Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

An Environment-friendly Synthesis of Piperonal Chalcones and Their Cytotoxic and Antioxidant Evaluation

Author(s): Sanal Dev, Della Grace Thomas Parambi, Bency Baby, Githa Elizabeth Mathew, Hendawy Omnia Magdy, Monu Joy, Shine Sudev and Bijo Mathew*

Volume 17, Issue 2, 2020

Page: [138 - 144] Pages: 7

DOI: 10.2174/1570180815666181016155934

Price: $65

Abstract

Background: Grindstone technique has been widely used as an efficient, consistent, more environmentally benign, solvent-free protocol for the preparation of many compounds with higher atom economy.

Methods: A series of fourteen piperonal chalcone compounds were synthesized by this method and characterized by physical and spectral data (FT-IR, 1H NMR, Mass and elemental analysis). All chalcones were evaluated for their cytotoxic action against the cancer cell lines, MCF-7 and HepG2. One 2-pyridyl-substituted compound 14 with IC50 values 17.4±0.2 towards MCF-7 and 15.4±0.6µmol L-1 towards HepG2 cells.

Results: The results demonstrated that the cytotoxic activity of 2-pyridyl-substituted compound shown higher activity as compared with the standard cisplatin towards HepG2 cells.

Conclusion: Compound 14 showed good antioxidant activities in the DPPH test and H2O2 assay (IC50 = 17.23± 33/µg/mL and 20.17± 0.33µg/mL) when compared with the standard ascorbic acid (IC50=µg/mL 18.26 ± 0.22and 21.66± 1.06 µg/mL).

Keywords: Grindstone chemistry, chalcones, cytotoxicity, antioxidant, DPPH test, cirplatin.

Graphical Abstract

[1]
Reddy, M.B.M.; Aatika, N.; Pasha, M.A. Zn(OAc)2· 2H2O- Catalyzed, simple, and clean procedure for the synthesis of 2- substituted benzoxazole using a grind stone method. Synth. Commun., 2011, 41, 1838-1842.
[http://dx.doi.org/10.1080/00397911.2010.493260]
[2]
Khaskel, A.; Gogoi, P.; Barman, P.; Bandyopadhyay, B. Grindstone chemistry: a highly efficient and green method for synthesis of 3,4-dihydropyrimidin-2-(1H)-ones by L- tyrosine as an organocatalyst: a combined experimental DFT study. RSC Advances, 2014, 4, 35559-35567.
[http://dx.doi.org/10.1039/C4RA05244G]
[3]
Toda, F.; Tanaka, K.; Sekikawa, A. J. Host – Guest complex formation by a solid- solid reaction. Chem. Soc. Chem. Commun., 1987, 4, 279-280.
[http://dx.doi.org/10.1039/C39870000279]
[4]
Nora, M.R.; Hussein, F.Z. Atom efficient, solvent free, Green synthesis of Chalcones by grinding. Synth. Commun., 2009, 39, 2789-2794.
[http://dx.doi.org/10.1080/00397910802664244]
[5]
Cave, G.W.V.; Raston, C.L.; Scott, J.L. Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem. Commun. (Camb.), 2001, 21(21), 2159-2169.
[http://dx.doi.org/10.1039/b106677n] [PMID: 12240095]
[6]
Epstein, W.W.; Netz, D.F.; Seidel, J.L. Isolation of Piperine from black pepper. J. Chem. Educ., 1993, 70, 598-599.
[http://dx.doi.org/10.1021/ed070p598]
[7]
Sweeney, N.J.; Claffey, J.; Muller-Bunz, H.; Pampillon, C.; Strohfeldt, K.; Tacke, M. The synthesis and cytotoxic evaluation of a series of benzodioxole substituted titanocenes. Bioorganomet. Chem., 2007, 21, 57-65.
[http://dx.doi.org/10.1002/aoc.1177]
[8]
Beckford, F.A.; Thessing, J.; Shaloski, M., Jr; Mbarushimana, P.C.; Brock, A.; Didion, J.; Woods, J.; Gonzalez-Sarrías, A.; Seeram, N.P. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents. J. Mol. Struct., 2011, 992(1-3), 39-47.
[http://dx.doi.org/10.1016/j.molstruc.2011.02.029] [PMID: 21552381]
[9]
Beckford, F.A.; Thessing, J.; Stott, A.; Holder, A.A.; Poluektov, O.G.; Li, L.; Seeram, N.P. Anticancer activity and biophysical reactivity of copper complexes of 2-(benzo[d][1,3]dioxol-5-ylmethylene)-N-alkylhydrazinecarbothioamides. Inorg. Chem. Commun., 2012, 15, 225-229.
[http://dx.doi.org/10.1016/j.inoche.2011.10.032] [PMID: 23440300]
[10]
Sweety.; Kumar, S.; Nepali, K.; Sapra, S.; Suri, O.P.; Dhar, K.L.; Sarma, G.S.; Saxena, A.K. Synthesis and biological evaluation of chalcones having hetero substituent(s). Indian J. Pharm. Sci., 2010, 72, 801-806.
[11]
Vogel, S.; Barbic, M.; Jürgenliemk, G.; Heilmann, J. Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur. J. Med. Chem., 2010, 45(6), 2206-2213.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.060] [PMID: 20153559]
[12]
Zuo, Y.; Yu, Y.; Wang, S.; Shao, W.; Zhou, B.; Lin, L.; Luo, Z.; Huang, R.; Du, J.; Bu, X. Synthesis and cytotoxicity evaluation of biaryl-based chalcones and their potential in TNFα-induced nuclear factor-κB activation inhibition. Eur. J. Med. Chem., 2012, 50, 393-404.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.023] [PMID: 22386368]
[13]
Sharma, R.; Kumar, R.; Kodwani, R.; Kapoor, S.; Khare, A.; Bansal, R.; Khurana, S.; Singh, S.; Thomas, J.; Roy, B.; Phartyal, R.; Saluja, S.; Kumar, S. A review on mechanisms of anti-tumor activity of chalcones. Anticancer. Agents Med. Chem., 2015, 16(2), 200-211.
[http://dx.doi.org/10.2174/1871520615666150518093144] [PMID: 25980813]
[14]
Mathew, B.; Suresh, J.; Anbazhagan, S.; Jayaraj, P.; Krishnan, G.K. Heteroaryl chalcones: Mini review about their therapeutic voyage. Biomed. Prevent. Nutr, 2014, 4, 451-458.
[http://dx.doi.org/10.1016/j.bionut.2014.04.003]
[15]
Mathew, B.; Ucar, G.; Yabanogclu-Ciftci, S.; Baysal, I.; Suresh, J.; Mathew, G.E.; Vilapurathu, J.K.; Nadeena, A.M.; Nabeela, P.; Lakshmi, V.; Haridas, A.; Fathima, F. Development of fluorinated theinylchalcones as monoamine oxidase-B inhibitors:Design, synthesis, biological evaluation and molecular docking studies. Lett. Org. Chem., 2015, 12, 605-613.
[http://dx.doi.org/10.2174/1570178612666150903213416]
[16]
Mathew, B.; Mathew, G.E.; Uçar, G.; Baysal, I.; Suresh, J.; Vilapurathu, J.K.; Prakasan, A.; Suresh, J.K.; Thomas, A. Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg. Chem., 2015, 62, 22-29.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.001] [PMID: 26189013]
[17]
Mathew, B.; Haridas, A.; Uçar, G.; Baysal, I.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Synthesis, Biochemistry, and computational studies of brominated thienylchalcones: A new class of reversible MAO-B inhibitors. ChemMedChem, 2016, 11(11), 1161-1171.
[http://dx.doi.org/10.1002/cmdc.201600122] [PMID: 27159243]
[18]
Mathew, B.; Haridas, A.; Suresh, J.; Mathew, G.E.; Uçar, G.; Jayaprakash, V. Monoamine oxidase inhibitory action of chalcones: A mini review. Cent. Nerv. Syst. Agents Med. Chem., 2016, 16(2), 120-136.
[http://dx.doi.org/10.2174/1871524915666151002124443] [PMID: 26429556]
[19]
Deshpande, S.R.; Nagrale, S.N.; Patil, M.V.; Chavan, P.S. Novel 3,4- methylenedioxybenzene scaffold incorporated 1,3,5- trisubstituted-2-pyrazolines: Synthesis, characterization and evaluation for chemotherapeutic activity. Indian J. Pharm. Sci., 2015, 77(1), 24-33.
[http://dx.doi.org/10.4103/0250-474X.151588] [PMID: 25767315]
[20]
Zhang, F.; Zhao, Y.; Sun, L.; Ding, L.; Gu, Y.; Gong, P. Synthesis and anti-tumor activity of 2-amino-3-cyano-6-(1H-indol-3-yl)-4-phenylpyridine derivatives in vitro. Eur. J. Med. Chem., 2011, 46(7), 3149-3157.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.055] [PMID: 21514012]
[21]
Mathew, B.; Adeniyi, A.A.; Mathew, G.E.; Sing-Pillay, A.; Sudarsanakumar, C.; Soliman, M.E.S. Anti-oxidant behavior of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J. Mol. Struct., 2017, 1146, 301-308.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.100]
[22]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]

© 2025 Bentham Science Publishers | Privacy Policy