Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

HSF1作为癌症生物标志物和治疗靶标

卷 19, 期 7, 2019

页: [515 - 524] 页: 10

弟呕挨: 10.2174/1568009618666181018162117

价格: $65

摘要

1984年发现热休克因子1(HSF1)是热休克反应的主要调节因子。 在这种经典作用中,HSF1在细胞应激如热休克后被激活,最终导致HSF1介导的热休克蛋白表达以保护蛋白质组并在这些急性应激中存活。 然而,现在越来越清楚的是,HSF1在几种疾病中也起着重要作用,可能没有比癌症更突出。 HSF1似乎通过支持恶性肿瘤的多个方面(包括迁移,侵袭,增殖和癌细胞代谢等)在癌症中具有多效性。 由于HSF1的这些功能和其他功能,它已被研究作为多种癌症类型的患者结果的生物标志物。 单独的HSF1表达可预测多种癌症类型中的患者结果,但在其他情况下,HSF1活性的标志物更具预测性。 显然,需要进一步的工作来梳理出哪些标志物最能代表HSF1的肿瘤促进作用。 另外,已经有几种尝试开发小分子抑制剂以降低HSF1活性。 所有这些HSF1抑制剂仍处于临床前模型中,但在抑制肿瘤生长方面表现出不同水平的功效。 在过去十年中,HSF1在癌症中的相关研究的增长是巨大的,在此过程中发现了HSF1的许多新功能。 为了使这些发现达到临床影响,需要继续进一步开发HSF1作为生物标志物或治疗靶标。

关键词: HSF1,转移,生物标志物,治疗,EMT,入侵,迁移。

图形摘要

[1]
Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 1962, 18, 571-573.
[2]
Parker, C.S.; Topol, J. A drosophila RNA polymerase II transcription factor contains a promoter-region-specific DNA-binding activity. Cell, 1984, 36(2), 357-369.
[3]
Topol, J.; Ruden, D.M.; Parker, C.S. Sequences required for in vitro transcriptional activation of a Drosophila hsp 70 gene. Cell, 1985, 42(2), 527-537.
[4]
Amin, J.; Ananthan, J.; Voellmy, R. Key features of heat shock regulatory elements. Mol. Cell. Biol., 1988, 8(9), 3761-3769.
[5]
Dudler, R.; Travers, A.A. Upstream elements necessary for optimal function of the hsp 70 promoter in transformed flies. Cell, 1984, 38(2), 391-398.
[6]
Slater, M.R.; Craig, E.A. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol., 1987, 7(5), 1906-1916.
[7]
Xiao, H.; Lis, J.T. Germline transformation used to define key features of heat-shock response elements. Science, 1988, 239(4844), 1139-1142.
[8]
Hoang, A.T.; Huang, J.; Rudra-Ganguly, N.; Zheng, J.; Powell, W.C.; Rabindran, S.K.; Wu, C.; Roy-Burman, P. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am. J. Pathol., 2000, 156(3), 857-864.
[9]
Cen, H.; Zheng, S.; Fang, Y.M.; Tang, X.P.; Dong, Q. Induction of HSF1 expression is associated with sporadic colorectal cancer. World J. Gastroenterol., 2004, 10(21), 3122-3126.
[10]
Cheng, Q.; Chang, J.T.; Geradts, J.; Neckers, L.M.; Haystead, T.; Spector, N.L.; Lyerly, H.K. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res., 2012, 14(2), R62.
[11]
Dai, C.; Whitesell, L.; Rogers, A.B.; Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell, 2007, 130(6), 1005-1018.
[12]
Mendillo, M.L.; Santagata, S.; Koeva, M.; Bell, G.W.; Hu, R.; Tamimi, R.M.; Fraenkel, E.; Ince, T.A.; Whitesell, L.; Lindquist, S. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 2012, 150(3), 549-562.
[13]
Santagata, S.; Hu, R.; Lin, N.U.; Mendillo, M.L.; Collins, L.C.; Hankinson, S.E.; Schnitt, S.J.; Whitesell, L.; Tamimi, R.M.; Lindquist, S.; Ince, T.A. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc. Natl. Acad. Sci. USA, 2011, 108(45), 18378-18383.
[14]
Jego, G.; Lanneau, D.; De Thonel, A.; Berthenet, K.; Hazoumé, A.; Droin, N.; Hamman, A.; Girodon, F.; Bellaye, P.S.; Wettstein, G.; Jacquel, A. Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes. Leukemia, 2014, 28(8), 1676-1686.
[15]
Min, J.N.; Huang, L.; Zimonjic, D.B.; Moskophidis, D.; Mivechi, N.F. Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene, 2007, 26(35), 5086-5097.
[16]
Chuma, M.; Sakamoto, N.; Nakai, A.; Hige, S.; Nakanishi, M.; Natsuizaka, M.; Suda, G.; Sho, T.; Hatanaka, K.; Matsuno, Y.; Yokoo, H. Heat shock factor 1 accelerates hepatocellular carcinoma development by activating nuclear factor-kappaB/mitogen-activated protein kinase. Carcinogenesis, 2014, 35(2), 272-281.
[17]
Fang, F.; Chang, R.; Yang, L. Heat shock factor 1 promotes invasion and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer, 2012, 118(7), 1782-1794.
[18]
Jin, X.; Moskophidis, D.; Mivechi, N.F. Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab., 2011, 14(1), 91-103.
[19]
Li, S.; Ma, W.; Fei, T.; Lou, Q.; Zhang, Y.; Cui, X.; Qin, X.; Zhang, J.; Liu, G.; Dong, Z.; Ma, Y. Upregulation of heat shock factor 1 transcription activity is associated with hepatocellular carcinoma progression. Mol. Med. Rep., 2014, 10(5), 2313-2321.
[20]
Zhang, N.; Wu, Y.; Lyu, X.; Li, B.; Yan, X.; Xiong, H.; Li, X.; Huang, G.; Zeng, Y.; Zhang, Y.; Lian, J. HSF1 upregulates ATG4B expression and enhances epirubicin-induced protective autophagy in hepatocellular carcinoma cells. Cancer Lett., 2017, 409, 81-90.
[21]
Ishiwata, J.; Kasamatsu, A.; Sakuma, K.; Iyoda, M.; Yamatoji, M.; Usukura, K.; Ishige, S.; Shimizu, T.; Yamano, Y.; Ogawara, K.; Shiiba, M. State of heat shock factor 1 expression as a putative diagnostic marker for oral squamous cell carcinoma. Int. J. Oncol., 2012, 40(1), 47-52.
[22]
Kim, S.A.; Kwon, S.M.; Yoon, J.H.; Ahn, S.G. The antitumor effect of PLK1 and HSF1 double knockdown on human oral carcinoma cells. Int. J. Oncol., 2010, 36(4), 867-872.
[23]
Tsukao, Y.; Yamasaki, M.; Miyazaki, Y.; Makino, T.; Takahashi, T.; Kurokawa, Y.; Miyata, H.; Nakajima, K.; Takiguchi, S.; Mimori, K.; Mori, M.; Doki, Y. Overexpression of heat-shock factor 1 is associated with a poor prognosis in esophageal squamous cell carcinoma. Oncol. Lett., 2017, 13(3), 1819-1825.
[24]
Kourtis, N.; Moubarak, R.S.; Aranda-Orgilles, B.; Lui, K.; Aydin, I.T.; Trimarchi, T.; Darvishian, F.; Salvaggio, C.; Zhong, J.; Bhatt, K.; Chen, E.I. FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat. Cell Biol., 2015, 17(3), 322-332.
[25]
Nakamura, Y.; Fujimoto, M.; Hayashida, N.; Takii, R.; Nakai, A.; Muto, M. Silencing HSF1 by short hairpin RNA decreases cell proliferation and enhances sensitivity to hyperthermia in human melanoma cell lines. J. Dermatol. Sci., 2010, 60(3), 187-192.
[26]
Dudeja, V.; Chugh, R.K.; Sangwan, V.; Skube, S.J.; Mujumdar, N.R.; Antonoff, M.B.; Dawra, R.K.; Vickers, S.M.; Saluja, A.K. Prosurvival role of heat shock factor 1 in the pathogenesis of pancreatobiliary tumors. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(6), G948-G955.
[27]
Chen, K.; Qian, W.; Li, J.; Jiang, Z.; Cheng, L.; Yan, B.; Cao, J.; Sun, L.; Zhou, C.; Lei, M.; Duan, W. Loss of AMPK activation promotes the invasion and metastasis of pancreatic cancer through an HSF1-dependent pathway. Mol. Oncol., 2017, 11(10), 1475-1492.
[28]
Liang, W.; Liao, Y.; Zhang, J.; Huang, Q.; Luo, W.; Yu, J.; Gong, J.; Zhou, Y.; Li, X.; Tang, B.; He, S. Heat shock factor 1 inhibits the mitochondrial apoptosis pathway by regulating second mitochondria-derived activator of caspase to promote pancreatic tumorigenesis. J. Exp. Clin. Cancer Res., 2017, 36(1), 64.
[29]
Chen, Y.F.; Wang, S.Y.; Yang, Y.H.; Zheng, J.; Liu, T.; Wang, L. Targeting HSF1 leads to an antitumor effect in human epithelial ovarian cancer. Int. J. Mol. Med., 2017, 39(6), 1564-1570.
[30]
Engerud, H.; Tangen, I.L.; Berg, A.; Kusonmano, K.; Halle, M.K.; Øyan, A.M.; Kalland, K.H.; Stefansson, I.; Trovik, J.; Salvesen, H.B.; Krakstad, C. High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors. Br. J. Cancer, 2014, 111(1), 78-84.
[31]
Powell, C.D.; Paullin, T.R.; Aoisa, C.; Menzie, C.J.; Ubaldini, A.; Westerheide, S.D. The heat shock transcription factor HSF1 induces ovarian cancer epithelial-mesenchymal transition in a 3D spheroid growth model. PLoS One, 2016, 11(12), e0168389.
[32]
Yasuda, K.; Hirohashi, Y.; Mariya, T.; Murai, A.; Tabuchi, Y.; Kuroda, T.; Kusumoto, H.; Takaya, A.; Yamamoto, E.; Kubo, T.; Nakatsugawa, M. Phosphorylation of HSF1 at serine 326 residue is related to the maintenance of gynecologic cancer stem cells through expression of HSP27. Oncotarget, 2017, 8(19), 31540-31553.
[33]
Cui, J.; Tian, H.; Chen, G. Upregulation of nuclear heat shock factor 1 contributes to tumor angiogenesis and poor survival in patients with non-small cell lung cancer. Ann. Thorac. Surg., 2015, 100(2), 465-472.
[34]
Wu, P.S.; Chang, Y.H.; Pan, C.C. High expression of heat shock proteins and heat shock factor-1 distinguishes an aggressive subset of clear cell renal cell carcinoma. Histopathology, 2017, 71(5), 711-718.
[35]
Zhou, Z.; Li, Y.; Jia, Q.; Wang, Z.; Wang, X.; Hu, J.; Xiao, J. Heat shock transcription factor 1 promotes the proliferation, migration and invasion of osteosarcoma cells. Cell Prolif., 2017, 50(4), e12346.
[36]
Fujimoto, M.; Nakai, A. The heat shock factor family and adaptation to proteotoxic stress. FEBS J., 2010, 277(20), 4112-4125.
[37]
Fujimoto, M.; Izu, H.; Seki, K.; Fukuda, K.; Nishida, T.; Yamada, S.I.; Kato, K.; Yonemura, S.; Inouye, S.; Nakai, A. HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J., 2004, 23(21), 4297-4306.
[38]
Fujimoto, M.; Oshima, K.; Shinkawa, T.; Wang, B.B.; Inouye, S.; Hayashida, N.; Takii, R.; Nakai, A. Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses. J. Biol. Chem., 2008, 283(44), 29961-29970.
[39]
Tessari, A.; Salata, E.; Ferlin, A.; Bartoloni, L.; Slongo, M.L.; Foresta, C. Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis. Mol. Hum. Reprod., 2004, 10(4), 253-258.
[40]
Fujimoto, M.; Hayashida, N.; Katoh, T.; Oshima, K.; Shinkawa, T.; Prakasam, R.; Tan, K.; Inouye, S.; Takii, R.; Nakai, A. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol. Biol. Cell, 2010, 21(1), 106-116.
[41]
Zhang, Y.; Koushik, S.; Dai, R.; Mivechi, N.F. Structural organization and promoter analysis of murine heat shock transcription factor-1 gene. J. Biol. Chem., 1998, 273(49), 32514-32521.
[42]
Gokmen-Polar, Y.; Badve, S. Upregulation of HSF1 in estrogen receptor positive breast cancer. Oncotarget, 2016, 7(51), 84239-84245.
[43]
Hu, Y.; Mivechi, N.F. HSF-1 interacts with Ral-binding protein 1 in a stress-responsive, multiprotein complex with HSP90 in vivo. J. Biol. Chem., 2003, 278(19), 17299-17306.
[44]
Neef, D.W.; Jaeger, A.M.; Gomez-Pastor, R.; Willmund, F.; Frydman, J.; Thiele, D.J. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Reports, 2014, 9(3), 955-966.
[45]
Shi, Y.; Mosser, D.D.; Morimoto, R.I. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev., 1998, 12(5), 654-666.
[46]
Zou, J.; Guo, Y.; Guettouche, T.; Smith, D.F.; Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 1998, 94(4), 471-480.
[47]
Morimoto, R.I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev., 1998, 12(24), 3788-3796.
[48]
Hentze, N.; Le Breton, L.; Wiesner, J.; Kempf, G.; Mayer, M.P. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. eLife, 2016, 5, e11576.
[49]
Rabindran, S.K.; Haroun, R.I.; Clos, J.; Wisniewski, J.; Wu, C. Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science, 1993, 259(5092), 230-234.
[50]
Westwood, J.T.; Clos, J.; Wu, C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature, 1991, 353(6347), 822-827.
[51]
Guettouche, T.; Boellmann, F.; Lane, W.S.; Voellmy, R. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem., 2005, 6, 4.
[52]
Larson, J.S.; Schuetz, T.J.; Kingston, R.E. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature, 1988, 335(6188), 372-375.
[53]
Sorger, P.K.; Pelham, H.R. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell, 1988, 54(6), 855-864.
[54]
Carpenter, R.L.; Sirkisoon, S.; Zhu, D.; Rimkus, T.; Harrison, A.; Anderson, A.; Paw, I.; Qasem, S.; Xing, F.; Liu, Y.; Chan, M. Combined inhibition of AKT and HSF1 suppresses breast cancer stem cells and tumor growth. Oncotarget, 2017, 8(43), 73947-73963.
[55]
Xi, C.; Hu, Y.; Buckhaults, P.; Moskophidis, D.; Mivechi, N.F. Heat shock factor HSF1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J. Biol. Chem., 2012, 287(42), 35646-35657.
[56]
Khaleque, M.A.; Bharti, A.; Sawyer, D.; Gong, J.; Benjamin, I.J.; Stevenson, M.A.; Calderwood, S.K. Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth. Oncogene, 2005, 24(43), 6564-3573.
[57]
O’Callaghan-Sunol, C.; Sherman, M.Y. Heat shock transcription factor (HSF1) plays a critical role in cell migration via maintaining MAP kinase signaling. Cell Cycle, 2006, 5(13), 1431-1437.
[58]
Nakamura, Y.; Fujimoto, M.; Fukushima, S.; Nakamura, A.; Hayashida, N.; Takii, R.; Takaki, E.; Nakai, A.; Muto, M. Heat shock factor 1 is required for migration and invasion of human melanoma in vitro and in vivo. Cancer Lett., 2014, 354(2), 329-335.
[59]
Meng, L.; Gabai, V.L.; Sherman, M.Y. Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene, 2010, 29(37), 5204-5213.
[60]
Toma-Jonik, A.; Widlak, W.; Korfanty, J.; Cichon, T.; Smolarczyk, R.; Gogler-Piglowska, A.; Widlak, P.; Vydra, N. Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell. Signal., 2015, 27(2), 394-401.
[61]
Carpenter, R.L.; Paw, I.; Dewhirst, M.W.; Lo, H.W. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene, 2015, 34(5), 546-557.
[62]
Ye, X.; Tam, W.L.; Shibue, T.; Kaygusuz, Y.; Reinhardt, F.; Eaton, E.N.; Weinberg, R.A. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature, 2015, 525(7568), 256-260.
[63]
Chou, S.D.; Murshid, A.; Eguchi, T.; Gong, J.; Calderwood, S.K. HSF1 regulation of beta-catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene, 2015, 34(17), 2178-2188.
[64]
Lee, J.H.; Lee, Y.K.; Lim, J.J.; Byun, H.O.; Park, I.; Kim, G.H.; Xu, W.G.; Wang, H.J.; Yoon, G. Mitochondrial respiratory dysfunction induces claudin-1 expression via reactive oxygen species-mediated heat shock factor 1 activation, leading to hepatoma cell invasiveness. J. Biol. Chem., 2015, 290(35), 21421-21431.
[65]
Li, Y.; Xu, D.; Bao, C.; Zhang, Y.; Chen, D.; Zhao, F.; Ding, J.; Liang, L.; Wang, Q.; Liu, L.; Li, J. MicroRNA-135b, a HSF1 target, promotes tumor invasion and metastasis by regulating RECK and EVI5 in hepatocellular carcinoma. Oncotarget, 2015, 6(4), 2421-2433.
[66]
Khaleque, M.A.; Bharti, A.; Gong, J.; Gray, P.J.; Sachdev, V.; Ciocca, D.R.; Stati, A.; Fanelli, M.; Calderwood, S.K. Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene, 2008, 27(13), 1886-1893.
[67]
Kim, E.H.; Lee, Y.J.; Bae, S.; Lee, J.S.; Kim, J.; Lee, Y.S. Heat shock factor 1-mediated aneuploidy requires a defective function of p53. Cancer Res., 2009, 69(24), 9404-9412.
[68]
Lee, Y.J. Lee, H.J.; Lee, J.S.; Jeoung, D.; Kang, C.M.; Bae, S.; Lee, S.J.; Kwon, S.H.; Kang, D.; Lee, Y.S. A novel function for HSF1-induced mitotic exit failure and genomic instability through direct interaction between HSF1 and Cdc20. Oncogene, 2008, 27(21), 2999-3009.
[69]
Tang, Z.; Dai, S.; He, Y.; Doty, R.A.; Shultz, L.D.; Sampson, S.B.; Dai, C. MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell, 2015, 160(4), 729-744.
[70]
Wang, B.; Lee, C.W.; Witt, A.; Thakkar, A.; Ince, T.A. Heat shock factor 1 induces cancer stem cell phenotype in breast cancer cell lines. Breast Cancer Res. Treat., 2015, 153(1), 57-66.
[71]
Bradley, E.; Bieberich, E.; Mivechi, N.F.; Tangpisuthipongsa, D.; Wang, G. Regulation of embryonic stem cell pluripotency by heat shock protein 90. Stem Cells, 2012, 30(8), 1624-1633.
[72]
Lee, Y.J.; Kim, E.H.; Lee, J.S.; Jeoung, D.; Bae, S.; Kwon, S.H.; Lee, Y.S. HSF1 as a mitotic regulator: Phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer Res., 2008, 68(18), 7550-7560.
[73]
Yang, X.; Wang, J.; Liu, S.; Yan, Q. HSF1 and Sp1 regulate FUT4 gene expression and cell proliferation in breast cancer cells. J. Cell. Biochem., 2014, 115(1), 168-178.
[74]
Antonietti, P.; Linder, B.; Hehlgans, S.; Mildenberger, I.C.; Burger, M.C.; Fulda, S.; Steinbach, J.P.; Gessler, F.; Rödel, F.; Mittelbronn, M.; Kögel, D. Interference with the HSF1/HSP70/BAG3 pathway primes glioma cells to matrix detachment and BH3 Mimetic-Induced Apoptosis. Mol. Cancer Ther., 2017, 16(1), 156-168.
[75]
Jacobs, A.T.; Marnett, L.J. Heat shock factor 1 attenuates 4-Hydroxynonenal-mediated apoptosis: critical role for heat shock protein 70 induction and stabilization of Bcl-XL. J. Biol. Chem., 2007, 282(46), 33412-33420.
[76]
Jacobs, A.T.; Marnett, L.J. HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J. Biol. Chem., 2009, 284(14), 9176-9183.
[77]
Wang, J.; He, H.; Yu, L.; Xia, H.H.X.; Lin, M.C.; Gu, Q.; Li, M.; Zou, B.; An, X.; Jiang, B.; Kung, H.F. HSF1 down-regulates XAF1 through transcriptional regulation. J. Biol. Chem., 2006, 281(5), 2451-2459.
[78]
Desai, S.; Liu, Z.; Yao, J.; Patel, N.; Chen, J.; Wu, Y.; Ahn, E.E.Y.; Fodstad, O.; Tan, M. Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J. Biol. Chem., 2013, 288(13), 9165-9176.
[79]
Luo, T.; Fu, J.; Xu, A.; Su, B.; Ren, Y.; Li, N.; Zhu, J.; Zhao, X.; Dai, R.; Cao, J.; Wang, B. PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy, 2016, 12(8), 1355-1371.
[80]
Luan, Q.; Jin, L.; Jiang, C.C.; Tay, K.H.; Lai, F.; Liu, X.Y.; Liu, Y.L.; Guo, S.T.; Li, C.Y.; Yan, X.G.; Tseng, H.Y. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy, 2015, 11(7), 975-994.
[81]
Zhang, X. Expression, correlation and prognostic significance of CD133, P57 and HSF1 in meningioma. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(20), 4600-4605.
[82]
Asgari, Y.; Zabihinpour, Z.; Salehzadeh-Yazdi, A.; Schreiber, F.; Masoudi-Nejad, A. Alterations in cancer cell metabolism: The Warburg effect and metabolic adaptation. Genomics, 2015, 105(5-6), 275-281.
[83]
Santagata, S.; Mendillo, M.L.; Tang, Y.C.; Subramanian, A.; Perley, C.C.; Roche, S.P.; Wong, B.; Narayan, R.; Kwon, H.; Koeva, M.; Amon, A. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science, 2013, 341(6143), 1238303.
[84]
Cigliano, A.; Wang, C.; Pilo, M.G.; Szydlowska, M.; Brozzetti, S.; Latte, G.; Pes, G.M.; Pascale, R.M.; Seddaiu, M.A.; Vidili, G.; Ribback, S. Inhibition of HSF1 suppresses the growth of hepatocarcinoma cell lines in vitro and AKT-driven hepatocarcinogenesis in mice. Oncotarget, 2017, 8(33), 54149-54159.
[85]
Zhao, Y.H.; Zhou, M.; Liu, H.; Ding, Y.; Khong, H.T.; Yu, D.; Fodstad, O.; Tan, M. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene, 2009, 28(42), 3689-3701.
[86]
Ma, W.; Zhang, Y.; Mu, H.; Qing, X.; Li, S.; Cui, X.; Lou, Q.; Ma, Y.; Pu, H.; Hu, Y. Glucose regulates heat shock factor 1 transcription activity via mTOR pathway in HCC cell lines. Cell Biol. Int., 2015, 39(11), 1217-1224.
[87]
Dai, S.; Tang, Z.; Cao, J.; Zhou, W.; Li, H.; Sampson, S.; Dai, C. Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. EMBO J., 2015, 34(3), 275-293.
[88]
Minsky, N.; Roeder, R.G. Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1alpha. Proc. Natl. Acad. Sci. USA, 2015, 112(42), E5669-E5678.
[89]
Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; Spiegelman, B.M. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98(1), 115-124.
[90]
Wan, T.; Shao, J.; Hu, B.; Liu, G.; Luo, P.; Zhou, Y. Prognostic role of HSF1 overexpression in solid tumors: A pooled analysis of 3,159 patients. OncoTargets Ther., 2018, 11, 383-393.
[91]
Liao, Y.; Xue, Y.; Zhang, L.; Feng, X.; Liu, W.; Zhang, G. Higher heat shock factor 1 expression in tumor stroma predicts poor prognosis in esophageal squamous cell carcinoma patients. J. Transl. Med., 2015, 13, 338.
[92]
Baler, R.; Dahl, G.; Voellmy, R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol., 1993, 13(4), 2486-2496.
[93]
Mercier, P.A.; Foksa, J.; Ovsenek, N.; Westwood, J.T. Xenopus heat shock factor 1 is a nuclear protein before heat stress. J. Biol. Chem., 1997, 272(22), 14147-14151.
[94]
Mercier, P.A.; Winegarden, N.A.; Westwood, J.T. Human heat shock factor 1 is predominantly a nuclear protein before and after heat stress. J. Cell Sci., 1999, 112(Pt 16), 2765-2774.
[95]
Wang, Y.; Theriault, J.R.; He, H.; Gong, J.; Calderwood, S.K. Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J. Biol. Chem., 2004, 279(31), 32651-32659.
[96]
Im, C.N.; Yun, H.; Lee, J.H. Heat shock factor 1 depletion sensitizes A172 glioblastoma cells to temozolomide via suppression of cancer stem cell-like properties. Int. J. Mol. Sci., 2017, 18(2), 468.
[97]
Yokota, S.; Kitahara, M.; Nagata, K. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res., 2000, 60(11), 2942-2948.
[98]
Bustany, S.; Cahu, J.; Descamps, G.; Pellat-Deceunynck, C.; Sola, B. Heat shock factor 1 is a potent therapeutic target for enhancing the efficacy of treatments for multiple myeloma with adverse prognosis. J. Hematol. Oncol., 2015, 8, 40.
[99]
Lee, C.H.; Hong, H.M.; Chang, Y.Y.; Chang, W.W. Inhibition of heat shock protein (Hsp) 27 potentiates the suppressive effect of Hsp90 inhibitors in targeting breast cancer stem-like cells. Biochimie, 2012, 94(6), 1382-1389.
[100]
Taba, K.; Kuramitsu, Y.; Ryozawa, S.; Yoshida, K.; Tanaka, T.; Mori-Iwamoto, S.; Maehara, S.I.; Maehara, Y.; Sakaida, I.; Nakamura, K. KNK437 downregulates heat shock protein 27 of pancreatic cancer cells and enhances the cytotoxic effect of gemcitabine. Chemotherapy, 2011, 57(1), 12-16.
[101]
Koishi, M.; Yokota, S.I.; Mae, T.; Nishimura, Y.; Kanamori, S.; Horii, N.; Shibuya, K.; Sasai, K.; Hiraoka, M. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo. Clin. Cancer Res., 2001, 7(1), 215-219.
[102]
Oommen, D.; Prise, K.M. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1alpha survival pathways. Biochem. Biophys. Res. Commun., 2012, 421(3), 538-543.
[103]
Au, Q.; Zhang, Y.; Barber, J.R.; Ng, S.C.; Zhang, B. Identification of inhibitors of HSF1 functional activity by high-content target-based screening. J. Biomol. Screen., 2009, 14(10), 1165-1175.
[104]
Yoon, Y.J.; Kim, J.A.; Shin, K.D.; Shin, D.S.; Han, Y.M.; Lee, Y.J.; Lee, J.S.; Kwon, B.M.; Han, D.C. KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J. Biol. Chem., 2011, 286(3), 1737-1747.
[105]
Fok, J.H.; Hedayat, S.; Zhang, L.; Aronson, L.I.; Mirabella, F.; Pawlyn, C.; Bright, M.D.; Wardell, C.P.; Keats, J.J.; De Billy, E.; Rye, C.S. HSF1 is essential for myeloma cell survival and a promising therapeutic target. Clin. Cancer Res., 2018, 24(10), 2395-2407.
[106]
Kang, M.J.; Yun, H.H.; Lee, J.H. KRIBB11 accelerates Mcl-1 degradation through an HSF1-independent, Mule-dependent pathway in A549 non-small cell lung cancer cells. Biochem. Biophys. Res. Commun., 2017, 492(3), 304-309.
[107]
Chen, Y.F.; Dong, Z.; Xia, Y.; Tang, J.; Peng, L.; Wang, S.; Lai, D. Nucleoside analog inhibits microRNA-214 through targeting heat-shock factor 1 in human epithelial ovarian cancer. Cancer Sci., 2013, 104(12), 1683-1689.
[108]
Xia, Y.; Liu, Y.; Rocchi, P.; Wang, M.; Fan, Y.; Qu, F.; Iovanna, J.L.; Peng, L. Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Lett., 2012, 318(2), 145-153.
[109]
Cano, C.E.; Hamidi, T.; Garcia, M.N.; Grasso, D.; Loncle, C.; Garcia, S.; Calvo, E.; Lomberk, G.; Dusetti, N.; Bartholin, L.; Urrutia, R. Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis. Gut, 2014, 63(6), 984-995.
[110]
Agarwal, T.; Annamalai, N.; Khursheed, A.; Maiti, T.K.; Arsad, H.B.; Siddiqui, M.H. Molecular docking and dynamic simulation evaluation of Rohinitib - Cantharidin based novel HSF1 inhibitors for cancer therapy. J. Mol. Graph. Model., 2015, 61, 141-149.
[111]
Zhang, D.; Zhang, B. Selective killing of cancer cells by small molecules targeting heat shock stress response. Biochem. Biophys. Res. Commun., 2016, 478(4), 1509-1514.
[112]
Cheeseman, M.D.; Chessum, N.E.; Rye, C.S.; Pasqua, A.E.; Tucker, M.J.; Wilding, B.; Evans, L.E.; Lepri, S.; Richards, M.; Sharp, S.Y.; Ali, S. Discovery of a chemical probe bisamide (CCT251236): An orally bioavailable efficacious pirin ligand from a heat shock transcription factor 1 (HSF1) phenotypic screen. J. Med. Chem., 2017, 60(1), 180-201.
[113]
Vilaboa, N.; Boré, A.; Martin-Saavedra, F.; Bayford, M.; Winfield, N.; Firth-Clark, S.; Kirton, S.B.; Voellmy, R. New inhibitor targeting human transcription factor HSF1: Effects on the heat shock response and tumor cell survival. Nucleic Acids Res., 2017, 45(10), 5797-5817.
[114]
Salamanca, H.H.; Antonyak, M.A.; Cerione, R.A.; Shi, H.; Lis, J.T. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer. PLoS One, 2014, 9(5), e96330.
[115]
Salamanca, H.H.; Fuda, N.; Shi, H.; Lis, J.T. An RNA aptamer perturbs heat shock transcription factor activity in Drosophila melanogaster. Nucleic Acids Res., 2011, 39(15), 6729-6740.
[116]
Wang, S.; Zhao, X.; Suran, R.; Vogt, V.M.; Lis, J.T.; Shi, H. Knocking down gene function with an RNA aptamer expressed as part of an intron. Nucleic Acids Res., 2010, 38(15), e154.
[117]
Zhao, X.; Shi, H.; Sevilimedu, A.; Liachko, N.; Nelson, H.C.; Lis, J.T. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator. Nucleic Acids Res., 2006, 34(13), 3755-3761.
[118]
Nagai, N.; Nakai, A.; Nagata, K. Quercetin suppresses heat shock response by down regulation of HSF1. Biochem. Biophys. Res. Commun., 1995, 208(3), 1099-1105.
[119]
Westerheide, S.D.; Kawahara, T.L.; Orton, K.; Morimoto, R.I. Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J. Biol. Chem., 2006, 281(14), 9616-9622.
[120]
Li, X.J.; Jiang, Z.Z.; Zhang, L.Y. Triptolide: Progress on research in pharmacodynamics and toxicology. J. Ethnopharmacol., 2014, 155(1), 67-79.
[121]
Fujimoto, M.; Takii, R.; Takaki, E.; Katiyar, A.; Nakato, R.; Shirahige, K.; Nakai, A. The HSF1-PARP13-PARP1 complex facilitates DNA repair and promotes mammary tumorigenesis. Nat. Commun., 2017, 8(1), 1638.
[122]
Gabai, V.L.; Meng, L.; Kim, G.; Mills, T.A.; Benjamin, I.J.; Sherman, M.Y. Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR. Mol. Cell. Biol., 2012, 32(5), 929-940.
[123]
Naidu, S.D.; Sutherland, C.; Zhang, Y.; Risco, A.; de la Vega, L.; Caunt, C.J.; Hastie, C.J.; Lamont, D.J.; Torrente, L.; Chowdhry, S.; Benjamin, I.J. Heat shock factor 1 is a substrate for p38 mitogen-activated protein kinases. Mol. Cell. Biol., 2016, 36(18), 2403-2417.
[124]
Chou, S.D.; Prince, T.; Gong, J.; Calderwood, S.K. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One, 2012, 7(6), e39679.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy