[1]
Pliego J, Mateos JC, Rodriguez J, et al. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate. Sensors 2015; 15: 2798-811.
[2]
Norus J. Building sustainable competitive advantage from knowledge in the region: the industrial enzymes industry. European Plann Stud 2006; 14: 681-96.
[3]
Dewan S. Enzymes in industrial applications: Global markets Market Research Repor t Wellesley. MA: BCC Research 2011.
[4]
Chandel AK, Rudravaram R, Rao LV, et al. Industrial enzymes in bioindustrial sector development: an Indian perspective. J Commer Biotechnol 2007; 13: 283-91.
[5]
Li S, Yang X, Yang S, et al. Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2012; 2: e201209017.
[6]
Laachari F, El Bergad F, Sadiki M, et al. Higher tolerance of a novel lipase from Aspergillus flavus to the presence of free fatty acids at lipid/water interface. Afr J Biochem 2015; 9: 9-17.
[7]
Lee LP, Karbul HM, Citartan M, et al. Lipase-secreting Bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. BioMed Res Int 2015; 2015(1): 1-9.
[8]
Priji P, Unni KN, Sajith S, et al. Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat. Biotechnol Appl Biochem 2015; 62: 71-8.
[9]
Nadeem U, Muhammad D, Muhammad S, et al. Screening identification and characterization of lipase producing soil bacteria from Upper Dir and Mardan Khyber Pakhtunkhwa, Pakistan. Int J Biosci 2015; 6: 49-55.
[10]
Chowdary G, Ramesh M, Prapulla S. Enzymic synthesis of isoamyl isovalerate using immobilized lipase from Rhizomucor miehei: a multivariate analysis. Process Biochem 2000; 36: 331-9.
[11]
Therisod M, Klibanov AM. Regioselective acylation of secondary hydroxyl groups in sugars catalyzed by lipases in organic solvents. J Am Chem Soc 1987; 109: 3977-81.
[12]
Rao P, Divakar S. Lipase catalyzed esterification of α-terpineol with various organic acids: application of the Plackett-Burman design. Process Biochem 2001; 36: 1125-8.
[13]
Harwood J. The versatility of lipases for industrial uses. Trends Biochem 1989; 14: 125-6.
[14]
Ananthi S, Ramasubburayan R, Palavesam A, et al. Optimization and purification of lipase through solid state fermentation by Bacillus cereus MSU as isolated from the gut of a marine fish Sardinella longiceps. Int J Pharma Bio Sci 2014; 5: 291-8.
[15]
Thakur V, Tewari R, Sharma R. Evaluation of production parameters for maximum lipase pro-duction by P. stutzeri MTCC 5618 and scale-up in bioreactor. Chin J Biol 2014; 2014: 1-14.
[16]
Iftikhar T, Niaz M, Ali EA, et al. Production process of extracellular lipases by Fusarium sp. using agricultural byproducts. Pak J Bot 2012; 44: 335-9.
[17]
Aires-Barros M, Taipa M, Cabral J, et al. Lipases-their structure, biochemistry and application. Cambridge, UK: Cambridge University 1994.
[18]
Alberghina L, Schmid R, Verger R. Lipases: Structure, Mechanism, and Genetic Engineering: Contributions to the CEC-GBF International Workshop. Braunschweig, Germany: Wiley- Blackwell 1991.
[19]
Hamosh M, Borgström B, Brockman HL. Lipases. Amsterdam: Elsevier 1984.
[20]
Malcata FX. Engineering of/with lipases: scope and strategies. Nato ASI 1996; 317: 1-16.
[21]
Rubin B, Dennes E. Lipases: Part A Biotechnology methods in enzymology. 1st ed. New York: Academic Press 1997.
[22]
Gunstone F, Harwood J, Padley F. The Lipid Handbook. 2nd ed. London, UK: Wiley 1994.
[23]
Ratledge C, Tan KH. Oils and fats: production, degradation and utilization by yeasts. In: Verachtert H, Ed. De Mot R Yeast Biotechnology and Biocatalysis. Newyork: Marcel Dekker Inc 1990; pp. 223-54.
[24]
Jaeger KE, Ransac S, Dijkstra BW, et al. Bacterial lipases. FEMS Microbiol Rev 1994; 15: 29-63.
[25]
Gilbert EJ. Pseudomonas lipases: biochemical pro-perties and molecular cloning. Enzyme Microb Technol 1993; 15: 634-45.
[26]
Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 2004; 64: 763-81.
[27]
Singh AK, Mukhopadhyay M. Overview of fungal lipase: a review. Appl Biochem Biotechnol 2012; 166: 486-520.
[28]
Romo-Sánchez S, Alves-Baffi M, Arévalo-Villena M, et al. Yeast biodiversity from oleic ecosystems: study of their biotechnological properties. Food Microbiol 2010; 27: 487-92.
[29]
Lin S-F, Chiou C-M, Tsai Y-C. Effect of Triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotechnol Lett 1995; 17: 959-62.
[30]
Sztajer H, Maliszewska I, Wieczorek J. Production of exogenous lipases by bacteria, fungi, and actino-mycetes. Enzyme Microb Technol 1988; 10: 492-7.
[31]
Wang Y, Srivastava KC, Shen G-J, et al. Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J Ferment Bioeng 1995; 79: 433-8.
[32]
Jaeger KE, Ransac S, Dijkstra BW, et al. Bacterial lipases. FEMS Microbiol Rev 1994; 15: 29-63.
[33]
Eggert T, van Pouderoyen G, Dijkstra BW, et al. Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett 2001; 502: 89-92.
[34]
Arpigny JL, Jaeger K-E. Bacterial lipolytic enzymes: classification and properties. Biochem J 1999; 343: 177-83.
[35]
Castilla A, Panizza P, Rodríguez D, et al. A novel thermophilic and halophilic esterase from Janibacter sp. R02, the first member of a new lipase family (Family XVII). Enzyme Microb Technol 2017; 98: 86-95.
[36]
Masomian M, Rahman RNZRA, Salleh AB, et al. Analysis of comparative sequence and genomic data to verify phylogenetic relationship and explore a new subfamily of bacterial lipases. PLoS One 2016; 11: e0149851.
[37]
Rajendran A, Palanisamy A, Thangavelu V. Evaluation of medium components by Plackett-Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chin J Biotechnol 2008; 24: 436-44.
[38]
Burkert JFdM. Maugeri F, Rodrigues MI. Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour Technol 2004; 91: 77-84.
[39]
Peters GH, Olsen O, Svendsen A, et al. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J 1996; 71: 119-29.
[40]
Chahinian H, Vanot G, Ibrik A, et al. Production of extracellular lipases by Penicillium cyclopium purification and characterization of a partial acylglycerol lipase. Biosci Biotechnol Biochem 2000; 64: 215-22.
[41]
Shukla P, Gupta K. Ecological screening for lipolytic molds and process optimization for lipase production from Rhizopus oryzae KG-5. J Appl Sci Environ Sanitat 2007; 2: 35-42.
[42]
Siddiqui KS, Cavicchioli R. Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles 2005; 9: 471-6.
[43]
Ibrahim CO, Hayashi M, Nagai S. Purification and some properties of a thermostable lipase from Humicola lanuginosa no. 3. Agric Biol Chem 1987; 51: 37-45.
[44]
Smerdon GR, Aves SJ, Walton EF. Production of human gastric lipase in the fission yeast Schizosaccharomyces pombe. Gene 1995; 165: 313-8.
[45]
Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 2007; 12: 879-89.
[46]
Siekevitz P, Palade GE. A cytochemical study on the pancreas of the Guinea Pig: V. In vivo incorporation of Leucine-1-C14 into the chymotrypsinogen of various cell fractions. J Cell Biol 1960; 7: 619-30.
[47]
Liu Y, Chen D, Yan Y, et al. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour Technol 2011; 102: 10414-8.
[48]
Frenken LG, Bos JW, Visser C, et al. An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol Microbiol 1993; 9: 579-89.
[49]
Khoramnia A, Ebrahimpour A, Beh BK, et al. Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations. Biomed Res Int 2011; 2011:
[50]
Bajaj A, Lohan P, Jha PN, et al. Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal, B Enzym 2010; 62: 9-14.
[51]
Nadeem H, Rashid HM, Siddique HM. Effect of Mg2+ and Al3+ ions on thermodynamic and physio-chemical properties of Aspergillus niger invertases. Protein Pept Lett 2015; 22: 743-9.
[52]
Yang W, He Y, Xu L, et al. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: Identification, characterization and application for biodiesel production. J Mol Catal, B Enzym 2016; 126: 76-89.
[53]
Unni KN, Priji P, Sajith S, et al. Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase. Biologia 2016; 71: 378-87.
[54]
Kirana S, Arshada Z, Nosheenb S, et al. Microbial lipases: production and applications: A Review. J Biotechnol Biomater 2016; 1: 7-20.
[55]
Chisti Y. Bioseparation and bioprocessing: a handbook Vch Verlag. Wiley 1998.
[56]
Jaeger K-E, Reetz MT. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 1998; 16: 396-403.
[57]
Ghosh P, Saxena R, Gupta R, et al. Microbial lipases: production and applications. Sci Prog 1996; 79(2): 119-57.
[58]
Zaks A, Klibanov AM. Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci 1985; 82: 3192-6.
[59]
Malcata FX, Reyes HR, Garcia HS, et al. Kinetics and mechanisms of reactions catalysed by immobilized lipases. Enzyme Microb Technol 1992; 14: 426-46.
[60]
Guit R, Kloosterman M, Meindersma G, et al. Lipase kinetics: Hydrolysis of triacetin by lipase from Candida cylindracea in a hollow-fiber membrane reactor. Biotechnol Bioeng 1991; 38: 727-32.
[61]
Nadeem H, Rashid MH, Siddique MH, et al. Microbial invertases: a review on kinetics, thermodynamics, physiochemical properties. Process Biochem 2015; 50: 1202-10.
[62]
Fullbrook P. Practical applied kinetics Industrial enzymology. 2nd ed. New York: Stockholm Press 1996.
[63]
Demir BS, Tükel SS. Purification and characteri-zation of lipase from Spirulina platensis. Mol Catal B Enzym 2010; 64: 123-8.
[64]
Gricajeva A, Bendikienė V, Kalėdienė L. Lipase of Bacillus stratosphericus L1: Cloning, expression and characterization. Int J Biol Macromol 2016; 92: 96-104.
[65]
Sivaramakrishnan R, Incharoensakdi A. Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil. J Biosci Bioeng 2016; 121: 517-22.
[66]
Benjamin S, Pandey A. Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast 1998; 14: 1069-87.
[67]
Laachari F, El Bergadi F, Sayari A, et al. Biochemical characterization of a new thermostable lipase from Bacillus pumilus strain. [Bacillus pumilus suşundan elde edilen yeni termostabil lipazın biyokimyasal karakterizasyonu]. Turk J Biochem 2015; 40: 8-14.
[68]
Sarac N, Ugur A, Boran R, et al. The use of boron compounds for stabilization of lipase from Pseudomonas aeruginosa ES3 for the detergent industry. J Surfactants Deterg 2015; 18: 275-85.
[69]
Ramakrishnan V, Goveas LC, Suralikerimath N, et al. Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase system (ATPS) and its biochemical characterization. Biocatal Agric Biotechnol 2016; 6: 19-27.
[70]
Lima V, Krieger N, Mitchell D, et al. Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochem Eng J 2004; 18: 65-71.
[71]
Tripathi R, Singh J. kumar Bharti R, et al. Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia 2014; 54: 518-29.
[72]
Yoo H-Y, Simkhada JR, Cho SS, et al. A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour Technol 2011; 102: 6104-11.
[73]
Daoud L, Kamoun J, Ali MB, et al. Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase. Int J Biol Macromol 2013; 57: 232-7.
[74]
Kumar R, Sharma A, Kumar A, et al. Lipase from Bacillus pumilus RK31: production, purification and some properties. World Appl Sci J 2012; 16: 940-8.
[75]
Wang B, Wang A, Cao Z, et al. Characterization of a novel highly thermostable esterase from the Gram‐positive soil bacterium Streptomyces lividans TK64. Biotechnol Appl Biochem 2016; 63: 334-43.
[76]
Ji X, Chen G, Zhang Q, et al. Purification and characterization of an extracellular cold adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. J Basic Microbiol 2015; 55: 718-28.
[77]
Kazlauskas RJ, Bornscheuer UT. Biotechnology: Biotransformations I. 2nd ed. Vch Verlag: Wiley 1998.
[78]
Masse L, Kennedy KJ, Chou SP. The effect of an enzymatic pretreatment on the hydrolysis and size reduction of fat particles in slaughterhouse wastewater. J Chem Technol Biot 2001; 76: 629-35.
[79]
Takamoto T, Shirasaka H, Uyama H, et al. Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chem Lett 2001; 30: 492-3.
[80]
Konkit M, Kim W. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products. J Dairy Sci 2016; 99: 4999-5007.
[81]
Boonmahome P, Mongkolthanaruk W. Lipase-producing bacterium and its enzyme characterization. J Life SciTechnol 2013; 1: 125-31.
[82]
Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules 2014; 4: 117-39.
[83]
Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv 2001; 19: 627-62.
[84]
Makhzoum A, Owusu-Apenten R, Knapp J. Purification and properties of lipase from Pseudomonas fluorescens strain 2D. Int Dairy J 1996; 6: 459-72.
[85]
Esteban-Torres M, Mancheño JM, de las Rivas B, et al. Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT-Food Sci Technol 2015; 60: 246-52.
[86]
Laboret F, Perraud R. Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry. Appl Biochem Biotechnol 1999; 82: 185-98.
[87]
Sánchez M, Prim N, Rández–Gil F, et al. Engineering of baker’s yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis lipase A. Biotechnol Bioeng 2002; 78: 339-45.
[88]
Uhlig H. Industrial enzymes and their applications Vch Verlag. Wiley 1998.
[89]
Ahmed EH, Raghavendra T, Madamwar D. An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 2010; 101: 3628-34.
[90]
Gupta C, Prakash D, Gupta S. Biotechnological approach to microbial based perfumes and flavours. J Microbiol Exp 2015; 3: 221-30.
[91]
Jolly JF. Enzymatic methods of flavor modification. US9144249B2, 2015.
[92]
Kynclova E, Hartig A, Schalkhammer T. Oligonucleotide labelled lipase as a new sensitive hybridization probe and its use in bio-assays and biosensors. J Mol Recognit 1995; 8: 139-45.
[93]
Pandey A, Benjamin S, Soccol CR, et al. The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 1999; 29: 119-31.
[94]
Xu Y, Yu X. Bifunctional lipase mutant and methods of using same. US9890367B2, 2018.
[95]
Sangeetha R, Arulpandi I, Geetha A. Bacterial lipases as potential industrial biocatalysts: An overview. Res J Microbiol 2011; 6: 1-24.
[96]
Oki H, Naruse H, Minami H, et al. Process of obtaining rice-bran oil and defatted rice bran from fresh rice bran. US20150320069, 2015.
[97]
Rodrigues RC, Fernandez-Lafuente R. Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal, B Enzym 2010; 66: 15-32.
[98]
Lin JF, Lin Q, Li J, et al. Bacterial diversity of lipase-producing strains in different soils in southwest of China and characteristics of lipase. Afr J Microbiol Res 2012; 6: 3797-806.
[99]
Buchon L, Laurent P, Gounot A, et al. Temperature dependence of extracellular enzymes production by psychrotrophic and psychrophilic bacteria. Biotechnol Lett 2000; 22: 1577-81.
[100]
Selvam K, Vishnupriya B. Partial purification of lipase from Streptomyces variabilis NGP 3 and its application in bioremediation of waste water. Int J Pharm Sci Res 2013; 4: 4281.
[101]
Kanmani P, Aravind J, Kumaresan K. An insight into microbial lipases and their environmental facet. Int J Environ Sci Technol 2015; 12: 1147-62.
[102]
Kanmani P, Kumaresan K, Aravind J. Pretreatment of coconut mill effluent using celite-immobilized hydrolytic enzyme preparation from Staphylococcus pasteuri and its impact on anaerobic digestion. Biotechnol Prog 2015; 31: 1249-58.
[103]
Krajmalnik-Brown R, Halden RU, Wilson JW. Methods and systems for tracking bioremediation processes. US20150010945A1, 2015.
[104]
Sharma S, Kanwar SS. Organic solvent tolerant lipases and applications. Sci World J 2014; 2014: 1-15.
[105]
Ganguly S, Nandi S. Process optimization of lipase catalyzed synthesis of diesters in a packed bed reactor. Biochem Eng J 2015; 102: 2-5.
[106]
Kim J-H, Bhatia SK, Yoo D, et al. Lipase-catalyzed production of 6-o-cinnamoyl-sorbitol from d-sorbitol and cinnamic acid esters. Appl Biochem Biotechnol 2015; 176: 244-52.
[107]
Sonne DP, Vilsbøll T, Knop FK. Pancreatic amylase and lipase plasma concentrations are unaffected by increments in endogenous GLP-1 levels following liquid meal tests. Diabetes Care 2015; 38: 71-2.
[108]
Chaplin J, Gardiner N, Mitra R, et al. Process for preparing (-)-menthol and similar compounds. US20040058422A1, 2004.
[109]
Dong H, Gao S. Han Sp, et al. Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous media. Biotechnol Appl Biochem 1999; 30: 251-6.
[110]
Linko YY, Yan Wu X. Biocatalytic production of useful esters by two forms of lipase from Candida rugosa. J Chem Technol Biotechnol 1996; 65: 163-70.
[111]
Xie Y-C, Liu H-Z, Chen J-Y. Candida rugosa lipase catalyzed esterification of racemic ibuprofen with butanol: racemization of R-ibuprofen and chemical hydrolysis of S-ester formed. Biotechnol Lett 1998; 20: 455-8.
[112]
Guncheva M, Zhiryakova D. Catalytic properties and potential applications of Bacillus lipases. J Mol Catal, B Enzym 2011; 68: 1-21.
[113]
Horchani H, Aissa I, Ouertani S, et al. Staphylococcal lipases: biotechnological applications. J Mol Catal, B Enzym 2012; 76: 125-32.
[114]
Nagarajan S. New tools for exploring “old friends-microbial lipases”. Appl Biochem Biotechnol 2012; 168: 1163-96.
[115]
Svendsen A, Skjoet M, Yaver D, et al. Lipase variants for pharmaceutical use. US9539311B2, 2017.
[116]
Gillberg P-G, Graffner H, Starke I. Ibat inhibitors for the treatment of liver diseases, US15722110, 2017.
[117]
Francone OL, Guey L, Holmes K, et al. Lipoprotein lipase for treatment of hypertriglyceridemic-related conditions including acute pancreatitis. US9597376B2, 2017.
[118]
Saxena RK. Microbial lipases: potential biocatalysts for the future industry. Curr Sci 1999; 77: 101-15.
[119]
Lott J, Lu C. Lipase isoforms and amylase isoen-zymes: assays and application in the diagnosis of acute pancreatitis. Clin Chem 1991; 37: 361-8.
[120]
Higaki S, Kitagawa T, Kagoura M, et al. Correlation between Propionibacterium acnes biotypes, lipase activity and rash degree in acne patients. J Dermatol 2000; 27: 519-22.
[121]
Simons JWF, Adams H, Cox RC, et al. The lipase from Staphylococcus aureus: expression in Escheri-chia coli, large-scale purification and comparison of substrate specificity to Staphylococcus hyicus lipase. Eur J Biochem 1996; 242: 760-9.
[122]
Chauhan M, Chauhan RS, Garlapati VK. Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability. Biomed Res Int 2013 2013.
[123]
Jeon JH, Kim J-T, Kim YJ, et al. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 2009; 81: 865-74.
[124]
Weerasooriya M, Kumarasinghe A. Isolation of alkaline lipase from rubber seed-partial purification, characterization and its potential applications as a detergent additive. Indian J Chem Technol 2012; 19: 244-9.
[125]
Dey A, Chattopadhyay A, Saha P, et al. An Approach to the identification and characterisation of a psychrotrophic lipase producing Pseudomonas sp ADT3 from Arctic region. Adv Biosci Biotechnol 2014; 5: 322.
[126]
Aboualizadeh F, Kaur J, Behzad-Behbahani A, et al. Induction of mutation in Bacillus subtilis lipase gene using error-prone PCR. Jundishapur J Microbiol 2011; 4: 153-8.
[127]
Niyonzima FN, More SS. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation. Basic Microbiol 2015; 55: 1149-58.
[128]
Su J, Zhang F, Sun W, et al. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World J Microbiol Biotechnol 2015; 31: 1093-102.
[129]
Phuah E-T, Tang T-K, Lee Y-Y, et al. Review on the current state of diacylglycerol production using enzymatic approach. Food Bioprocess Technol 2015; 8: 1169-86.
[130]
Holland B, Bernhardt R, Sajic B. Cold-water laundry detergents. US0170369816, 2017.
[131]
Latha K. Studies on lipid acyl hydrolases during tea processing. Ann Plant Physiol 1999; 13: 73-8.
[132]
Webb C, Black GM, Atkinson B. Process engineering aspects of immobilised cell systems. 1st ed. Rugby, Warwickshire: Pergamon 1986.
[133]
Pilkington PH, Margaritis A, Mensour NA, et al. Fundamentals of immobilised yeast cells for continuous beer fermentation: a review. J Inst Brew 1998; 104: 19-31.
[134]
Mattiasson B. Immobilized cells and organelles. CRC Press 1983.