Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Effects of Polyphenol Administration to European Farmed Sea Bass (Dicentrharcus labrax L.): Special Focus on Hepatopancreas Morphology

Author(s): Thea Magrone, Thea Magrone, Anna Spagnoletta, Anna Spagnoletta, Manrico Magrone, Manrico Magrone, Matteo Antonio Russo, Matteo Antonio Russo, Aldo Corriero, Aldo Corriero, Emilio Jirillo*, Emilio Jirillo*, Letizia Passantino and Letizia Passantino

Volume 19, Issue 4, 2019

Page: [526 - 533] Pages: 8

DOI: 10.2174/1871530318666181009111214

Price: $65

Abstract

Background and Objective: Hepatopancreas is an accessory organ associated with the liver in some fish, even including sea bass (Dicentrharcus labrax L.). Hepatopancreas contains an exocrine portion but until now its function has poorly been investigated.

Methods: Here, European farmed sea bass have been treated with a feed enriched in polyphenols extracted from seeds of red grape (Nero di Troia cultivar) at two different doses (100 and 200 mg/kg, respectively) from day 273 to day 323. In fish samples, hepatopancreas area sizes have been measured to evaluate the effects of this dietary regimen on its morphology.

Results: Quite interestingly, in treated fish area sizes of hepatopancreas were higher than those detected in untreated fish. Two hundred mg dose of polyphenols was more effective than that of 100 mg/kg polyphenols. Finally, hepatic polyphenol concentration was diminished in fish receiving 100 mg dose polyphenols and normalized with 200 mg dose in comparison to untreated fish. This evidence suggests the utilization of polyphenols for liver function, even including hepatopancreas development.

Conclusion: Our data suggest an expansion of hepatopancreas induced by polyphenol administration that is also associated with less mortality in farmed fish.

Keywords: Aquaculture, fish, hepatopancreas, liver, macrophages, melanomacrophage centers, polyphenols.

Graphical Abstract

[1]
Youson, J.H.; Al-Mahrouki, A.A.; Amemiya, Y.; Graham, L.C.; Montpetit, C.J.; Irwin, D.M. The fish endocrine pancreas: review, new data, and future research directions in ontogeny and phylogeny. Gen. Comp. Endocrinol., 2006, 148(2), 105-115.
[2]
Nejedli, S.; Gajger, I.T. Hepatopancreas in some sea fish from different species and the structure of the liver in teleost fish, common pandora, Pagellus erytenus (Linnaeus, 1758) and whiting, Merlangius merlangus euxinus (Nordmann, 1840). Vet. Arh., 2013, 83, 441-452.
[3]
Eurell, J.A.; Haensly, W.E. The histology and ultrastructure of the liver Atlantic croacher, Micropogon undulatus L. J. Fish Biol., 1982, 21, 25-113.
[4]
Geyer, H.J.; Nel, M.M.; Swanepoel, J.H. Histology and ultrastructure of the hepatopancreas of the tigerfish, Hydrocynus forskahlii. J. Morphol., 1996, 227(1), 93-100.
[5]
El-Bakary, N.E.R.; El-Gammal, H.L. Comparative histological, histochemical and structural studies on the liver of flathead grey mullet (Mugil cephalus) and sea bream (Sparus aurata). Glob. Vet., 2010, 4, 548-553.
[6]
Gonzales, G.; Crespo, S.; Brusle, J. Histo-cytological study of the liver of the cabrilla sea bass, Serranus cabrilla (Teleostei, Serranidae), an available model of marine fish experimental studies. J. Fish Biol., 1993, 43, 363-373.
[7]
Wandzioch, E.; Zaret, K.S. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science, 2009, 324(5935), 1707-1710.
[8]
Espe, M.; Sveier, H.; Høgøy, I.; Lied, E. Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate. Aquaculture, 1999, 174, 119-137.
[9]
Tacon, A.G.J.; Metian, M. Feed matters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquacult., 2015, 23, 1-10.
[10]
Tacon, A.G.J. Feed ingredients for warm water fish. Fishmeal and other processed feedstuffs. FAO Fish. Circ., 1993, (856), 64.
[11]
Ben Ameur, W.; de Lapuente, J.; El Megdiche, Y.; Barhoumi, B.; Trabelsi, S.; Camps, L.; Serret, J.; Ramos-López, D.; Gonzalez-Linares, J.; Driss, M.R.; Borràs, M. Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). Mar. Pollut. Bull., 2012, 64(2), 241-251.
[12]
Lo Turco, V.; Di Bella, G.; La Pera, L.; Conte, F.; Macrí, B. mo Dugo, G. Organochlorine pesticides and polychlorinated biphenyl residues in reared and wild Dicentrarchus labrax from the Mediterranean Sea (Sicily, Italy). Environ. Monit. Assess., 2007, 132(1-3), 411-417.
[13]
Giari, L.; Simoni, E.; Manera, M.; Dezfuli, B.S. Histo-cytological responses of Dicentrarchus labrax (L.) following mercury exposure. Ecotoxicol. Environ. Saf., 2008, 70(3), 400-410.
[14]
Raa, J.; Rorstad, G.; Engstad, R.E.; Robertson, B. In: The use of immunostimulants to increase resistance of aquatic organism to microbial infections, Proceedings of the First Symposium on Disease in Asian Aquaculture, 1992; Vol. 1, pp. 39-50.
[15]
Akhter, N.; Wu, B.; Memon, A.M.; Mohsin, M. Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunol., 2015, 45(2), 733-741.
[16]
Nawaz, A.; Bakhsh Javaid, A.; Irshad, S.; Hoseinifar, S.H.; Xiong, H. The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol., 2018, 76, 272-278.
[17]
Van Doan, H.; Hoseinifar, S.H.; Tapingkae, W.; Khamtavee, P. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 2017, 62, 139-146.
[18]
Magrone, T.; Jirillo, E. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis. Curr. Pharm. Des., 2013, 19(7), 1329-1342.
[19]
Magrone, T.; Jirillo, E. The interaction between gut microbiota and age-related changes in immune function and inflammation. Immun. Ageing, 2013, 10(1), 31.
[20]
Abdelmalek, B.E.; Driss, D.; Kallel, F.; Guargouri, M.; Missaoui, H.; Chaabouni, S.E.; Ayadi, M.A.; Bougatef, A. Effect of xylan oligosaccharides generated from corncobs on food acceptability, growth performance, haematology and immunological parameters of Dicentrarchus labrax fingerlings. Fish Physiol. Biochem., 2015, 41(6), 1587-1596.
[21]
Guerreiro, I.; Couto, A.; Pérez-Jiménez, A.; Oliva-Teles, A.; Enes, P. Gut morphology and hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed plant feedstuffs or fishmeal-based diets supplemented with short-chain fructo-oligosaccharides and xylo-oligosaccharides. Br. J. Nutr., 2015, 114(12), 1975-1984.
[22]
Torrecillas, S.; Betancor, M.B.; Caballero, M.J.; Rivero, F.; Robaina, L.; Izquierdo, M.; Montero, D. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: effects on growth performance, tissue fatty acid profile and lipid metabolism. Fish Physiol. Biochem., 2018, 44(1), 283-300.
[23]
Torrecillas, S.; Makol, A.; Caballero, M.J.; Montero, D.; Robaina, L.; Real, F.; Sweetman, J.; Tort, L.; Izquierdo, M.S. Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish Shellfish Immunol., 2007, 23(5), 969-981.
[24]
Sukumaran, V.; Park, S.C.; Giri, S.S. Role of dietary ginger Zingiber officinale in improving growth performances and immune functions of Labeo rohita fingerlings. Fish Shellfish Immunol., 2016, 57, 362-370.
[25]
Chakrabarti, R.; Srivastava, P.K.; Verma, N.; Sharma, J. Effect of seeds of Achyranthes aspera on the immune responses and expression of some immune-related genes in carp Catla catla. Fish Shellfish Immunol., 2014, 41(1), 64-69.
[26]
Sakuna, K.; Elliman, J.; Owens, L. Therapeutic trials against pre-existing Chequa iflavirus in redclaw crayfish (Cherax quadricarinatus). Aquaculture, 2018, 492, 9-14.
[http://dx.doi.org/10.1016/jaquaculture.2018.03.029]
[27]
Leiro, J.; Arranz, J.A.; Paramá, A.; Alvarez, M.F.; Sanmartín, M.L. In vitro effects of the polyphenols resveratrol, mangiferin and (-)-epigallocatechin-3-gallate on the scuticociliate fish pathogen Philasterides dicentrarchi. Dis. Aquat. Organ., 2004, 59(2), 171-174.
[28]
Alesci, A.; Cicero, N.; Salvo, A.; Palombieri, D.; Zaccone, D.; Dugo, G.; Bruno, M.; Vadalà, R.; Lauriano, E.R.; Pergolizzi, S. Extracts deriving from olive mill waste water and their effects on the liver of the goldfish Carassius auratus fed with hypercholesterolemic diet. Nat. Prod. Res., 2014, 28(17), 1343-1349.
[29]
Magrone, T.; Fontana, S.; Laforgia, F.; Dragone, T.; Jirillo, E.; Passantino, L. Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses. Oxid. Med. Cell. Longev., 2016, 20162827567.
[30]
Roselli, M.; Lovece, A.; Bruno, C.; Cavalluzzi, M.M.; Laghezza, A.; Mercurio, A.; Lentini, G.; Corbo, F.; La Forgia, F.; Fontana, S.; Habtemariam, S.; Franchini, C. Antioxidant activity of Uva di Troia Canosina: Comparison of two extraction methods. Clin. Immunol. Endocr. Metab. Drugs, 2015, 2, 1-5.
[31]
Council Directive 86/609 EEC for the protection of animals used for experimental and other scientific purposes. Offic. J., 1986, L358, 1-28.
[32]
Anonymous, Ethical justification for the use and treatment of fishes in research. J. Fish Biol., 2006, 68, 1-2.
[33]
Swain, T.; Hillis, E. The phenolic constituents of Prunus domestica The quantitative analysis of phenolic constituents. J. Sci. Food Agric., 1959, 10, 63-68.
[34]
Serafini, M.; Maiani, G.; Ferro-Luzzi, A. Alcohol-free red wine enhances plasma antioxidant capacity in humans. J. Nutr., 1998, 128(6), 1003-1007.
[35]
Ellis, A.E. Antigen-trapping in the spleen and kidney of the plaice Pleuronecetes platessa L. J. Fish Dis., 1980, 3, 413-426.
[36]
Vigliano, F.A.; Bermúdez, R.; Quiroga, M.I.; Nieto, J.M. Evidence for melano-macrophage centres of teleost as evolutionary precursors of germinal centres of higher vertebrates: an immunohistochemical study. Fish Shellfish Immunol., 2006, 21(4), 467-471.
[37]
Agius, C.; Agbede, S.A. An electron microscopical study on the genesis of lipofuscin, melanin and haemosiderin in haemopoietic tissues of fish. J. Fish Biol., 1984, 24, 471-478.
[38]
Agius, C.; Roberts, R.J. Melano-macrophage centres and their role in fish pathology. J. Fish Dis., 2003, 26(9), 499-509.
[39]
Arciuli, M.; Fiocco, D.; Fontana, S.; Arena, M.P.; Frassanito, M.A.; Gallone, A. Administration of a polyphenol-enriched feed to farmed sea bass (Dicentrarchus labrax L.): Kidney melanomacrophages response. Fish Shellfish Immunol., 2017, 68, 404-410.
[40]
Robertsen, B. The interferon system of teleost fish. Fish Shellfish Immunol., 2006, 20(2), 172-191.
[41]
Hazenberg, M.D.; Spits, H. Human innate lymphoid cells. Blood, 2014, 124(5), 700-709.
[42]
Øvergård, A.C.; Nepstad, I.; Nerland, A.H.; Patel, S. Characterisation and expression analysis of the Atlantic halibut (Hippoglossus hippoglossus L.) cytokines: IL-1β, IL-6, IL-11, IL-12β and IFNγ. Mol. Biol. Rep., 2012, 39(3), 2201-2213.
[43]
Hodgkinson, J.W.; Ge, J.Q.; Grayfer, L.; Stafford, J.; Belosevic, M. Analysis of the immune response in infections of the goldfish (Carassius auratus L.) with Mycobacterium marinum. Dev. Comp. Immunol., 2012, 38(3), 456-465.
[44]
Grayfer, L.; Hodgkinson, J.W.; Belosevic, M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Dev. Comp. Immunol., 2014, 43(2), 223-242.
[45]
Magrone, T.; Tafaro, A.; Jirillo, F.; Amati, L.; Jirillo, E.; Covelli, V. Elicitation of immune responsiveness against antigenic challenge in age-related diseases: effects of red wine polyphenols. Curr. Pharm. Des., 2008, 14(26), 2749-2757.
[46]
Magrone, T.; Russo, M.A.; Jirillo, E. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications. Front. Immunol., 2017, 8, 677.
[47]
Magrone, T.; Romita, P.; Verni, P.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E.; Foti, C. In vitro Effects of Polyphenols on the Peripheral Immune Responses in Nickel-sensitized Patients. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 324-331.
[48]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive Leaf Extracts Act as Modulators of the Human Immune Response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 85-93.
[49]
Caruso, G. Antibiotic Resistance in Fish Farming Environments: A Global Concern. J. FisheriesSci., 2016, 10, 9-13.
[50]
Passantino, L.; Santamaria, N.; Zupa, R.; Pousis, C.; Garofalo, R.; Cianciotta, A.; Jirillo, E.; Acone, F.; Corriero, A. Liver melanomacrophage centres as indicators of Atlantic bluefin tuna, Thunnus thynnus L. well-being. J. Fish Dis., 2014, 37(3), 241-250.
[51]
Corriero, A.; Zupa, R.; Pousis, C.; Santamaria, N.; Bello, G.; Jirillo, E.; Carrassi, M.; De Giorgi, C.; Passantino, L. Increased liver apoptosis and tumor necrosis factor expression in Atlantic bluefin tuna (Thunnus thynnus) reared in the northern Adriatic Sea. Mar. Pollut. Bull., 2013, 71(1-2), 23-28.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy