Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Recent Biomedical Applications on Stem Cell Therapy: A Brief Overview

Author(s): Mukta Agrawal, Amit Alexander*, Junaid Khan, Tapan K. Giri, Sabahuddin Siddique, Sunil K. Dubey, Ajazuddin, Ravish J. Patel, Umesh Gupta, Swarnlata Saraf and Shailendra Saraf

Volume 14, Issue 2, 2019

Page: [127 - 136] Pages: 10

DOI: 10.2174/1574888X13666181002161700

Price: $65

Abstract

Stem cells are the specialized cell population with unique self-renewal ability and act as the precursor of all the body cells. Broadly, stem cells are of two types one is embryonic stem cells while the other is adult or somatic stem cells. Embryonic stem cells are the cells of zygote of the blastocyst which give rise to all kind of body cells including embryonic cells, and it can reconstruct a complete organism. While the adult stem cells have limited differentiation ability in comparison with embryonic stem cells and it proliferates into some specific kind of cells. This unique ability of the stem cell makes it a compelling biomedical and therapeutic tool. Stem cells primarily serve as regenerative medicine for particular tissue regeneration or the whole organ regeneration in any physical injury or disease condition (like diabetes, cancer, periodontal disorder, etc.), tissue grafting and plastic surgery, etc. Along with this, it is also used in various preclinical and clinical investigations, biomedical engineering and as a potential diagnostic tool (such as the development of biomarkers) for non-invasive diagnosis of severe disorders. In this review article, we have summarized the application of stem cell as regenerative medicine and in the treatment of various chronic diseases.

Keywords: Stem cell, regenerative medicine, human embryonic stem cell, pluripotent stem cell, bone regeneration, heart regeneration.

[1]
Petek K, Sevil K, Cagla Zubeyde K. Biomaterial and Stem Cell Interactions: Histological Biocompatibility. . Curr Stem Cell Res Ther 2016; 11(6): 475-86.
[2]
Chaudhury H, Raborn E, Goldie LC, et al. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine. Cells Tissues Organs 2012; 195(1-2): 41-7.
[3]
Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105(3): 369-77.
[4]
Mountford JC. Human embryonic stem cells: Origins, characteristics and potential for regenerative therapy. Transfus Med 2008; 18(1): 1-12.
[5]
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78(12): 7634-8.
[6]
Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 2015; 82-83: 1-11.
[7]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
[8]
Boris V, Afanasyev EE, Axel R, Zander AJ. Friedenstein, founder of the mesenchymal stem cell concept. CTT J 2009; 01(03): 35-8.
[9]
Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell 2008; 2(4): 313-9.
[10]
Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963; 197: 452-4.
[11]
Hyun I. The bioethics of stem cell research and therapy. J Clin Invest 2010; 120(1): 71-5.
[12]
King NM, Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res Ther 2014; 5(4): 85.
[13]
Greely HT. Assessing ESCROs: Yesterday and tomorrow. Am J Bioeth 2013; 13(1): 44-52.
[14]
Burns AJ, Thapar N. Neural stem cell therapies for enteric nervous system disorders. Nat Rev Gastroenterol Hepatol 2014; 11(5): 317-28.
[15]
Chenchen Z, Brian EG, Shujuan Z. Regulators of Stem Cells Proliferation in Tissue Regeneration. Curr Stem Cell Res Ther 2016; 11(3): 177-87.
[16]
Ouyang H, Goldberg JL, Chen S, et al. Ocular stem cell research from basic science to clinical application: A report from zhongshan ophthalmic center ocular stem cell symposium. Int J Mol Sci 2016; 17(3): 415.
[17]
Anandwardhan AH, Justin GL, Kuldip SS, et al. Stem-cell therapy for diabetes cure: How close are we? Curr Stem Cell Res Ther 2006; 1(3): 425-36.
[18]
Knoepfler PS. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells 2009; 27(5): 1050-6.
[19]
Caplan AI. Mesenchymal stem cells: Time to change the name. Stem Cells Transl Med 2017; 6(6): 1445-51.
[20]
Jilkine A, Gutenkunst RN. Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers. PLOS Comput Biol 2014; 10(3): e1003481.
[21]
Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9: 29.
[22]
Narva E, Autio R, Rahkonen N, et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 2010; 28(4): 371-7.
[23]
Gage FH. Mammalian neural stem cells. Science (New York, NY) 2000; 287(5457): 1433-8.
[24]
Saras J, Simran T. Chemical and physical factors influencing the dynamics of differentiation in embryonic stem cells. Curr Stem Cell Res Ther 2015; 10(6): 477-91.
[25]
Draper JS, Fox V. Human embryonic stem cells: Multilineage differentiation and mechanisms of self-renewal. Arch Med Res 2003; 34(6): 558-64.
[26]
Smith AG. Embryo-derived stem cells: Of mice and men. Annu Rev Cell Dev Biol 2001; 17: 435-62.
[27]
Kingham E, Oreffo RO. Embryonic and induced pluripotent stem cells: understanding, creating, and exploiting the nano-niche for regenerative medicine. ACS Nano 2013; 7(3): 1867-81.
[28]
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154-6.
[29]
Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; (8): 1017-26.
[30]
O’Donoghue K, Fisk NM. Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 2004; 18(6): 853-75.
[31]
Rhiannon N-L, Pouya M, Reza M, et al. A Systemic review of adult mesenchymal stem cell sources and their multilineage differentiation potential relevant to musculoskeletal tissue repair and regeneration. Curr Stem Cell Res Ther 2017; 12(8): 601-10.
[32]
Dmitry B. Therapeutic angiogenesis in ischemic tissues by growth factors and bone marrow mononuclear cells administration: biological foundation and clinical prospects. Curr Stem Cell Res Ther 2015; 10(6): 509-22.
[33]
Sanjucta A, Sayani M, Dwaipayan S. Mesenchymal stem cell as a potential therapeutic for inflammatory bowel disease- myth or reality? Curr Stem Cell Res Ther 2017; 12(8): 644-57.
[34]
Mohammad Ali N, Mahsa Mollapour S, Alexander Marcus S, et al. Regenerative medicine applications in wound care. Curr Stem Cell Res Ther 2017; 12(8): 658-74.
[35]
Suad A, Patrick RJF, Ernst W. Advances in Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2015; 10(3): 193-207.
[36]
Lin C, Yong Z, Yuemin N, et al. Induced Pluripotent Stem Cells (iPSCs) in the Modeling of Hepatitis C Virus Infection. Curr Stem Cell Res Ther 2015; 10(3): 216-9.
[37]
Williams RL, Hilton DJ, Pease S, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988; 336(6200): 684-7.
[38]
Chao S, George SW, Jian-Gao F, et al. Potential applications of Induced Pluripotent Stem Cells (iPSCs) in hepatology research. Curr Stem Cell Res Ther 2015; 10(3): 208-15.
[39]
Zimu Z, Biao H, Fei G, et al. Impact of immune response on the use of ipscs in disease modeling. Curr Stem Cell Res Ther 2015; 10(3): 236-44.
[40]
Rosner M, Schipany K, Hengstschlager M. The decision on the “optimal” human pluripotent stem cell. Stem Cells Transl Med 2014; 3(5): 553-9.
[41]
Eun SC. Stem cell and research in plastic surgery. J Korean Med Sci 2014; 29(3): S167-9.
[42]
de Kretser D. Totipotent, pluripotent or unipotent stem cells: A complex regulatory enigma and fascinating biology. J Law Med 2007; 15(2): 212-8.
[43]
Hassan A, Paolo De C, Pascale VG. Therapeutic potential of amniotic fluid stem cells. Curr Stem Cell Res Ther 2013; 8(2): 117-24.
[44]
Sabrina M, Simona S, Haysam Mohamed Magdy A, et al. Recent strategies combining biomaterials and stem cells for bone, liver and skin regeneration. Curr Stem Cell Res Ther 2016; 11(8): 676-91.
[45]
Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med 2008; 3(1): 1-5.
[46]
Berna K, Sevil K, Petek K, et al. Mesenchymal stem cells and nano-bioceramics for bone regeneration. Curr Stem Cell Res Ther 2016; 11(6): 487-93.
[47]
Jessica SH, Cynthia MC. Diabetic bone fracture repair: A progenitor cell-based paradigm. Curr Stem Cell Res Ther 2016; 11(6): 494-504.
[48]
Ferguson C, Alpern E, Miclau T, et al. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 1999; 87(1-2): 57-66.
[49]
Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998; S7-S21.
[50]
Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: Current concepts and future directions. BMC Med 2011; 9: 66.
[51]
Audige L, Griffin D, Bhandari M, et al. Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures. Clin Orthop Relat Res 2005; (438): 221-32.
[52]
Feyzan Ozdal K, Hafize Seda V. Potential clinical use of differentiated cells from embryonic or mesencyhmal stem cells in orthopaedic problems. Curr Stem Cell Res Ther 2016; 11(6): 522-9.
[53]
Elina K, Miho N, Juha T. Osteoclasts and remodeling based bone formation. Curr Stem Cell Res Ther 2016; 11(8): 626-33.
[54]
Umile Giuseppe L, Giacomo R, Alessandra B, et al. Potential of adipose derived stem cells in orthopaedic surgery. Curr Stem Cell Res Ther 2013; 8(6): 418-21.
[55]
Naveen K, Mukai C-G, Anita S, et al. The Potential of stem cell therapy for osteoarthritis and rheumatoid arthritis. Curr Stem Cell Res Ther 2013; 8(6): 444-50.
[56]
Toma C, Wagner WR, Bowry S, et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ Res 2009; 104(3): 398-402.
[57]
Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 2002; 34(2): 107-16.
[58]
Ide C, Nakai Y, Nakano N, et al. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res 2010; 1332: 32-47.
[59]
Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008; 3(4): e1886.
[60]
Katagiri W, Osugi M, Kawai T, et al. Novel cell-free regeneration of bone using stem cell-derived growth factors. Int J Oral Maxillofac Implants 2013; 28(4): 1009-16.
[61]
Reilly GC, Radin S, Chen AT, et al. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials 2007; 28(28): 4091-7.
[62]
Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999; 20(23-24): 2287-303.
[63]
Leach JK, Kaigler D, Wang Z, et al. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 2006; 27(17): 3249-55.
[64]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[65]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[66]
Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26(1): 101-6.
[67]
Gang F, Aishu R, Yu Q, et al. Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 2016; 11(3): 235-46.
[68]
Dennis K, Wasim SK, Behrooz H, et al. Biomaterials and Scaffolds in Bone and Musculoskeletal Engineering. Curr Stem Cell Res Ther 2013; 8(3): 185-91.
[69]
Tang M, Chen W, Liu J, et al. Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Eng Part A 2014; 20(7-8): 1295-305.
[70]
Nashat AS, John MO. Clinical advances in bone regeneration. Curr Stem Cell Res Ther 2013; 8(3): 192-200.
[71]
Anuruthran A, James Min-Leong W, Wasim SK. Preclinical and clinical studies on the use of stem cells for bone repair: A systematic review. Curr Stem Cell Res Ther 2013; 8(3): 210-6.
[72]
Dixit P, Katare R. Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther 2015; 6: 26.
[73]
Effat MA. Pathophysiology of ischemic heart disease: an overview. AACN Clin Issues 1995; 6(3): 369-74.
[74]
Zhi C, Chunyu Z, Wei Eric W. Progress of stem cell transplantation for treating myocardial infarction. Curr Stem Cell Res Ther 2017; 12(8): 624-36.
[75]
Manuela C, Daniela S, Viorel S. Stem cell regenerative potential combined with nanotechnology and tissue engineering for myocardial regeneration. Curr Stem Cell Res Ther 2013; 8(4): 292-303.
[76]
Chi NC, Karliner JS. Molecular determinants of responses to myocardial ischemia/reperfusion injury: Focus on hypoxia-inducible and heat shock factors. Cardiovasc Res 2004; 61(3): 437-47.
[77]
Frangogiannis NG. Inflammation in cardiac injury, repair and regeneration. Curr Opin Cardiol 2015; 30(3): 240-5.
[78]
Greg L, Sebastian S, Mei Ling L, et al. The use of mathematical modelling for improving the tissue engineering of organs and stem cell therapy. Curr Stem Cell Res Ther 2016; 11(8): 666-75.
[79]
Mihai Bogdan P, Guro V. Evaluation of gene and cell-based therapies for cardiac regeneration. Curr Stem Cell Res Ther 2013; 8(4): 304-12.
[80]
Liu J, Wang H, Wang Y, et al. The stem cell adjuvant with Exendin-4 repairs the heart after myocardial infarction via STAT3 activation. J Cell Mol Med 2014; 18(7): 1381-91.
[81]
Chhabra P, Brayman KL. Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med 2013; 2(5): 328-36.
[82]
van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: Etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91(1): 79-118.
[83]
Shruti D. Extrinsic factors promoting insulin producing cell-differentiation and insulin expression enhancement-hope for diabetics. Curr Stem Cell Res Ther 2013; 8(6): 471-83.
[84]
Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986; 314(21): 1360-8.
[85]
Sherry NA, Tsai EB, Herold KC. Natural history of beta-cell function in type 1 diabetes. Diabetes 2005; 54(Suppl. 2): S32-9.
[86]
Tsai EB, Sherry NA, Palmer JP, et al. The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia 2006; 49(2): 261-70.
[87]
Alluru SR, Neil K, Kishore K, et al. Human umbilical cord blood cells and diabetes mellitus: Recent advances. Curr Stem Cell Res Ther 2015; 10(3): 266-70.
[88]
David TH. Umbilical cord tissue mesenchymal stem cells: Characterization and clinical applications. Curr Stem Cell Res Ther 2013; 8(5): 394-9.
[89]
Muir KR, Lima MJ, Docherty HM, et al. Cell therapy for type 1 diabetes. QJM 2014; 107(4): 253-9.
[90]
Muhammad Shareef M, Muhammad Q, Muhammad Umar A. Translating the potential of stem cells for diabetes mellitus: Challenges and opportunities. Curr Stem Cell Res Ther 2017; 12(8): 611-23.
[91]
Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen 2014; 22(3): 313-25.
[92]
Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004; 28(3): 321-6.
[93]
Mulder GD, Vande Berg JS. Cellular senescence and matrix metalloproteinase activity in chronic wounds. Relevance to debridement and new technologies. J Am Podiatr Med Assoc 2002; 92(1): 34-7.
[94]
Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010; 89(3): 219-29.
[95]
Menke NB, Ward KR, Witten TM, et al. Impaired wound healing. Clin Dermatol 2007; 25(1): 19-25.
[96]
Nurul Hafizah Mohd N, Zurairah B, Ahmad A, et al. Identification and characterization of intraoral and dermal fibroblasts revisited. Curr Stem Cell Res Ther 2017; 12(8): 675-81.
[97]
Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther 2015; 15(9): 1285-92.
[98]
Ibrahim M, Nadeem B. Advances in the production and application of induced pluripotent stem cells. Curr Stem Cell Res Ther 2017; 12(8): 637-43.
[99]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13: 49.
[100]
Lam MT, Nauta A, Meyer NP, et al. Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing. Tissue Eng Part A 2013; 19(5-6): 738-47.
[101]
Leyla Turker S, Isil A. Challenge of Mesenchymal Stem Cells Against Diabetic Foot Ulcer. Curr Stem Cell Res Ther 2015; 10(6): 530-4.
[102]
You HJ, Han SK. Cell therapy for wound healing. J Korean Med Sci 2014; 29(3): 311-9.
[103]
Lorenz HP, Hedrick MH, Chang J, et al. The impact of biomolecular medicine and tissue engineering on plastic surgery in the 21st century. Plast Reconstr Surg 2000; 105(7): 2467-81.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy