.; Lee, J.; Choi, I.J.; Kim, C.G.; Lee, J.Y.; Kwon, O.; Kim, J. Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients, 2014, 6(11), 4961-4973.
[http://dx.doi.org/10.3390/nu6114961] [PMID: 25389898]
[17]
Petrick, J.L.; Steck, S.E.; Bradshaw, P.T.; Trivers, K.F.; Abrahamson, P.E.; Engel, L.S.; He, K.; Chow, W.H.; Mayne, S.T.; Risch, H.A.; Vaughan, T.L.; Gammon, M.D. Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the United States of America (USA). Br. J. Cancer, 2015, 112(7), 1291-1300.
[http://dx.doi.org/10.1038/bjc.2015.25] [PMID: 25668011]
[18]
Tse, G.; Eslick, G.D. Soy and isoflavone consumption and risk of gastrointestinal cancer: a systematic review and meta-analysis. Eur. J. Nutr., 2016, 55(1), 63-73.
[http://dx.doi.org/10.1007/s00394-014-0824-7] [PMID: 25547973]
[19]
Zamora-Ros, R.; Not, C.; Guinó, E.; Luján-Barroso, L.; García, R.M.; Biondo, S.; Salazar, R.; Moreno, V. Association between habitual dietary flavonoid and lignan intake and colorectal cancer in a Spanish case-control study (the Bellvitge Colorectal Cancer Study). Cancer Causes Control, 2013, 24(3), 549-557.
[http://dx.doi.org/10.1007/s10552-012-9992-z] [PMID: 22588680]
[20]
Nimptsch, K.; Zhang, X.; Cassidy, A.; Song, M.; O’Reilly, E.J.; Lin, J.H.; Pischon, T.; Rimm, E.B.; Willett, W.C.; Fuchs, C.S.; Ogino, S.; Chan, A.T.; Giovannucci, E.L.; Wu, K. Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts. Am. J. Clin. Nutr., 2016, 103(1), 184-191.
[http://dx.doi.org/10.3945/ajcn.115.117507] [PMID: 26537935]
[21]
Wang, Z.J.; Ohnaka, K.; Morita, M.; Toyomura, K.; Kono, S.; Ueki, T.; Tanaka, M.; Kakeji, Y.; Maehara, Y.; Okamura, T.; Ikejiri, K.; Futami, K.; Maekawa, T.; Yasunami, Y.; Takenaka, K.; Ichimiya, H.; Terasaka, R. Dietary polyphenols and colorectal cancer risk: the Fukuoka colorectal cancer study. World J. Gastroenterol., 2013, 19(17), 2683-2690.
[http://dx.doi.org/10.3748/wjg.v19.i17.2683] [PMID: 23674876]
[22]
Zamora-Ros, R.; Agudo, A.; Luján-Barroso, L.; Romieu, I.; Ferrari, P.; Knaze, V.; Bueno-de-Mesquita, H.B.; Leenders, M.; Travis, R.C.; Navarro, C.; Sánchez-Cantalejo, E.; Slimani, N.; Scalbert, A.; Fedirko, V.; Hjartåker, A.; Engeset, D.; Skeie, G.; Boeing, H.; Förster, J.; Li, K.; Teucher, B.; Agnoli, C.; Tumino, R.; Mattiello, A.; Saieva, C.; Johansson, I.; Stenling, R.; Redondo, M.L.; Wallström, P.; Ericson, U.; Khaw, K.T.; Mulligan, A.A.; Trichopoulou, A.; Dilis, V.; Katsoulis, M.; Peeters, P.H.; Igali, L.; Tjønneland, A.; Halkjær, J.; Touillaud, M.; Perquier, F.; Fagherazzi, G.; Amiano, P.; Ardanaz, E.; Bredsdorff, L.; Overvad, K.; Ricceri, F.; Riboli, E.; González, C.A. Dietary flavonoid and lignan intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr., 2012, 96(6), 1398-1408.
[http://dx.doi.org/10.3945/ajcn.112.037358] [PMID: 23076618]
[23]
Zamora-Ros, R.; Fedirko, V.; Trichopoulou, A.; González, C.A.; Bamia, C.; Trepo, E.; Nöthlings, U.; Duarte-Salles, T.; Serafini, M.; Bredsdorff, L.; Overvad, K.; Tjønneland, A.; Halkjaer, J.; Fagherazzi, G.; Perquier, F.; Boutron-Ruault, M.C.; Katzke, V.; Lukanova, A.; Floegel, A.; Boeing, H.; Lagiou, P.; Trichopoulos, D.; Saieva, C.; Agnoli, C.; Mattiello, A.; Tumino, R.; Sacerdote, C.; Bueno-de-Mesquita, H.B.; Peeters, P.H.; Weiderpass, E.; Engeset, D.; Skeie, G.; Argüelles, M.V.; Molina-Montes, E.; Dorronsoro, M.; Tormo, M.J.; Ardanaz, E.; Ericson, U.; Sonestedt, E.; Sund, M.; Landberg, R.; Khaw, K.T.; Wareham, N.J.; Crowe, F.L.; Riboli, E.; Jenab, M. Dietary flavonoid, lignan and antioxidant capacity and risk of hepatocellular carcinoma in the European prospective investigation into cancer and nutrition study. Int. J. Cancer, 2013, 133(10), 2429-2443.
[http://dx.doi.org/10.1002/ijc.28257] [PMID: 23649669]
[24]
Hui, C.; Qi, X.; Qianyong, Z.; Xiaoli, P.; Jundong, Z.; Mantian, M. Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One, 2013, 8(1)e54318
[http://dx.doi.org/10.1371/journal.pone.0054318] [PMID: 23349849]
[25]
Chen, M.; Rao, Y.; Zheng, Y.; Wei, S.; Li, Y.; Guo, T.; Yin, P. Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PLoS One, 2014, 9(2)e89288
[http://dx.doi.org/10.1371/journal.pone.0089288] [PMID: 24586662]
[26]
Xie, Q.; Chen, M.L.; Qin, Y.; Zhang, Q.Y.; Xu, H.X.; Zhou, Y.; Mi, M.T.; Zhu, J.D. Isoflavone consumption and risk of breast cancer: a dose-response meta-analysis of observational studies. Asia Pac. J. Clin. Nutr., 2013, 22(1), 118-127.
[PMID: 23353619]
[27]
Wang, Y.; Gapstur, S.M.; Gaudet, M.M.; Peterson, J.J.; Dwyer, J.T.; McCullough, M.L. Evidence for an association of dietary flavonoid intake with breast cancer risk by estrogen receptor status is limited. J. Nutr., 2014, 144(10), 1603-1611.
[http://dx.doi.org/10.3945/jn.114.196964] [PMID: 25143370]
[28]
Yan, A.I.; Nina, V.C.; Mark, S.V.; Alexander, G.M. Dietary Polyphenols for Prostate Cancer Therapy. Curr. Bioact. Compd., 2014, 10, 76-111.
[http://dx.doi.org/10.2174/157340721002141001102524]
[29]
Wang, Y.; Stevens, V.L.; Shah, R.; Peterson, J.J.; Dwyer, J.T.; Gapstur, S.M.; McCullough, M.L. Dietary flavonoid and proanthocyanidin intakes and prostate cancer risk in a prospective cohort of US men. Am. J. Epidemiol., 2014, 179(8), 974-986.
[http://dx.doi.org/10.1093/aje/kwu006] [PMID: 24567173]
[30]
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26(8), 1001-1043.
[http://dx.doi.org/10.1039/b802662a] [PMID: 19636448]
[31]
Yun, J.M.; Afaq, F.; Khan, N.; Mukhtar, H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog., 2009, 48(3), 260-270.
[http://dx.doi.org/10.1002/mc.20477] [PMID: 18729103]
[32]
Bin Hafeez, B.; Asim, M.; Siddiqui, I.A.; Adhami, V.M.; Murtaza, I.; Mukhtar, H. Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: a new weapon to blunt prostate cancer growth. Cell Cycle, 2008, 7(21), 3320-3326.
[http://dx.doi.org/10.4161/cc.7.21.6969] [PMID: 18948740]
[33]
Liu, W.; Xu, J.; Wu, S.; Liu, Y.; Yu, X.; Chen, J.; Tang, X.; Wang, Z.; Zhu, X.; Li, X. Selective anti-proliferation of HER2-positive breast cancer cells by anthocyanins identified by high-throughput screening. PLoS One, 2013, 8(12)e81586
[http://dx.doi.org/10.1371/journal.pone.0081586] [PMID: 24312561]
[34]
Ho, M.L.; Chen, P.N.; Chu, S.C.; Kuo, D.Y.; Kuo, W.H.; Chen, J.Y.; Hsieh, Y.S. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr. Cancer, 2010, 62(4), 505-516.
[http://dx.doi.org/10.1080/01635580903441261] [PMID: 20432172]
[35]
Lee, S.J.; Hong, S.; Yoo, S.H.; Kim, G.W. Cyanidin-3-O-sambubioside from Acanthopanax sessiliflorus fruit inhibits metastasis by downregulating MMP-9 in breast cancer cells MDA-MB-231. Planta Med., 2013, 79(17), 1636-1640.
[http://dx.doi.org/10.1055/s-0033-1350954] [PMID: 24214832]
[36]
Cvorovic, J.; Tramer, F.; Granzotto, M.; Candussio, L.; Decorti, G.; Passamonti, S. Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Arch. Biochem. Biophys., 2010, 501(1), 151-157.
[http://dx.doi.org/10.1016/j.abb.2010.05.019] [PMID: 20494645]
[37]
Jing, P.; Bomser, J.A.; Schwartz, S.J.; He, J.; Magnuson, B.A.; Giusti, M.M. Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J. Agric. Food Chem., 2008, 56(20), 9391-9398.
[http://dx.doi.org/10.1021/jf8005917] [PMID: 18800807]
[38]
Yong, W.K.; Abd Malek, S.N. Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. Evid. Based Complement. Alternat. Med., 2015, 2015921306
[http://dx.doi.org/10.1155/2015/921306] [PMID: 25949267]
[39]
Yong, W.K.; Ho, Y.F.; Malek, S.N. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn. Mag., 2015, 11(Suppl. 2), S275-S283.
[http://dx.doi.org/10.4103/0973-1296.166069] [PMID: 26664015]
[40]
Zhao, X.; Jiang, K.; Liang, B.; Huang, X. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Oncol. Rep., 2016, 35(2), 669-675.
[http://dx.doi.org/10.3892/or.2015.4455] [PMID: 26718026]
[41]
Kunnimalaiyaan, S.; Sokolowski, K.M.; Balamurugan, M.; Gamblin, T.C.; Kunnimalaiyaan, M. Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma. PLoS One, 2015, 10(5)e0127464
[http://dx.doi.org/10.1371/journal.pone.0127464] [PMID: 26011160]
[42]
Yoshimaru, T.; Komatsu, M.; Tashiro, E.; Imoto, M.; Osada, H.; Miyoshi, Y.; Honda, J.; Sasa, M.; Katagiri, T. Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions. Sci. Rep., 2014, 4, 7355.
[http://dx.doi.org/10.1038/srep07355] [PMID: 25483453]
[43]
Wang, Y.; Chen, Y.; Wang, J.; Chen, J.; Aggarwal, B.B.; Pang, X.; Liu, M. Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr. Mol. Med., 2012, 12(2), 153-162.
[http://dx.doi.org/10.2174/156652412798889072] [PMID: 22172099]
[44]
Venè, R.; Benelli, R.; Minghelli, S.; Astigiano, S.; Tosetti, F.; Ferrari, N. Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. Mol. Med., 2012, 18, 1292-1302.
[http://dx.doi.org/10.2119/molmed.2012.00174] [PMID: 22952060]
[45]
Deng, Y.T.; Lin, J.K. EGCG inhibits the invasion of highly invasive CL1-5 lung cancer cells through suppressing MMP-2 expression via JNK signaling and induces G2/M arrest. J. Agric. Food Chem., 2011, 59(24), 13318-13327.
[http://dx.doi.org/10.1021/jf204149c] [PMID: 22082235]
[46]
Onoda, C.; Kuribayashi, K.; Nirasawa, S.; Tsuji, N.; Tanaka, M.; Kobayashi, D.; Watanabe, N. (-)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression. Int. J. Oncol., 2011, 38(5), 1403-1408.
[PMID: 21344159]
[47]
Tanaka, T.; Ishii, T.; Mizuno, D.; Mori, T.; Yamaji, R.; Nakamura, Y.; Kumazawa, S.; Nakayama, T.; Akagawa, M. (-)-Epigallocatechin-3-gallate suppresses growth of AZ521 human gastric cancer cells by targeting the DEAD-box RNA helicase p68. Free Radic. Biol. Med., 2011, 50(10), 1324-1335.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.024] [PMID: 21277973]
[48]
Cerezo-Guisado, M.I.; Zur, R.; Lorenzo, M.J.; Risco, A.; Martín-Serrano, M.A.; Alvarez-Barrientos, A.; Cuenda, A.; Centeno, F. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem. Toxicol., 2015, 84, 125-132.
[http://dx.doi.org/10.1016/j.fct.2015.08.017] [PMID: 26303273]
[49]
Thakur, V.S.; Deb, G.; Babcook, M.A.; Gupta, S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J., 2014, 16(1), 151-163.
[http://dx.doi.org/10.1208/s12248-013-9548-5] [PMID: 24307610]
[50]
Saldanha, S.N.; Kala, R.; Tollefsbol, T.O. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp. Cell Res., 2014, 324(1), 40-53.
[http://dx.doi.org/10.1016/j.yexcr.2014.01.024] [PMID: 24518414]
[51]
Toden, S.; Tran, H.M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget, 2016, 7(13), 16158-16171.
[http://dx.doi.org/10.18632/oncotarget.7567] [PMID: 26930714]
[52]
Mineva, N.D.; Paulson, K.E.; Naber, S.P.; Yee, A.S.; Sonenshein, G.E. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One, 2013, 8(9)e73464
[http://dx.doi.org/10.1371/journal.pone.0073464] [PMID: 24039951]
[53]
Tu, S.H.; Ku, C.Y.; Ho, C.T.; Chen, C.S.; Huang, C.S.; Lee, C.H.; Chen, L.C.; Pan, M.H.; Chang, H.W.; Chang, C.H.; Chang, Y.J.; Wei, P.L.; Wu, C.H.; Ho, Y.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits nicotine- and estrogen-induced α9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol. Nutr. Food Res., 2011, 55(3), 455-466.
[http://dx.doi.org/10.1002/mnfr.201000254] [PMID: 21370452]
[54]
De Amicis, F.; Russo, A.; Avena, P.; Santoro, M.; Vivacqua, A.; Bonofiglio, D.; Mauro, L.; Aquila, S.; Tramontano, D.; Fuqua, S.A.; Andò, S. In vitro mechanism for downregulation of ER-α expression by epigallocatechin gallate in ER+/PR+ human breast cancer cells. Mol. Nutr. Food Res., 2013, 57(5), 840-853.
[http://dx.doi.org/10.1002/mnfr.201200560] [PMID: 23322423]
[55]
Deb, G.; Thakur, V.S.; Limaye, A.M.; Gupta, S. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol. Carcinog., 2015, 54(6), 485-499.
[http://dx.doi.org/10.1002/mc.22121] [PMID: 24481780]
[56]
Siddiqui, I.A.; Asim, M.; Hafeez, B.B.; Adhami, V.M.; Tarapore, R.S.; Mukhtar, H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J., 2011, 25(4), 1198-1207.
[http://dx.doi.org/10.1096/fj.10-167924] [PMID: 21177307]
[57]
Kin, R.; Kato, S.; Kaneto, N.; Sakurai, H.; Hayakawa, Y.; Li, F.; Tanaka, K.; Saiki, I.; Yokoyama, S. Procyanidin C1 from Cinnamomi Cortex inhibits TGF-β-induced epithelial-to-mesenchymal transition in the A549 lung cancer cell line. Int. J. Oncol., 2013, 43(6), 1901-1906.
[http://dx.doi.org/10.3892/ijo.2013.2139] [PMID: 24141365]
[58]
Choy, Y.Y.; Fraga, M.; Mackenzie, G.G.; Waterhouse, A.L.; Cremonini, E.; Oteiza, P.I. The PI3K/Akt pathway is involved in procyanidin-mediated suppression of human colorectal cancer cell growth. Mol. Carcinog., 2016, 55(12), 2196-2209.
[http://dx.doi.org/10.1002/mc.22461] [PMID: 26774105]
[59]
Gorlach, S.; Wagner, W.; Podsędek, A.; Szewczyk, K.; Koziołkiewicz, M.; Dastych, J. Procyanidins from Japanese quince (Chaenomeles japonica) fruit induce apoptosis in human colon cancer Caco-2 cells in a degree of polymerization-dependent manner. Nutr. Cancer, 2011, 63(8), 1348-1360.
[http://dx.doi.org/10.1080/01635581.2011.608480] [PMID: 22026386]
[60]
Lewandowska, U.; Szewczyk, K.; Owczarek, K.; Hrabec, Z.; Podsędek, A.; Sosnowska, D.; Hrabec, E. Procyanidins from evening primrose (Oenothera paradoxa) defatted seeds inhibit invasiveness of breast cancer cells and modulate the expression of selected genes involved in angiogenesis, metastasis, and apoptosis. Nutr. Cancer, 2013, 65(8), 1219-1231.
[http://dx.doi.org/10.1080/01635581.2013.830314] [PMID: 24099118]
[61]
Jin, C.Y.; Park, C.; Hwang, H.J.; Kim, G.Y.; Choi, B.T.; Kim, W.J.; Choi, Y.H. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol. Nutr. Food Res., 2011, 55(2), 300-309.
[http://dx.doi.org/10.1002/mnfr.201000024] [PMID: 20669244]
[62]
Bao, L.; Liu, F.; Guo, H.B.; Li, Y.; Tan, B.B.; Zhang, W.X.; Peng, Y.H. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumour Biol., 2016, 37(8), 11365-11374.
[http://dx.doi.org/10.1007/s13277-016-5013-2] [PMID: 26960693]
[63]
Song, H.M.; Park, G.H.; Eo, H.J.; Jeong, J.B. Naringenin-mediated ATF3 expression contributes to apoptosis in human colon cancer. Biomol. Ther. (Seoul), 2016, 24(2), 140-146.
[http://dx.doi.org/10.4062/biomolther.2015.109] [PMID: 26797111]
[64]
Yen, H.R.; Liu, C.J.; Yeh, C.C. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem. Biol. Interact., 2015, 235, 1-9.
[http://dx.doi.org/10.1016/j.cbi.2015.04.003] [PMID: 25866363]
[65]
Arul, D.; Subramanian, P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol. Oncol. Res., 2013, 19(4), 763-770.
[http://dx.doi.org/10.1007/s12253-013-9641-1] [PMID: 23661153]
[66]
Kim, S.; Park, T.I. Naringenin: a partial agonist on estrogen receptor in T47D-KBluc breast cancer cells. Int. J. Clin. Exp. Med., 2013, 6(10), 890-899.
[PMID: 24260594]
[67]
Qin, L.; Jin, L.; Lu, L.; Lu, X.; Zhang, C.; Zhang, F.; Liang, W. Naringenin reduces lung metastasis in a breast cancer resection model. Protein Cell, 2011, 2(6), 507-516.
[http://dx.doi.org/10.1007/s13238-011-1056-8] [PMID: 21748601]
[68]
Zhang, J.; Wu, D.; Vikash, ; Song, J.; Wang, J.; Yi, J.; Dong, W. Vikash; Song, J.; Wang, J.; Yi, J.; Dong, W.Hesperetin induces the apoptosis of gastric cancer cells via activating mitochondrial pathway by increasing reactive oxygen species. Dig. Dis. Sci., 2015, 60(10), 2985-2995.
[http://dx.doi.org/10.1007/s10620-015-3696-7] [PMID: 25972151]
[69]
Aranganathan, S.; Nalini, N. Antiproliferative efficacy of hesperetin (citrus flavanoid) in 1,2-dimethylhydrazine-induced colon cancer. Phytother. Res., 2013, 27(7), 999-1005.
[http://dx.doi.org/10.1002/ptr.4826] [PMID: 22899565]
[70]
Palit, S.; Kar, S.; Sharma, G.; Das, P.K. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J. Cell. Physiol., 2015, 230(8), 1729-1739.
[http://dx.doi.org/10.1002/jcp.24818] [PMID: 25204891]
[71]
Yang, Y.; Wolfram, J.; Boom, K.; Fang, X.; Shen, H.; Ferrari, M. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochem. Funct., 2013, 31(5), 374-379.
[http://dx.doi.org/10.1002/cbf.2905] [PMID: 23042260]
[72]
Sambantham, S.; Radha, M.; Paramasivam, A.; Anandan, B.; Malathi, R.; Chandra, S.R.; Jayaraman, G. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac. J. Cancer Prev., 2013, 14(7), 4347-4352.
[http://dx.doi.org/10.7314/APJCP.2013.14.7.4347] [PMID: 23992001]
[73]
Alshatwi, A.A.; Ramesh, E.; Periasamy, V.S.; Subash-Babu, P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam. Clin. Pharmacol., 2013, 27(6), 581-592.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01061.x] [PMID: 22913657]
[74]
Zhu, Y.; Wu, J.; Li, S.; Wang, X.; Liang, Z.; Xu, X.; Xu, X.; Hu, Z.; Lin, Y.; Chen, H.; Qin, J.; Mao, Q.; Xie, L. Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer. Mol. Med. Rep., 2015, 11(2), 1004-1008.
[http://dx.doi.org/10.3892/mmr.2014.2801] [PMID: 25351792]
[75]
Lu, H.F.; Chie, Y.J.; Yang, M.S.; Lu, K.W.; Fu, J.J.; Yang, J.S.; Chen, H.Y.; Hsia, T.C.; Ma, C.Y.; Ip, S.W.; Chung, J.G. Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways. Hum. Exp. Toxicol., 2011, 30(8), 1053-1061.
[http://dx.doi.org/10.1177/0960327110386258] [PMID: 20937639]
[76]
Chen, J.; Chen, J.; Li, Z.; Liu, C.; Yin, L. The apoptotic effect of apigenin on human gastric carcinoma cells through mitochondrial signal pathway. Tumour Biol., 2014, 35(8), 7719-7726.
[http://dx.doi.org/10.1007/s13277-014-2014-x] [PMID: 24805829]
[77]
Kuo, C.H.; Weng, B.C.; Wu, C.C.; Yang, S.F.; Wu, D.C.; Wang, Y.C. Apigenin has anti-atrophic gastritis and anti-gastric cancer progression effects in Helicobacter pylori-infected Mongolian gerbils. J. Ethnopharmacol., 2014, 151(3), 1031-1039.
[http://dx.doi.org/10.1016/j.jep.2013.11.040] [PMID: 24374236]
[78]
Chunhua, L.; Donglan, L.; Xiuqiong, F.; Lihua, Z.; Qin, F.; Yawei, L.; Liang, Z.; Ge, W.; Linlin, J.; Ping, Z.; Kun, L.; Xuegang, S. Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J. Nutr. Biochem., 2013, 24(10), 1766-1775.
[http://dx.doi.org/10.1016/j.jnutbio.2013.03.006] [PMID: 23773626]
[79]
Seo, H.S.; Jo, J.K.; Ku, J.M.; Choi, H.S.; Choi, Y.K.; Woo, J.K.; Kim, H.I.; Kang, S.Y.; Lee, K.M.; Nam, K.W.; Park, N.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci. Rep., 2015, 35(6)e00276
[http://dx.doi.org/10.1042/BSR20150165] [PMID: 26500281]
[80]
Tseng, T.H.; Chien, M.H.; Lin, W.L.; Wen, Y.C.; Chow, J.M.; Chen, C.K.; Kuo, T.C.; Lee, W.J. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression. Environ. Toxicol., 2017, 32(2), 434-444.
[http://dx.doi.org/10.1002/tox.22247] [PMID: 26872304]
[81]
Pandey, M.; Kaur, P.; Shukla, S.; Abbas, A.; Fu, P.; Gupta, S. Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol. Carcinog., 2012, 51(12), 952-962.
[http://dx.doi.org/10.1002/mc.20866] [PMID: 22006862]
[82]
Shukla, S.; Bhaskaran, N.; Babcook, M.A.; Fu, P.; Maclennan, G.T.; Gupta, S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis, 2014, 35(2), 452-460.
[http://dx.doi.org/10.1093/carcin/bgt316] [PMID: 24067903]
[83]
Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Luo, X.; Huang, J.; Luo, F.; Li, H.; Li, H.; Ren, G. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J. Appl. Toxicol., 2014, 34(1), 105-112.
[http://dx.doi.org/10.1002/jat.2941] [PMID: 24122885]
[84]
Shao, J.J.; Zhang, A.P.; Qin, W.; Zheng, L.; Zhu, Y.F.; Chen, X. AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells. Biochem. Biophys. Res. Commun., 2012, 423(3), 448-453.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.123] [PMID: 22659738]
[85]
Ronnekleiv-Kelly, S.M.; Nukaya, M.; Díaz-Díaz, C.J.; Megna, B.W.; Carney, P.R.; Geiger, P.G.; Kennedy, G.D. Aryl hydrocarbon receptor-dependent apoptotic cell death induced by the flavonoid chrysin in human colorectal cancer cells. Cancer Lett., 2016, 370(1), 91-99.
[http://dx.doi.org/10.1016/j.canlet.2015.10.014] [PMID: 26515162]
[86]
Cai, X.; Ye, T.; Liu, C.; Lu, W.; Lu, M.; Zhang, J.; Wang, M.; Cao, P. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol. In Vitro, 2011, 25(7), 1385-1391.
[http://dx.doi.org/10.1016/j.tiv.2011.05.009] [PMID: 21601631]
[87]
Choi, H.J.; Choi, H.J.; Chung, T.W.; Ha, K.T. Luteolin inhibits recruitment of monocytes and migration of Lewis lung carcinoma cells by suppressing chemokine (C-C motif) ligand 2 expression in tumor-associated macrophage. Biochem. Biophys. Res. Commun., 2016, 470(1), 101-106.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.002] [PMID: 26766793]
[88]
Ruan, J.; Zhang, L.; Yan, L.; Liu, Y.; Yue, Z.; Chen, L.; Wang, A.Y.; Chen, W.; Zheng, S.; Wang, S.; Lu, Y. Inhibition of hypoxia-induced epithelial mesenchymal transition by luteolin in non-small cell lung cancer cells. Mol. Med. Rep., 2012, 6(1), 232-238.
[PMID: 22552526]
[89]
Hong, Z.; Cao, X.; Li, N.; Zhang, Y.; Lan, L.; Zhou, Y.; Pan, X.; Shen, L.; Yin, Z.; Luo, L. Luteolin is effective in the non-small cell lung cancer model with L858R/T790M EGF receptor mutation and erlotinib resistance. Br. J. Pharmacol., 2014, 171(11), 2842-2853.
[http://dx.doi.org/10.1111/bph.12610] [PMID: 24471765]
[90]
Lu, J.; Li, G.; He, K.; Jiang, W.; Xu, C.; Li, Z.; Wang, H.; Wang, W.; Wang, H.; Teng, X.; Teng, L. Luteolin exerts a marked antitumor effect in cMet-overexpressing patient-derived tumor xenograft models of gastric cancer. J. Transl. Med., 2015, 13, 42.
[http://dx.doi.org/10.1186/s12967-015-0398-z] [PMID: 25638174]
[91]
Lim, D.Y.; Cho, H.J.; Kim, J.; Nho, C.W.; Lee, K.W.; Park, J.H. Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells. BMC Gastroenterol., 2012, 12, 9.
[http://dx.doi.org/10.1186/1471-230X-12-9] [PMID: 22269172]
[92]
Abdel Hadi, L.; Di Vito, C.; Marfia, G.; Ferraretto, A.; Tringali, C.; Viani, P.; Riboni, L. Sphingosine Kinase 2 and Ceramide Transport as Key Targets of the Natural Flavonoid Luteolin to Induce Apoptosis in Colon Cancer Cells. PLoS One, 2015, 10(11)e0143384
[http://dx.doi.org/10.1371/journal.pone.0143384] [PMID: 26580959]
[93]
Wang, L.M.; Xie, K.P.; Huo, H.N.; Shang, F.; Zou, W.; Xie, M.J. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ERα in human breast cancer MCF-7 cells. Asian Pac. J. Cancer Prev., 2012, 13(4), 1431-1437.
[http://dx.doi.org/10.7314/APJCP.2012.13.4.1431] [PMID: 22799344]
[94]
Lee, E.J.; Oh, S.Y.; Sung, M.K. Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem. Toxicol., 2012, 50(11), 4136-4143.
[http://dx.doi.org/10.1016/j.fct.2012.08.025] [PMID: 22926442]
[95]
Tsui, K.H.; Chung, L.C.; Feng, T.H.; Chang, P.L.; Juang, H.H. Upregulation of prostate-derived Ets factor by luteolin causes inhibition of cell proliferation and cell invasion in prostate carcinoma cells. Int. J. Cancer, 2012, 130(12), 2812-2823.
[http://dx.doi.org/10.1002/ijc.26284] [PMID: 21780100]
[96]
Zheng, S.Y.; Li, Y.; Jiang, D.; Zhao, J.; Ge, J.F. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol. Med. Rep., 2012, 5(3), 822-826.
[PMID: 22200874]
[97]
Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[98]
Kim, H.S.; Wannatung, T.; Lee, S.; Yang, W.K.; Chung, S.H.; Lim, J.S.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis, 2012, 17(9), 938-949.
[http://dx.doi.org/10.1007/s10495-012-0719-0] [PMID: 22684842]
[99]
Velázquez, K.T.; Enos, R.T.; Narsale, A.A.; Puppa, M.J.; Davis, J.M.; Murphy, E.A.; Carson, J.A. Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice. J. Nutr., 2014, 144(6), 868-875.
[http://dx.doi.org/10.3945/jn.113.188367] [PMID: 24759931]
[100]
Dai, W.; Gao, Q.; Qiu, J.; Yuan, J.; Wu, G.; Shen, G. Quercetin induces apoptosis and enhances 5-FU therapeutic efficacy in hepatocellular carcinoma. Tumour Biol., 2016, 37(5), 6307-6313.
[http://dx.doi.org/10.1007/s13277-015-4501-0] [PMID: 26628295]
[101]
Duo, J.; Ying, G.G.; Wang, G.W.; Zhang, L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol. Med. Rep., 2012, 5(6), 1453-1456.
[PMID: 22447039]
[102]
Wang, F.; Yang, Y. RETRACTED: Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand-receptor binding and therefore impairs cancer cell proliferation. Biochem. Biophys. Res. Commun., 2014, 452(4), 1028-1033.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.039] [PMID: 25241191]
[103]
Srinivasan, A.; Thangavel, C.; Liu, Y.; Shoyele, S.; Den, R.B.; Selvakumar, P.; Lakshmikuttyamma, A. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Mol. Carcinog., 2016, 55(5), 743-756.
[http://dx.doi.org/10.1002/mc.22318] [PMID: 25968914]
[104]
Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol., 2016, 781, 60-68.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.063] [PMID: 27041643]
[105]
Sharmila, G.; Athirai, T.; Kiruthiga, B.; Senthilkumar, K.; Elumalai, P.; Arunkumar, R.; Arunakaran, J. Chemopreventive effect of quercetin in MNU and testosterone induced prostate cancer of Sprague-Dawley rats. Nutr. Cancer, 2014, 66(1), 38-46.
[http://dx.doi.org/10.1080/01635581.2014.847967] [PMID: 24320139]
[106]
Sharmila, G.; Bhat, F.A.; Arunkumar, R.; Elumalai, P.; Raja Singh, P.; Senthilkumar, K.; Arunakaran, J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr., 2014, 33(4), 718-726.
[http://dx.doi.org/10.1016/j.clnu.2013.08.011] [PMID: 24080313]
[107]
Bishayee, K.; Ghosh, S.; Mukherjee, A.; Sadhukhan, R.; Mondal, J.; Khuda-Bukhsh, A.R. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction. Cell Prolif., 2013, 46(2), 153-163.
[http://dx.doi.org/10.1111/cpr.12017] [PMID: 23510470]
[108]
Jo, E.; Park, S.J.; Choi, Y.S.; Jeon, W.K.; Kim, B.C. Kaempferol suppresses transforming growth factor-beta1-induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of smad3 at threonine-179. Neoplasia, 2015, 17(7), 525-537.
[http://dx.doi.org/10.1016/j.neo.2015.06.004] [PMID: 26297431]
[109]
Song, H.; Bao, J.; Wei, Y.; Chen, Y.; Mao, X.; Li, J.; Yang, Z.; Xue, Y. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study. Oncol. Rep., 2015, 33(2), 868-874.
[http://dx.doi.org/10.3892/or.2014.3662] [PMID: 25500692]
[110]
Lee, H.S.; Cho, H.J.; Yu, R.; Lee, K.W.; Chun, H.S.; Park, J.H. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int. J. Mol. Sci., 2014, 15(2), 2722-2737.
[http://dx.doi.org/10.3390/ijms15022722] [PMID: 24549175]
[111]
Huang, W.W.; Tsai, S.C.; Peng, S.F.; Lin, M.W.; Chiang, J.H.; Chiu, Y.J.; Fushiya, S.; Tseng, M.T.; Yang, J.S. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int. J. Oncol., 2013, 42(6), 2069-2077.
[http://dx.doi.org/10.3892/ijo.2013.1909] [PMID: 23591552]
[112]
Liao, W.; Chen, L.; Ma, X.; Jiao, R.; Li, X.; Wang, Y. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur. J. Med. Chem., 2016, 114, 24-32.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.045] [PMID: 26974372]
[113]
Azevedo, C.; Correia-Branco, A.; Araújo, J.R.; Guimarães, J.T.; Keating, E.; Martel, F. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr. Cancer, 2015, 67(3), 504-513.
[http://dx.doi.org/10.1080/01635581.2015.1002625] [PMID: 25719685]
[114]
Kim, S.H.; Hwang, K.A.; Choi, K.C. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J. Nutr. Biochem., 2016, 28, 70-82.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.027] [PMID: 26878784]
[115]
Li, C.; Zhao, Y.; Yang, D.; Yu, Y.; Guo, H.; Zhao, Z.; Zhang, B.; Yin, X. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem. Cell Biol., 2015, 93(1), 16-27.
[http://dx.doi.org/10.1139/bcb-2014-0067] [PMID: 25453494]
[116]
Feng, J.; Chen, X.; Wang, Y.; Du, Y.; Sun, Q.; Zang, W.; Zhao, G. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol. Cell. Biochem., 2015, 408(1-2), 163-170.
[http://dx.doi.org/10.1007/s11010-015-2492-1] [PMID: 26112905]
[117]
Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res., 2014, 34(2), 701-706.
[PMID: 24511002]
[118]
Iyer, S.C.; Gopal, A.; Halagowder, D. Myricetin induces apoptosis by inhibiting P21 activated kinase 1 (PAK1) signaling cascade in hepatocellular carcinoma. Mol. Cell. Biochem., 2015, 407(1-2), 223-237.
[http://dx.doi.org/10.1007/s11010-015-2471-6] [PMID: 26104578]
[119]
Kim, D.A.; Jeon, Y.K.; Nam, M.J. Galangin induces apoptosis in gastric cancer cells via regulation of ubiquitin carboxy-terminal hydrolase isozyme L1 and glutathione S-transferase P. Food Chem. Toxicol., 2012, 50(3-4), 684-688.
[http://dx.doi.org/10.1016/j.fct.2011.11.039] [PMID: 22142694]
[120]
Chien, S.T.; Shi, M.D.; Lee, Y.C.; Te, C.C.; Shih, Y.W. Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int., 2015, 15, 15.
[http://dx.doi.org/10.1186/s12935-015-0168-2] [PMID: 25698902]
[121]
Su, L.; Chen, X.; Wu, J.; Lin, B.; Zhang, H.; Lan, L.; Luo, H. Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem. Toxicol., 2013, 62, 810-816.
[http://dx.doi.org/10.1016/j.fct.2013.10.019] [PMID: 24161691]
[122]
Hu, S.; Huang, L.; Meng, L.; Sun, H.; Zhang, W.; Xu, Y. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways. Mol. Med. Rep., 2015, 12(5), 6745-6751.
[http://dx.doi.org/10.3892/mmr.2015.4269] [PMID: 26502751]
[123]
Li, C.; Yang, D.; Zhao, Y.; Qiu, Y.; Cao, X.; Yu, Y.; Guo, H.; Gu, X.; Yin, X. Inhibitory effects of isorhamnetin on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-2/9. Nutr. Cancer, 2015, 67(7), 1191-1200.
[http://dx.doi.org/10.1080/01635581.2015.1073763] [PMID: 26359917]
[124]
Li, Q.; Ren, F.Q.; Yang, C.L.; Zhou, L.M.; Liu, Y.Y.; Xiao, J.; Zhu, L.; Wang, Z.G. Anti-proliferation effects of isorhamnetin on lung cancer cells in vitro and in vivo. Asian Pac. J. Cancer Prev., 2015, 16(7), 3035-3042.
[http://dx.doi.org/10.7314/APJCP.2015.16.7.3035] [PMID: 25854402]
[125]
Ramachandran, L.; Manu, K.A.; Shanmugam, M.K.; Li, F.; Siveen, K.S.; Vali, S.; Kapoor, S.; Abbasi, T.; Surana, R.; Smoot, D.T.; Ashktorab, H.; Tan, P.; Ahn, K.S.; Yap, C.W.; Kumar, A.P.; Sethi, G. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. J. Biol. Chem., 2012, 287(45), 38028-38040.
[http://dx.doi.org/10.1074/jbc.M112.388702] [PMID: 22992727]
[126]
Li, C.; Yang, X.; Chen, C.; Cai, S.; Hu, J. Isorhamnetin suppresses colon cancer cell growth through the PI3K‑Akt‑mTOR pathway. Mol. Med. Rep., 2014, 9(3), 935-940.
[http://dx.doi.org/10.3892/mmr.2014.1886] [PMID: 24398569]
[127]
Saud, S.M.; Young, M.R.; Jones-Hall, Y.L.; Ileva, L.; Evbuomwan, M.O.; Wise, J.; Colburn, N.H.; Kim, Y.S.; Bobe, G. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin. Cancer Res., 2013, 73(17), 5473-5484.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0525] [PMID: 23824743]
[128]
Park, H.J.; Jeon, Y.K.; You, D.H.; Nam, M.J. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells. Food Chem. Toxicol., 2013, 60, 542-549.
[http://dx.doi.org/10.1016/j.fct.2013.08.022] [PMID: 23959101]
[129]
Magee, P.J.; Allsopp, P.; Samaletdin, A.; Rowland, I.R. Daidzein, R-(+)equol and S-(-)equol inhibit the invasion of MDA-MB-231 breast cancer cells potentially via the down-regulation of matrix metalloproteinase-2. Eur. J. Nutr., 2014, 53(1), 345-350.
[http://dx.doi.org/10.1007/s00394-013-0520-z] [PMID: 23568763]
[130]
Koo, J.; Cabarcas-Petroski, S.; Petrie, J.L.; Diette, N.; White, R.J.; Schramm, L. Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein. BMC Cancer, 2015, 15, 905.
[http://dx.doi.org/10.1186/s12885-015-1914-5] [PMID: 26573593]
[131]
Tian, T.; Li, J.; Li, B.; Wang, Y.; Li, M.; Ma, D.; Wang, X. Genistein exhibits anti-cancer effects via down-regulating FoxM1 in H446 small-cell lung cancer cells. Tumour Biol., 2014, 35(5), 4137-4145.
[http://dx.doi.org/10.1007/s13277-013-1542-0] [PMID: 24379139]
[132]
Huang, W.; Wan, C.; Luo, Q.; Huang, Z.; Luo, Q. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int. J. Mol. Sci., 2014, 15(3), 3432-3443.
[http://dx.doi.org/10.3390/ijms15033432] [PMID: 24573253]
[133]
Qin, J.; Teng, J.; Zhu, Z.; Chen, J.; Huang, W.J. Genistein induces activation of the mitochondrial apoptosis pathway by inhibiting phosphorylation of Akt in colorectal cancer cells. Pharm. Biol., 2016, 54(1), 74-79.
[http://dx.doi.org/10.3109/13880209.2015.1014921] [PMID: 25880142]
[134]
Xiao, X.; Liu, Z.; Wang, R.; Wang, J.; Zhang, S.; Cai, X.; Wu, K.; Bergan, R.C.; Xu, L.; Fan, D. Genistein suppresses FLT4 and inhibits human colorectal cancer metastasis. Oncotarget, 2015, 6(5), 3225-3239.
[http://dx.doi.org/10.18632/oncotarget.3064] [PMID: 25605009]
[135]
Luo, Y.; Wang, S.X.; Zhou, Z.Q.; Wang, Z.; Zhang, Y.G.; Zhang, Y.; Zhao, P. Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-κB) pathway. Tumour Biol., 2014, 35(11), 11483-11488.
[http://dx.doi.org/10.1007/s13277-014-2487-7] [PMID: 25128065]
[136]
Lepri, S.R.; Zanelatto, L.C.; da Silva, P.B.; Sartori, D.; Ribeiro, L.R.; Mantovani, M.S. Effects of genistein and daidzein on cell proliferation kinetics in HT29 colon cancer cells: the expression of CTNNBIP1 (β-catenin), APC (adenomatous polyposis coli) and BIRC5 (survivin). Hum. Cell, 2014, 27(2), 78-84.
[http://dx.doi.org/10.1007/s13577-012-0051-6] [PMID: 24390805]
[137]
Dai, W.; Wang, F.; He, L.; Lin, C.; Wu, S.; Chen, P.; Zhang, Y.; Shen, M.; Wu, D.; Wang, C.; Lu, J.; Zhou, Y.; Xu, X.; Xu, L.; Guo, C. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial-mesenchymal transition: partial mediation by the transcription factor NFAT1. Mol. Carcinog., 2015, 54(4), 301-311.
[http://dx.doi.org/10.1002/mc.22100] [PMID: 24243709]
[138]
Pan, H.; Zhou, W.; He, W.; Liu, X.; Ding, Q.; Ling, L.; Zha, X.; Wang, S. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int. J. Mol. Med., 2012, 30(2), 337-343.
[http://dx.doi.org/10.3892/ijmm.2012.990] [PMID: 22580499]
[139]
Fan, P.; Fan, S.; Wang, H.; Mao, J.; Shi, Y.; Ibrahim, M.M.; Ma, W.; Yu, X.; Hou, Z.; Wang, B.; Li, L. Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway. Stem Cell Res. Ther., 2013, 4(6), 146.
[http://dx.doi.org/10.1186/scrt357] [PMID: 24331293]
[140]
Pons, D.G.; Nadal-Serrano, M.; Torrens-Mas, M.; Oliver, J.; Roca, P. The phytoestrogen genistein affects breast cancer cells treatment depending on the ERalpha/ERbeta ratio. J. Cell. Biochem., 2016, 117(1), 218-229.
[http://dx.doi.org/10.1002/jcb.25268] [PMID: 26100284]
[141]
Andrade, J.E.; Ju, Y.H.; Baker, C.; Doerge, D.R.; Helferich, W.G. Long-term exposure to dietary sources of genistein induces estrogen-independence in the human breast cancer (MCF-7) xenograft model. Mol. Nutr. Food Res., 2015, 59(3), 413-423.
[http://dx.doi.org/10.1002/mnfr.201300780] [PMID: 24668689]
[142]
Mahmoud, A.M.; Zhu, T.; Parray, A.; Siddique, H.R.; Yang, W.; Saleem, M.; Bosland, M.C. Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor. PLoS One, 2013, 8(10)e78479
[http://dx.doi.org/10.1371/journal.pone.0078479] [PMID: 24167630]
[143]
Hussain, A.; Harish, G.; Prabhu, S.A.; Mohsin, J.; Khan, M.A.; Rizvi, T.A.; Sharma, C. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitors of matrix metalloproteinase-1 expression. Cancer Epidemiol., 2012, 36(6), e387-e393.
[http://dx.doi.org/10.1016/j.canep.2012.07.005] [PMID: 22884883]
[144]
Chen, H.S.; Bai, M.H.; Zhang, T.; Li, G.D.; Liu, M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int. J. Oncol., 2015, 46(4), 1730-1738.
[http://dx.doi.org/10.3892/ijo.2015.2870] [PMID: 25647396]
[145]
Yousef, A.I.; El-Masry, O.S.; Abdel Mohsen, M.A. Impact of cellular genetic make-up on colorectal cancer cell lines response to ellagic acid: Implications of small interfering RNA. Asian Pac. J. Cancer Prev., 2016, 17(2), 743-748.
[http://dx.doi.org/10.7314/APJCP.2016.17.2.743] [PMID: 26925673]
[146]
Srigopalram, S.; Jayraaj, I.A.; Kaleeswaran, B.; Balamurugan, K.; Ranjithkumar, M.; Kumar, T.S.; Park, J.I.; Nou, I.S. Ellagic acid normalizes mitochondrial outer membrane permeabilization and attenuates inflammation-mediated cell proliferation in experimental liver cancer. Appl. Biochem. Biotechnol., 2014, 173(8), 2254-2266.
[http://dx.doi.org/10.1007/s12010-014-1031-y] [PMID: 24972653]
[147]
Wang, N.; Wang, Z.Y.; Mo, S.L.; Loo, T.Y.; Wang, D.M.; Luo, H.B.; Yang, D.P.; Chen, Y.L.; Shen, J.G.; Chen, J.P. Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res. Treat., 2012, 134(3), 943-955.
[http://dx.doi.org/10.1007/s10549-012-1977-9] [PMID: 22350787]
[148]
Pitchakarn, P.; Chewonarin, T.; Ogawa, K.; Suzuki, S.; Asamoto, M.; Takahashi, S.; Shirai, T.; Limtrakul, P. Ellagic acid inhibits migration and invasion by prostate cancer cell lines. Asian Pac. J. Cancer Prev., 2013, 14(5), 2859-2863.
[http://dx.doi.org/10.7314/APJCP.2013.14.5.2859] [PMID: 23803044]
[149]
Malik, A.; Afaq, S.; Shahid, M.; Akhtar, K.; Assiri, A. Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pac. J. Trop. Med., 2011, 4(7), 550-555.
[http://dx.doi.org/10.1016/S1995-7645(11)60144-2] [PMID: 21803307]
[150]
Subramanian, A.P.; Jaganathan, S.K.; Mandal, M.; Supriyanto, E.; Muhamad, I.I. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J. Gastroenterol., 2016, 22(15), 3952-3961.
[http://dx.doi.org/10.3748/wjg.v22.i15.3952] [PMID: 27099438]
[151]
Wang, K.; Zhu, X.; Zhang, K.; Zhu, L.; Zhou, F. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J. Biochem. Mol. Toxicol., 2014, 28(9), 387-393.
[http://dx.doi.org/10.1002/jbt.21575] [PMID: 24864015]
[152]
Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Lin, W.L.; Wang, C.J. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol. Appl. Pharmacol., 2013, 266(1), 76-85.
[http://dx.doi.org/10.1016/j.taap.2012.10.019] [PMID: 23153558]
[153]
Russell, L.H., Jr; Mazzio, E.; Badisa, R.B.; Zhu, Z.P.; Agharahimi, M.; Oriaku, E.T.; Goodman, C.B. Autoxidation of gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells. Anticancer Res., 2012, 32(5), 1595-1602.
[PMID: 22593437]
[154]
Sun, G.; Zhang, S.; Xie, Y.; Zhang, Z.; Zhao, W. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol. Lett., 2016, 11(1), 150-158.
[http://dx.doi.org/10.3892/ol.2015.3845] [PMID: 26870182]
[155]
Liu, K.C.; Huang, A.C.; Wu, P.P.; Lin, H.Y.; Chueh, F.S.; Yang, J.S.; Lu, C.C.; Chiang, J.H.; Meng, M.; Chung, J.G. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol. Rep., 2011, 26(1), 177-184.
[PMID: 21503582]
[156]
Liu, K.C.; Ho, H.C.; Huang, A.C.; Ji, B.C.; Lin, H.Y.; Chueh, F.S.; Yang, J.S.; Lu, C.C.; Chiang, J.H.; Meng, M.; Chung, J.G. Gallic acid provokes DNA damage and suppresses DNA repair gene expression in human prostate cancer PC-3 cells. Environ. Toxicol., 2013, 28(10), 579-587.
[http://dx.doi.org/10.1002/tox.20752] [PMID: 21887735]
[157]
Zhao, B.; Hu, M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol. Lett., 2013, 6(6), 1749-1755.
[http://dx.doi.org/10.3892/ol.2013.1632] [PMID: 24843386]
[158]
Sarwar, T.; Zafaryab, M.; Husain, M.A.; Ishqi, H.M.; Rehman, S.U.; Rizvi, M.M.; Tabish, M. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism. Toxicol. Appl. Pharmacol., 2015, 289(2), 251-261.
[http://dx.doi.org/10.1016/j.taap.2015.09.018] [PMID: 26415834]
[159]
Eroğlu, C.; Seçme, M.; Bağcı, G.; Dodurga, Y. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumour Biol., 2015, 36(12), 9437-9446.
[http://dx.doi.org/10.1007/s13277-015-3689-3] [PMID: 26124008]
[160]
Karthikeyan, S.; Kanimozhi, G.; Prasad, N.R.; Mahalakshmi, R. Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in vitro. Toxicol. In Vitro, 2011, 25(7), 1366-1375.
[http://dx.doi.org/10.1016/j.tiv.2011.05.007] [PMID: 21600977]
[161]
Delman, D.M.; Fabian, C.J.; Kimler, B.F.; Yeh, H.; Petroff, B.K. Effects of flaxseed lignan secoisolariciresinol diglucosideon preneoplastic biomarkers of cancer progression in a model of simultaneous breast and ovarian cancer development. Nutr. Cancer, 2015, 67(5), 857-864.
[http://dx.doi.org/10.1080/01635581.2015.1042549] [PMID: 26010915]
[162]
Xiong, X.Y.; Hu, X.J.; Li, Y.; Liu, C.M. Inhibitory effects of enterolactone on growth and metastasis in human breast cancer. Nutr. Cancer, 2015, 67(8), 1324-1332.
[http://dx.doi.org/10.1080/01635581.2015.1082113] [PMID: 26473769]
[163]
Lee, C.C.; Liu, K.J.; Wu, Y.C.; Lin, S.J.; Chang, C.C.; Huang, T.S. Sesamin inhibits macrophage-induced vascular endothelial growth factor and matrix metalloproteinase-9 expression and proangiogenic activity in breast cancer cells. Inflammation, 2011, 34(3), 209-221.
[http://dx.doi.org/10.1007/s10753-010-9226-z] [PMID: 20617373]
[164]
Deng, P.; Wang, C.; Chen, L.; Wang, C.; Du, Y.; Yan, X.; Chen, M.; Yang, G.; He, G. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2. Biol. Pharm. Bull., 2013, 36(10), 1540-1548.
[http://dx.doi.org/10.1248/bpb.b13-00235] [PMID: 24088253]
[165]
Xu, P.; Cai, F.; Liu, X.; Guo, L. Sesamin inhibits lipopolysaccharide-induced proliferation and invasion through the p38-MAPK and NF-κB signaling pathways in prostate cancer cells. Oncol. Rep., 2015, 33(6), 3117-3123.
[http://dx.doi.org/10.3892/or.2015.3888] [PMID: 25845399]
[166]
Ko, J.C.; Syu, J.J.; Chen, J.C.; Wang, T.J.; Chang, P.Y.; Chen, C.Y.; Jian, Y.T.; Jian, Y.J.; Lin, Y.W. Resveratrol enhances etoposide-induced cytotoxicity through down-regulating ERK1/2 and AKT-Mediated X-ray repair cross-complement group 1 (XRCC1) protein expression in human non-small-cell lung cancer cells. Basic Clin. Pharmacol. Toxicol., 2015, 117(6), 383-391.
[http://dx.doi.org/10.1111/bcpt.12425] [PMID: 26046675]
[167]
Yang, Q.; Wang, B.; Zang, W.; Wang, X.; Liu, Z.; Li, W.; Jia, J. Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS One, 2013, 8(11)e70627
[http://dx.doi.org/10.1371/journal.pone.0070627] [PMID: 24278101]
[168]
Wang, Z.; Li, W.; Meng, X.; Jia, B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 227-232.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05660.x] [PMID: 22211760]
[169]
Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol., 2012, 40(4), 1020-1028.
[http://dx.doi.org/10.3892/ijo.2012.1325] [PMID: 22218562]
[170]
Colin, D.J.; Limagne, E.; Ragot, K.; Lizard, G.; Ghiringhelli, F.; Solary, É.; Chauffert, B.; Latruffe, N.; Delmas, D. The role of reactive oxygen species and subsequent DNA-damage response in the emergence of resistance towards resveratrol in colon cancer models. Cell Death Dis., 2014, 5e1533
[http://dx.doi.org/10.1038/cddis.2014.486] [PMID: 25412311]
[171]
Demoulin, B.; Hermant, M.; Castrogiovanni, C.; Staudt, C.; Dumont, P. Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomerase II and activates the ATM kinase to trigger p53-dependent apoptosis. Toxicol. In Vitro, 2015, 29(5), 1156-1165.
[http://dx.doi.org/10.1016/j.tiv.2015.04.015] [PMID: 25952326]
[172]
Wang, Z.; Zhang, L.; Ni, Z.; Sun, J.; Gao, H.; Cheng, Z.; Xu, J.; Yin, P. Resveratrol induces AMPK-dependent MDR1 inhibition in colorectal cancer HCT116/L-OHP cells by preventing activation of NF-κB signaling and suppressing cAMP-responsive element transcriptional activity. Tumour Biol., 2015, 36(12), 9499-9510.
[http://dx.doi.org/10.1007/s13277-015-3636-3] [PMID: 26124005]
[173]
Saud, S.M.; Li, W.; Morris, N.L.; Matter, M.S.; Colburn, N.H.; Kim, Y.S.; Young, M.R. Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis, 2014, 35(12), 2778-2786.
[http://dx.doi.org/10.1093/carcin/bgu209] [PMID: 25280562]
[174]
Aires, V.; Limagne, E.; Cotte, A.K.; Latruffe, N.; Ghiringhelli, F.; Delmas, D. Resveratrol metabolites inhibit human metastatic colon cancer cells progression and synergize with chemotherapeutic drugs to induce cell death. Mol. Nutr. Food Res., 2013, 57(7), 1170-1181.
[http://dx.doi.org/10.1002/mnfr.201200766] [PMID: 23495229]
[175]
Fu, Y.; Chang, H.; Peng, X.; Bai, Q.; Yi, L.; Zhou, Y.; Zhu, J.; Mi, M. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One, 2014, 9(7)e102535
[http://dx.doi.org/10.1371/journal.pone.0102535] [PMID: 25068516]
[176]
Yeh, C.B.; Hsieh, M.J.; Lin, C.W.; Chiou, H.L.; Lin, P.Y.; Chen, T.Y.; Yang, S.F. The antimetastatic effects of resveratrol on hepatocellular carcinoma through the downregulation of a metastasis-associated protease by SP-1 modulation. PLoS One, 2013, 8(2)e56661
[http://dx.doi.org/10.1371/journal.pone.0056661] [PMID: 23437203]
[177]
Rajasekaran, D.; Elavarasan, J.; Sivalingam, M.; Ganapathy, E.; Kumar, A.; Kalpana, K.; Sakthisekaran, D. Resveratrol interferes with N-nitrosodiethylamine-induced hepatocellular carcinoma at early and advanced stages in male Wistar rats. Mol. Med. Rep., 2011, 4(6), 1211-1217.
[PMID: 21850372]
[178]
Selvaraj, S.; Sun, Y.; Sukumaran, P.; Singh, B.B. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Mol. Carcinog., 2016, 55(5), 818-831.
[http://dx.doi.org/10.1002/mc.22324] [PMID: 25917875]
[179]
Ganapathy, S.; Chen, Q.; Singh, K.P.; Shankar, S.; Srivastava, R.K. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One, 2010, 5(12)e15627
[http://dx.doi.org/10.1371/journal.pone.0015627] [PMID: 21209944]
[180]
García-Zepeda, S.P.; García-Villa, E.; Díaz-Chávez, J.; Hernández-Pando, R.; Gariglio, P. Resveratrol induces cell death in cervical cancer cells through apoptosis and autophagy. Eur. J. Cancer Prev., 2013, 22(6), 577-584.
[http://dx.doi.org/10.1097/CEJ.0b013e328360345f] [PMID: 23603746]
[181]
Sun, Y.; Wu, X.; Cai, X.; Song, M.; Zheng, J.; Pan, C.; Qiu, P.; Zhang, L.; Zhou, S.; Tang, Z.; Xiao, H. Identification of pinostilbene as a major colonic metabolite of pterostilbene and its inhibitory effects on colon cancer cells. Mol. Nutr. Food Res., 2016, 60(9), 1924-1932.
[http://dx.doi.org/10.1002/mnfr.201500989] [PMID: 26990242]
[182]
Moon, D.; McCormack, D.; McDonald, D.; McFadden, D. Pterostilbene induces mitochondrially derived apoptosis in breast cancer cells in vitro. J. Surg. Res., 2013, 180(2), 208-215.
[http://dx.doi.org/10.1016/j.jss.2012.04.027] [PMID: 22572619]
[183]
Su, C.M.; Lee, W.H.; Wu, A.T.; Lin, Y.K.; Wang, L.S.; Wu, C.H.; Yeh, C.T. Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition. J. Nutr. Biochem., 2015, 26(6), 675-685.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.005] [PMID: 25792283]
[184]
Wu, C.H.; Hong, B.H.; Ho, C.T.; Yen, G.C. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. J. Agric. Food Chem., 2015, 63(9), 2432-2441.
[http://dx.doi.org/10.1021/acs.jafc.5b00002] [PMID: 25686711]
[185]
Lin, V.C.; Tsai, Y.C.; Lin, J.N.; Fan, L.L.; Pan, M.H.; Ho, C.T.; Wu, J.Y.; Way, T.D. Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells. J. Agric. Food Chem., 2012, 60(25), 6399-6407.
[http://dx.doi.org/10.1021/jf301499e] [PMID: 22670709]
[186]
Dhar, S.; Kumar, A.; Rimando, A.M.; Zhang, X.; Levenson, A.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget, 2015, 6(29), 27214-27226.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[187]
Zhang, H.; Jia, R.; Wang, C.; Hu, T.; Wang, F. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines. Biochem. Biophys. Res. Commun., 2014, 452(3), 775-781.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.150] [PMID: 25218158]
[188]
Hsieh, T.C.; Lin, C.Y.; Lin, H.Y.; Wu, J.M. AKT/mTOR as novel targets of polyphenol piceatannol possibly contributing to inhibition of proliferation of cultured prostate cancer cells. ISRN Urol., 2012, 2012272697
[http://dx.doi.org/10.5402/2012/272697] [PMID: 22567414]
[189]
Kwon, G.T.; Jung, J.I.; Song, H.R.; Woo, E.Y.; Jun, J.G.; Kim, J.K.; Her, S.; Park, J.H. Piceatannol inhibits migration and invasion of prostate cancer cells: possible mediation by decreased interleukin-6 signaling. J. Nutr. Biochem., 2012, 23(3), 228-238.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.019] [PMID: 21497499]
[190]
Devassy, J.G.; Nwachukwu, I.D.; Jones, P.J. Curcumin and cancer: barriers to obtaining a health claim. Nutr. Rev., 2015, 73(3), 155-165.
[http://dx.doi.org/10.1093/nutrit/nuu064] [PMID: 26024538]
[191]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[192]
Shanmugam, M.K.; Rane, G.; Kanchi, M.M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Tan, B.K.; Kumar, A.P.; Sethi, G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2), 2728-2769.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[193]
Thomasset, S.C.; Berry, D.P.; Garcea, G.; Marczylo, T.; Steward, W.P.; Gescher, A.J. Dietary polyphenolic phytochemicals--promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer, 2007, 120(3), 451-458.
[http://dx.doi.org/10.1002/ijc.22419] [PMID: 17131309]
[194]
Lazarevic, B.; Boezelijn, G.; Diep, L.M.; Kvernrod, K.; Ogren, O.; Ramberg, H.; Moen, A.; Wessel, N.; Berg, R.E.; Egge-Jacobsen, W.; Hammarstrom, C.; Svindland, A.; Kucuk, O.; Saatcioglu, F.; Taskèn, K.A.; Karlsen, S.J. Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: a randomized, placebo-controlled, double-blind Phase 2 clinical trial. Nutr. Cancer, 2011, 63(6), 889-898.
[http://dx.doi.org/10.1080/01635581.2011.582221] [PMID: 21714686]
[195]
Miyanaga, N.; Akaza, H.; Hinotsu, S.; Fujioka, T.; Naito, S.; Namiki, M.; Takahashi, S.; Hirao, Y.; Horie, S.; Tsukamoto, T.; Mori, M.; Tsuji, H. Prostate cancer chemoprevention study: an investigative randomized control study using purified isoflavones in men with rising prostate-specific antigen. Cancer Sci., 2012, 103(1), 125-130.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02120.x] [PMID: 21988617]
[196]
Hamilton-Reeves, J.M.; Banerjee, S.; Banerjee, S.K.; Holzbeierlein, J.M.; Thrasher, J.B.; Kambhampati, S.; Keighley, J.; Van Veldhuizen, P. Short-term soy isoflavone intervention in patients with localized prostate cancer: a randomized, double-blind, placebo-controlled trial. PLoS One, 2013, 8(7)e68331
[http://dx.doi.org/10.1371/journal.pone.0068331] [PMID: 23874588]
[197]
Zhang, G.; Wang, Y.; Zhang, Y.; Wan, X.; Li, J.; Liu, K.; Wang, F.; Liu, K.; Liu, Q.; Yang, C.; Yu, P.; Huang, Y.; Wang, S.; Jiang, P.; Qu, Z.; Luan, J.; Duan, H.; Zhang, L.; Hou, A.; Jin, S.; Hsieh, T.C.; Wu, E. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr. Mol. Med., 2012, 12(2), 163-176.
[http://dx.doi.org/10.2174/156652412798889063] [PMID: 22280355]
[198]
Azrad, M.; Vollmer, R.T.; Madden, J.; Dewhirst, M.; Polascik, T.J.; Snyder, D.C.; Ruffin, M.T.; Moul, J.W.; Brenner, D.E.; Demark-Wahnefried, W. Flaxseed-derived enterolactone is inversely associated with tumor cell proliferation in men with localized prostate cancer. J. Med. Food, 2013, 16(4), 357-360.
[http://dx.doi.org/10.1089/jmf.2012.0159] [PMID: 23566060]
[199]
Hoensch, H.; Groh, B.; Edler, L.; Kirch, W. Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J. Gastroenterol., 2008, 14(14), 2187-2193.
[http://dx.doi.org/10.3748/wjg.14.2187] [PMID: 18407592]
[200]
Cruz-Correa, M.; Shoskes, D.A.; Sanchez, P.; Zhao, R.; Hylind, L.M.; Wexner, S.D.; Giardiello, F.M. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol., 2006, 4(8), 1035-1038.
[http://dx.doi.org/10.1016/j.cgh.2006.03.020] [PMID: 16757216]
[201]
Ide, H.; Tokiwa, S.; Sakamaki, K.; Nishio, K.; Isotani, S.; Muto, S.; Hama, T.; Masuda, H.; Horie, S. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate, 2010, 70(10), 1127-1133.
[http://dx.doi.org/10.1002/pros.21147] [PMID: 20503397]
[202]
Carroll, R.E.; Benya, R.V.; Turgeon, D.K.; Vareed, S.; Neuman, M.; Rodriguez, L.; Kakarala, M.; Carpenter, P.M.; McLaren, C.; Meyskens, F.L., Jr; Brenner, D.E. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. (Phila.), 2011, 4(3), 354-364.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0098] [PMID: 21372035]
[203]
He, Z.Y.; Shi, C.B.; Wen, H.; Li, F.L.; Wang, B.L.; Wang, J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest., 2011, 29(3), 208-213.
[http://dx.doi.org/10.3109/07357907.2010.550592] [PMID: 21314329]
[204]
Prakash, O.; Kumar, A.; Kumar, P. Ajeet. Anti-cancer potential of plants and natural products: A review. Am. J. Pharmacol. Sci., 2013, 1, 104-115.
[http://dx.doi.org/10.12691/ajps-1-6-1]
[205]
Prakash, O.; Usmani, S.; Singh, R.; Mahapatra, D.K.; Gupta, A. cancer chemotherapy by novel bio-active natural products: Looking towards the future. Curr. Cancer Ther. Rev., 2018, 14, 1-16.
[206]
Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients, 2016, 8(8), 515.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy