Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Facile One-Pot Friedlander Synthesis of Functionalized Quinolines using Graphene Oxide Carbocatalyst

Author(s): Anchal Singhal, Pratibha Kumari* and Kharu Nisa

Volume 16, Issue 1, 2019

Page: [154 - 159] Pages: 6

DOI: 10.2174/1570179415666181002114621

Price: $65

Abstract

Background: Quinolines represent an important class of bioactive molecules which are present in various synthetic drugs, biologically active natural compounds and pharmaceuticals. Quinolines find their potential applications in various chemical and biomedical fields. Thereby, the demand for more efficient and simple methodologies for the synthesis of quinolines is growing rapidly.

Objective: The green one-pot Friedlander Synthesis of Functionalized Quinolines has been demonstrated by using graphene oxide as a carbocatalyst.

Method: The graphene oxide catalyzed condensation reaction of 2–aminoaryl carbonyl compounds with different cyclic/ acyclic/ aromatic carbonyl compounds in methanol at 70°C affords different quinoline derivatives.

Results: The reaction has been examined in different protic and aprotic solvents and the best yield of quinoline is observed in methanol at 70°C.

Conclusion: The present method of quinoline synthesis offers various advantages over other reported methods such as short reaction time, high yield of product, recycling of catalyst and simple separation procedure. The graphene oxide carbocatalyst can be easily recovered from the reaction mixture by centrifugation and then can be reused several times without any significant loss in its activity.

Keywords: Quinolines, graphene oxide, carbocatalyst, amino benzophenone, carbonyl compounds.

Graphical Abstract

[1]
Asif, M. A mini review: Biological significances of nitrogen hetero atom containing heterocyclic compounds. Int. J. Bioorg. Chem., 2017, 2(3), 146-152.
[2]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[3]
Czaplinska, B.; Maron, A.; Malecki, J.G.; Gorol, G.S.; Matussek, M.; Malarz, K.; Wilczkiewicz, A.M.; Danikiewicz, W.; Musiol, R.; Slodek, A. Comprehensive exploration of the optical and biological properties of new quinoline based cellular probes. Dyes Pigm., 2017, 144, 119-132.
[4]
Hu, Y-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[5]
Lee, C.H.; Lee, H.S. Relaxant effects of quinoline derivatives on histamine-induced contraction of the Guinea pig trachea. J. Korean Soc. Appl. Biol. Chem., 2011, 54(1), 118-123.
[6]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[7]
Khelifi, I.; Naret, T.; Renko, D.; Hamze, A.; Bernadat, G.; Bignon, J. lenoir, C.; Dubois, J.; Brion, J.–D.; Provot, O.; Alami, M. Design, synthesis and anticancer properties of Iso Combreta Quinolines as potent tubilin assembly inhibitors. Eur. J. Med. Chem., 2017, 127, 1025-1034.
[8]
Yadav, G.D.; Kumbhar, R.P.; Helder, S. A facile solvent-free skraup cyclization reaction for synthesis of 2, 2, 4-trimethyl-1, 2-dihydroquinoline. Int. Rev. Chem. Eng., 2012, 4(6), 597-607.
[9]
Palimkar, S.S.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid-promoted regiospecific Friedlander annulation: novel synthesis of quinolines and fused polycyclic quinolines. J. Org. Chem., 2003, 68(24), 9371-9378.
[10]
Brouet, J-C.; Gu, S.; Peet, N.P.; Williams, J.D. Survey of solvents for the Conrad-Limpach synthesis of 4-hydroxyquinolones. Synth. Commun., 2009, 39(9), 1563-1569.
[11]
Denmark, S.E.; Venkatraman, S. On the mechanism of Skraup-Doebner-Von-Miller quinoline synthesis. J. Org. Chem., 2006, 71(4), 1668-1676.
[12]
Elghamry, I.; Al-Faiyz, Y. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water. Tetrahedron Lett., 2016, 57(1), 110-112.
[13]
Alyamkina, E.A.; Yamashkin, S.A.; Artayeva, N.N.; Yorovskaya, M.A. Using of 4-amino-2-phenylindoles in the synthesis of pyrroloquinolines by the Combes reaction. Mos Univ. Chem. Bull., 2010, 65(5), 335-340.
[14]
Lekhok, K.C.; Bhuyan, D.; Prajapati, D.; Boruah, R.C. Zinc triflate: a highly efficient reusable catalyst in the synthesis of functionalized quinolines via Friedlander annulation. Mol. Div., 2010, 14(4), 841-846.
[15]
Zade, G.D.; Dhoble, S.J.; Raut, S.B.; Pode, R.B. Synthesis and Characterization of Chlorine-methoxy-diphenylquinoline (Cl-MO-DPQ) and Chlorine-methyl-diphenylquinoline (Cl-M-DPQ) Blue Emitting Organic Phosphors. J. Mod. Phys., 2011, 2, 1523-1529.
[16]
Teimouri, A.; Chermahini, A.N. A mild and highly efficient Friedlander synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst. Arabian. J. Chem., 2016, 9(1), S433-S439.
[17]
Batista, V.F.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis of quinolines: a green perspective. ACS Sustain. Chem. Eng., 2016, 4(8), 4064-4078.
[18]
Jadhav, S.J.; Patil, R.B.; Kumbhar, D.R.; Patravale, A.A.; Chandam, D.R.; Deshmukh, M.B. Sulfamic acid catalyzed atom economic, eco‐friendly synthesis of novel 7‐(Aryl)‐10‐thioxo‐7,9,10,11‐tetrahedro‐6H‐pyrimido‐ [5′4′:5,6]pyrano[3,2‐c]quinoline‐6,8(5H)‐dione and its Derivatives. J. Heterocycl. Chem., 2017, 54(4), 2206-2215.
[19]
Chen, M-M.; Zhang, M.; Xie, F.; Wang, X-T. Convenient synthesis of novel heteroatom-substituted quinolines via Friedlander annulation using phosphotungstic acid as a reusable catalyst. Monatsh. Chem., 2015, 146, 663-671.
[20]
Pandit, R.P.; Lee, Y.R. Copper(II) triflate-catalyzed reactions for the synthesis of novel and diverse quinoline carboxylates. RSC Adv, 2013, 3(44), 22039-22045.
[21]
Yamazaki, S.; Takebayashi, M.; Miyazaki, K. Zn(OTf)2-catalyzed reactions of ethane tricarboxylates with 2-aminobenzaldehydes leading to tetrahydroquinoline derivatives. J. Org. Chem., 2010, 75(4), 1188-1196.
[22]
Yadav, J.S.; Reddy, B.V.S.; Premalatha, K. Bi(OTf)3-catalyzed Friedlander hetero-annulation: a rapid synthesis of 2,3,4-trisubstituted quinolines. Synlett, 2004, 6, 963-966.
[23]
Hosseini-Sarvari, M. Commercial ZrO2 as a new, efficient and reusable catalyst for the one-step synthesis of quinolines in solvent-free conditions. Can. J. Chem., 2009, 87(8), 1122-1126.
[24]
Yoichiro, K.; Yuichi, I.; Kazuhiko, T. Copper(I)- and gold(I)-catalyzed synthesis of 2,4-disubstituted quinoline derivatives from N-aryl-2-propynylamines. Chem. Lett., 2007, 36(12), 1422-1423.
[25]
Li, X.; Mao, Z.; Wang, Y.; Chen, W.; Lin, X. Molecular iodine-catalyzed and air-mediated tandem synthesis of quinolines via three-component reaction of amines, aldehydes and alkynes. Tetrahedron, 2011, 67(21), 3858-3862.
[26]
Mi, X.; Chen, J.; Xu, L. FeCl3-catalyzed SF5-containing quinoline synthesis: three component coupling reactions of SF5-anilines, aldehydes and alkynes. Eur. J. Org. Chem., 2015, 2015, 1415-1418.
[27]
Yao, C.; Qin, B.; Zhang, H.; Lu, J.; Wang, D.; Tu, S. One-pot solvent-free synthesis of quinolines by C-H activation/ C-C bond formation catalyzed by recyclable iron(III) triflate. RSC Adv, 2012, 2, 3759-3764.
[28]
Luo, Y.; Pan, X.; Wu, J. Efficient synthesis of 5H-cyclopenta[c]quinoline derivatives via palladium catalyzed domino reactions of o-alkynyl halobenzene with amine. Org. Lett., 2011, 13(5), 1150-1153.
[29]
Le, Z-G.; Liang, M.; Chen, Z-S.; Zhang, S-H.; Xie, Z-B. Ionic liquid as an efficient medium for the synthesis of quinoline derivatives via α-chymotrypsin-catalyzed Friedlander condensation. Molecules, 2017, 22(5), 762-769.
[30]
Akbari, J.; Heydari, A.; Kalhor, H.R.; Kohan, S.A. Sulfonic acid functionalized ionic liquid in combinatorial approach, a recyclable and water tolerant-acidic catalyst for one-pot Friedlander quinoline synthesis. J. Comb. Chem., 2010, 12, 137-140.
[31]
Singhal, A.; Kumari, P.; Chauhan, S.M.S. Friedlander synthesis of quinolines in presence of sulfonylimidazolium salts. Curr. Organocatal., 2017, 4, 182-188.
[32]
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev., 2014, 114, 6179-6212.
[33]
Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Non-covalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic and biomedical applications. Chem. Rev., 2016, 116(9), 5464-5519.
[34]
Anshuman, A.; Yarahmadi, S.S.; Vaidhyanathan, B. Enhanced catalytic performance of reduced graphene oxide-TiO2 hybrids for efficient water treatment using microwave irradiation. RSC Adv, 2018, 8, 7709-7715.
[35]
Pyun, J. Graphene oxide as catalyst: Application of carbon materials beyond nanotechnology. Angew. Chem. Int. Ed., 2011, 50(1), 46-48.
[36]
Nguyen, V.C.; Bui, N.Q.; Mascunan, P.; Vu, T.T.H.; Fongarland, P.; Essayem, N. Esterification of aqueous lactic acid solutions with ethanol using carbon solid acid catalysts: Amberlyst 15, sulfonated pyrolyzed wood and graphene oxide. Appl. Catal. A General., 2018, 552, 184-191.
[37]
Cui, Y.; Lee, Y.H.; Yang, J.W. Impact of carboxyl groups in graphene oxide on chemoselective alcohol oxidation with ultra-low carbocatalyst loading. Sci. Rep., 2017, 7, 3146-3154.
[38]
Zhao, Q.; Bai, C.; Zhang, W.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Catalytic epoxidation of olefins with graphene oxide supported copper (salen) complex. Ind. Eng. Chem. Res., 2014, 53(11), 4232-4238.
[39]
Dreyer, D.R.; Jia, H.P.; Todd, A.D.; Geng, J.; Bielawski, C.W. Graphite oxide: A selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem., 2011, 9(21), 7292-7295.
[40]
Gao, Y.; Tang, P.; Zhou, H.; Zhang, W.; Yang, H.; Yan, N.; Hu, G.; Mei, D.; Wang, J.; Ma, D. Graphene oxide catalyzed C-H bond activation: The importance of oxygen functional groups for biaryl construction. Angew. Chem. Int. Ed., 2016, 55(9), 3124-3128.
[41]
Jia, H-P.; Dreyer, D.R.; Bielawski, C.W. Graphite oxide as an auto-tandem oxidation-hydration-Aldol coupling catalyst. Adv. Synth. Catal., 2011, 353(4), 528-532.
[42]
Kausar, N.; Roy, I.; Chattopadhyay, D.; Das, A.R. Synthesis of 2,3-dihydroquinazolinones and quinazolin-4(3H)-ones catalyzed by graphene oxide nanosheets in an aqueous medium: “On-water” synthesis accompanied by carbocatalysis and selective C-C bond cleavage. RSC Adv, 2016, 6, 22320-22331.
[43]
Zhang, M.; Liu, Y-H.; Shang, Z-R.; Hu, H-C.; Zhang, Z-H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun., 2017, 88, 39-44.
[44]
Zhang, M.; Liu, P.; Liu, Y-H.; Shang, Z-R.; Hu, H-C.; Zhang, Z-H. Magnetically separable graphene oxide anchored sulfonic acid: a novel, highly efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Adv, 2016, 6, 106160-106170.
[45]
Dreyer, D.R.; Bielawski, C.W. Graphite oxide as an olefin polymerization carbocatalyst: applications in electrochemical double layer capacitors. Adv. Funct. Mater., 2012, 22(15), 3247-3253.
[46]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4, 4806-4814.
[47]
Hasaninejad, A.; Zare, A.; Shekouhy, M.; Ameri-Rad, J. Sulfuric acid-modified PEG-6000 (PEG-OSO3H): An efficient, biodegradable and reusable polymeric catalyst for the solvent-free synthesis of poly-substituted synthesis of quinolines under microwave irradiation. Green Chem., 2011, 13, 958-964.
[48]
Chauhan, S.M.S.; Mishra, S. Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Molecules, 2011, 16, 7256-7266.
[49]
Stobinski, L.; Lesiaka, B.; Malolepszyc, A.; Mazurkiewiczc, M.; Mierzwaa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom., 2014, 195, 145-154.
[50]
Garg, B.; Bisht, T.; Ling, Y-C. Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules, 2014, 19, 14582-14614.
[51]
Teimouri, A.; Chermahini, A.N. A mild and highly efficient Friedlander synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst. Arabian . J. Chem., 2016, 9, S433-S439.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy