[1]
Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: a survey. Comput Netw 2002; 38(4): 393-422.
[2]
Correal NS, Patwari N. Wireless sensor networks: Challenges and opportunities. In: Proc. 2001 Virginia tech symp. Wireless Personal Communications 2001; 1-9.
[3]
Perkins M, Correal N, O’Dea B. Emergent wireless sensor network limitations: A plea for advancement in core technologies. In: Sensors Orlando, FL, USA: IEEE. 2002; 2: pp. 1505-9.
[4]
Viani F, Rocca P, Oliveri G, Trinchero D, Massa A. Localization, tracking, and imaging of targets in wireless sensor networks: An invited review. Radio Sci 2011; 46(5): 1-2.
[5]
Klančar G, Škrjanc I. Tracking-error model-based predictive control for mobile robots in real time. Robot Auton Syst 2007; 55(6): 460-9.
[6]
Zdešar A, Škrjanc I, Klančar G. Visual trajectory-tracking model-based control for mobile robots. Int J Adv Robot Syst 2013; 10(9): 323.
[7]
Kalman RE. A new approach to linear filtering and prediction problems. T ASME J Basic Eng 1960; 82: 35-45.
[8]
Lingqun W, Shizhu P, Yingping Z. Moving vehicle tracking based on unscented Kalman filter algorithm. In: 2009 WRI world congress on computer science and information engineering Los Angeles, CA, USA: IEEE. 2009; 2: pp. 33-8.
[9]
Van der Merwe R, Wan EA. The square-root unscented Kalman filter for state and parameterestimation. In: 2001 IEEE international conference on acoustics, speech, and signal processing Salt Lake City, UT, USA: IEEE . 2001; 6: pp. 3461-4.
[10]
Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking. IEEE Trans Signal Process 2002; 50(2): 425-37.
[11]
Mihaylova L, Angelova D, Bull D, Canagarajah N. Localization of mobile nodes in wireless networks with correlated in time measurement noise. IEEE Trans Mobile Comput 2011; 10(1): 44-53.
[12]
Lin CM, Hsu CF. Recurrent-neural-network-based adaptive-backstepping control for induction servomotors. IEEE Trans Ind Electron 2005; 52(6): 1677-84.
[13]
Qi J, Taha AF, Wang J. Comparing Kalman filters and observers for power system dynamic state estimation with model uncertainty and malicious cyber-attacks EEE Access 2018; 6: 77155-68.
[14]
Chenna SK, Jain YK, Kapoor H, et al. State estimation and tracking problems: A comparison between Kalman filter and recurrent neural networks. In: International conference on neural information processing Berlin, Heidelberg: Springer . 2004; 8: pp. 275-81.
[15]
Klančar G, Škrjanc I. Tracking-error model-based predictive control for mobile robots in real time. Robot Auton Syst 2007; 55(6): 460-9.
[16]
Blažič S. A novel trajectory-tracking control law for wheeled mobile robots. Robot Auton Syst 2011; 59(11): 1001-7.
[17]
Škrjanc I, Klančar G. Optimal cooperative collision avoidance between multiple robots based on Bernstein-Bézier curves. Robot Auton Syst 2010; 58(1): 1-9.
[18]
LaValle SM. Planning algorithms London: Cambridge university press, 2006 May 29
[19]
Jondhale SR, Deshpande RS. Modified kalman filtering framework based real time target tracking against environmental dynamicity in wireless sensor networks. Ad Hoc Sens Wirel Netw 2018; 40: 224-33.
[20]
Kaaniche H, Kamoun F. Mobility prediction in wireless ad hoc networks using neural networks. J Telecommun 2010; 2(1): 1004-10.
[21]
Mahfouz S, Mourad-Chehade F, Honeine P, Farah J, Snoussi H. Target tracking using machine learning and Kalman filter in wireless sensor networks. IEEE Sens J 2014; 14(10): 3715-25.
[22]
Chenna SK, Jain YK, Kapoor H, et al. State estimation and tracking problems: A comparison between Kalman filter and recurrent neural networks. In: International conference on neural information processing Berlin, Heidelberg; Springer. 2004; pp. 275-81.
[23]
Fiaz M, Mahmood A, Jung SK. Tracking noisy targets: A review of recent object tracking approaches. arXiv:180203098 2018.
[24]
Webster JG. Wiley encyclopedia of electrical and electronics engineering New York: John Wiley 1999 Mar 25
[25]
Ondruska P, Posner I. deep tracking: seeing beyond seeing using recurrent neural networks. In: Thirtieth Association for the Advancement of Artificial Intelligence Conference, AAAI Publications 2016.
[26]
Chow TW, Fang Y. A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics. IEEE Trans Ind Electron 1998; 45(1): 151-61.
[27]
Sivakumar SC, Robertson W, Phillips WJ. Online stabilization of block-diagonal recurrent neural networks. IEEE Trans Neural Netw 1999; 10(1): 167-75.
[28]
Fang Y, Chow TW, Li XD. Use of a recurrent neural network in discrete sliding-mode control. IEEE P-Contr Theor 1999; 146(1): 84-90.
[29]
Valcher ME. State observers for discrete-time linear systems with unknown inputs. IEEE Trans Automat Contr 1999; 44(2): 397-401.