Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Review on the Characteristic, Properties and Analytical Methods of Cefquinomesulphate: ß-lactam Veterinary Drug

Author(s): Shaza W. Shantier*

Volume 20, Issue 1, 2020

Page: [27 - 32] Pages: 6

DOI: 10.2174/1871526518666181001122010

Price: $65

Abstract

Background: Chemotherapy as a science began within the 1st decade of the twentieth century with understanding of the principles of selective toxicity, the particular chemical relationships between microorganism pathogens and medicines, the event of drug resistance, and also the role of combined medical aid.

Objectives: This review aims to highlight the characteristics, specifically the pharmacokinetic parameters and the analytical methods reported in literature for the determination of Cefquinome, a fourth generation cephalosporine used to treat Gram-positive and Gram-negative caused infections.

Conclusion: Analysis of such drugs, whether used for the treatment of human or animal illness, is essential in understanding the bioavailability and therapeutic control which will ensure their activity and safety.

Keywords: Infection, antibiotics, activity, cephalospotines, cefquinome, analysis.

Graphical Abstract

[1]
^ a b c "Antibiotics". NHS, 17 January. 2015.
[2]
"Factsheet for experts". European Centre for Disease Prevention and Control, 21 December. 2014.
[3]
Calderon, C.B.; Sabundayo, B.P. Antimicrobial Classifications: Drugs for Bugs In: Antimicrobial Susceptibility Testing Protocols; Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C., Eds.; CRC Press. Taylor & Frances group, 1990.
[4]
Hurd, H.S.; Brudvig, J.; Dickson, J.; Mirceta, J.; Polovinski, M.; Matthews, N.; Griffith, R. Swine health impact on carcass contamination and human foodborne risk. Public Health Rep., 2008, 123(3), 343-351.
[http://dx.doi.org/10.1177/003335490812300314] [PMID: 19006976]
[5]
Singer, R.S.; Louis, A. Cox, Jr.; James, S. D.; Scott, H. H.; Ian, P.; Gay, Y. M. Modeling the relationship between food, animal health and human food borne illness. Prev. Vet. Med., 2007, 79, 186-203.
[http://dx.doi.org/10.1016/j.prevetmed.2006.12.003] [PMID: 17270298]
[6]
Guimarães, D.O.; Momesso, L.S.; Pupo, M.T. Antibiotics: therapeutic importance and prospects for the discovery and development of new agents. Nat. Chem., 2010, 33, 667-679.
[7]
Brooks, B.D.; Brooks, A.E. Therapeutic strategies to combat antibiotic resistance. Adv. Drug Deliv. Rev., 2014, 78, 14-27.
[http://dx.doi.org/10.1016/j.addr.2014.10.027] [PMID: 25450262]
[8]
Oldfield, E.; Feng, X. Resistance-resistant antibiotics. Trends Pharmacol. Sci., 2014, 35(12), 664-674.
[http://dx.doi.org/10.1016/j.tips.2014.10.007] [PMID: 25458541]
[9]
Harle, D.G.; Baldo, B.A.; Wells, J.V. Drugs as allergens: detection and combining site specificities of IgE antibodies to sulfamethoxazole. Mol. Immunol., 1988, 25(12), 1347-1354.
[http://dx.doi.org/10.1016/0161-5890(88)90050-8] [PMID: 3237218]
[10]
La Roca, M.F.; Sobrinho, J.L.S.; Nunes, L.C.C.; Neto, P.J.R. Development and validation of analytical method: important step in the production of medicines. Braz. J. Pharm., 2007, 88, 177-180.
[11]
Climeni, B.S.O.; Dellalibera, F.L.; Monteiro, M.V.; Bazan, C.T.; Pereira, D.M. Cephalosporins: its origin, use and function in large and small animals; Journal Scientific Electronic Veterinary Medicine, 2009, p. 12.
[12]
Katzung, B.G.; Masters, S.B.; Trevor, A.J. Basic Pharmacology & Clinical, 2014.
[13]
International Drug Names. Available from : https://www.drugs.com
[14]
Cefquinome. Available from : https://pubchem.ncbi.nlm.nih.gov/compound/54643552017
[15]
Brown, R.F.; Kinnick, M.D.; Morin, J.M., Jr; Vasileff, R.T.; Counter, F.T.; Davidson, E.O.; Ensminger, P.W.; Eudaly, J.A.; Kasher, J.S.; Katner, A.S. Synthesis and biological evaluation of a series of parenteral 3′-quaternary ammonium cephalosporins. J. Med. Chem., 1990, 33(8), 2114-2121.
[http://dx.doi.org/10.1021/jm00170a011] [PMID: 2115587]
[17]
Risk estimation for cefquinome to evaluate potential microbiological effects on bacteria of human health concern, 2006. Available from: www.fda.gov
[18]
Mandell, G.L.; Bennett, J.E.; Dolin, R. Anti-infective therapy.Volume I Part I Section EMandell, Douglas, and Bennett’s Principals and Practice of Infectious Diseases; Churchill Livingstsone, 2000.
[19]
Weiss, R. FDA Rules Override Warnings About Drug The Washington Post,, 2007. March;4sec. A01
[20]
Farmers, doctors battle over new drug for dairy cows. Associated Press, 2007.
[21]
Lee, D.C.; Webb, M.L. Pharmaceutical Analysis; Blackwell Publishing Ltd: Oxford, 2003.
[22]
Hanna-Brown, M. Pharmaceutical Analysis. Anal. Methods, 2012, 4(6), 1484-84.
[http://dx.doi.org/10.1039/c2ay90024f]
[23]
Bonfilio, R.; Cazedey, E.C.L.; de Araújo, M.B.; Salgado, H.R.N. Analytical validation of quantitative high-performance liquid chromatographic methods in pharmaceutical analysis: a practical approach. Crit. Rev. Anal. Chem., 2012, 42(1), 87-100.
[http://dx.doi.org/10.1080/10408347.2012.630926]
[24]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2013.
[25]
Dinakaran, V.; Dumka, V.K.; Ranjan, B.; Balaje, R.; Sidhu, P.K. Pharmacokinetics following intravenous administration and pharmacodynamics of cefquinome in buffalo calves. Trop. Anim. Health Prod., 2013, 45(7), 1509-1512.
[http://dx.doi.org/10.1007/s11250-013-0390-7] [PMID: 23456794]
[26]
Xie, W.; Zhang, X.; Wang, T.; Du, S. Pharmacokinetic analysis of cefquinome in healthy chickens. Br. Poult. Sci., 2013, 54(1), 81-86.
[http://dx.doi.org/10.1080/00071668.2013.764399] [PMID: 23444857]
[27]
Uney, K.; Altan, F.; Altan, S.; Erol, H.; Arican, M.; Elmas, M. Plasma and synovial fluid pharmacokinetics of cefquinome following the administration of multiple doses in horses. J. Vet. Pharmacol. Ther., 2017, 40(3), 239-247.
[http://dx.doi.org/10.1111/jvp.12362] [PMID: 27641837]
[28]
Uney, K.; Altan, F.; Elmas, M. Development and validation of a high-performance liquid chromatography method for determination of cefquinome concentrations in sheep plasma and its application to pharmacokinetic studies. Antimicrob. Agents Chemother., 2011, 55(2), 854-859.
[http://dx.doi.org/10.1128/AAC.01126-10]
[29]
Maes, A.; Meyns, T.; Sustronck, B.; Maes, D.; De Backer, P.; Croubels, S. Determination of cefquinome in pig plasma and bronchoalveolar lavage fluid by high-performance liquid chromatography combined with electrospray ionization mass spectrometry. J. Mass Spectrom., 2007, 42(5), 657-663.
[http://dx.doi.org/10.1002/jms.1199] [PMID: 17427999]
[30]
Wang, J.; Shan, Q.; Ding, H.; Liang, C.; Zeng, Z. Pharmacodynamics of cefquinome in a neutropenic mouse thigh model of Staphylococcus aureus infection. Antimicrob. Agents Chemother., 2014, 58(6), 3008-3012.
[http://dx.doi.org/10.1128/AAC.01666-13] [PMID: 24614373]
[31]
Di Rocco, M.; Moloney, M.; O’Beirne, T.; Earley, S.; Berendsen, B.; Furey, A.; Danaher, M. Development and validation of a quantitative confirmatory method for 30 β-lactam antibiotics in bovine muscle using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A, 2017, 1500(1500), 121-135.
[http://dx.doi.org/10.1016/j.chroma.2017.04.022] [PMID: 28449875]
[32]
Chiesa, L.M.; Nobile, M.; Panseri, S.; Arioli, F. Antibiotic use in heavy pigs: Comparison between urine and muscle samples from food chain animals analysed by HPLC-MS/MS. Food Chem., 2017, 235(235), 111-118.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.184] [PMID: 28554614]
[33]
Shan, Q.; Wang, J. Activity of cefquinome against extended-spectrum β-lactamase-producing Klebsiella pneumoniae in neutropenic mouse thigh model. J. Vet. Pharmacol. Ther., 2017, 40(4), 392-397.
[http://dx.doi.org/10.1111/jvp.12365] [PMID: 27682189]
[34]
Hou, X.L.; Wu, Y.L.; Lv, Y.; Xu, X.Q.; Zhao, J.; Yang, T. Development and validation of an ultra high performance liquid chromatography tandem mass spectrometry method for determination of 10 cephalosporins and desacetylcefapirin in milk. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 931(931), 6-11.
[http://dx.doi.org/10.1016/j.jchromb.2013.05.006] [PMID: 23747425]
[35]
Quesada-Molina, C.; García-Campaña, A.M.; del Olmo-Iruela, M. Ion-paired extraction of cephalosporins in acetone prior to their analysis by capillary liquid chromatography in environmental water and meat samples. Talanta, 2013, 115(115), 943-949.
[http://dx.doi.org/10.1016/j.talanta.2013.07.008] [PMID: 24054686]
[36]
Baeza, A-N.; Urraca, J-L.; Chamorro, R.; Orellana, G.; Castellari, M.; Moreno-Bondi, M-C. Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2016, 1474(1474), 121-129.
[http://dx.doi.org/10.1016/j.chroma.2016.10.069] [PMID: 27816225]
[37]
Jank, L.; Martins, M.T.; Arsand, J.B.; Hoff, R.B.; Barreto, F.; Pizzolato, T.M. High-throughput method for the determination of residues of β-lactam antibiotics in bovine milk by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2015, 32(12), 1992-2001.
[http://dx.doi.org/10.1080/19440049.2015.1099745] [PMID: 26414060]
[38]
Yehia, A.M.; Arafa, R.M.; Abbas, S.S.; Amer, S.M. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 15(153), 231-240.
[39]
Shantier, S.W.; Gadkariem, E.A. Spectrophotometric and HPLC methods for determination of cefquinome sulphate in bulk and dosage forms. Elixir Pharmacy., 2013, 59, 15471-15473.
[40]
Shantier, S.W.; Gadkariem, E.A. Colorimetric methods for determination of cefquinome sulphate. Am. J. Appl. Sci., 2014, 11(2), 202-206.
[http://dx.doi.org/10.3844/ajassp.2014.202.206]
[41]
Shantier, S.W.; Gadkariem, E.A. Differential spectrophotometric method for determination of cefquinome sulphate. Br. J. Pharm. Res., 2014, 4(5), 617-625.
[http://dx.doi.org/10.9734/BJPR/2014/5734]
[42]
Yehia, A.M.; Arafa, R.M.; Abbas, S.S.; Amer, S.M. Stability study and kinetic monitoring of cefquinome sulfate using cyclodextrin-based ion-selective electrode: application to biological samples. J. AOAC Int., 2016, 99(1), 73-81.
[http://dx.doi.org/10.5740/jaoacint.15-0185] [PMID: 26822094]
[43]
Shantier, S.W.; Gadkariem, E.A.; Adam, M.O.; Mohamed, M.A. Development of stability-indicating methods for cefquinome sulphate. Int. J. Biomed. Sci., 2013, 9(3), 162-167.
[PMID: 24170991]
[44]
Dołhań, A.; Jelilńska, A.; Manuszewska, M. Stability-indicating HPLC method for the determination of cefquinome sulfate. Acta Pol. Pharm., 2014, 71(2), 249-254.
[PMID: 25272644]
[45]
Yu, Y.; Zhou, Y.F.; Li, X.; Chen, M.R.; Qiao, G.L.; Sun, J.; Liao, X.P.; Liu, Y.H. Dose Assessment of cefquinome by pharmacokinetic/pharmacodynamic modeling in mouse model of staphylococcus aureus mastitis. Front. Microbiol., 2016, 7(7), 1595.
[http://dx.doi.org/10.3389/fmicb.2016.01595] [PMID: 27774090]
[46]
Limbert, M.; Isert, D.; Klesel, N.; Markus, A.; Seeger, K.; Seibert, G.; Schrinner, E. Antibacterial activities in vitro and in vivo and pharmacokinetics of cefquinome (HR 111V), a new broad-spectrum cephalosporin. Antimicrob. Agents Chemother., 1991, 35(1), 14-19.
[47]
Murphy, S.P.; Erwin, M.E.; Jones, R.N. Cefquinome (HR 111V). In vitro evaluation of a broad-spectrum cephalosporin indicated for infections in animals. Diagn. Microbiol. Infect. Dis., 1994, 20(1), 49-55.
[http://dx.doi.org/10.1016/0732-8893(94)90019-1] [PMID: 7867299]
[48]
Lamar, J.; Petz, M. Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices. Anal. Chim. Acta, 2007, 586(1-2), 296-303.
[http://dx.doi.org/10.1016/j.aca.2006.09.032] [PMID: 17386727]
[49]
Taverne, F.J.; van Geijlswijk, I.M.; Heederik, D.J.; Wagenaar, J.A.; Mouton, J.W. Modelling concentrations of antimicrobial drugs: comparative pharmacokinetics of cephalosporin antimicrobials and accuracy of allometric scaling in food-producing and companion animals. BMC Vet. Res., 2016, 12(1), 185.
[http://dx.doi.org/10.1186/s12917-016-0817-2] [PMID: 27596044]
[50]
Chin, N.X.; Gu, J.W.; Fang, W.; Neu, H.C. In vitro activity of cefquinome, a new cephalosporin, compared with other cephalosporin antibiotics. Diagn. Microbiol. Infect. Dis., 1992, 15(4), 331-337.
[http://dx.doi.org/10.1016/0732-8893(92)90019-P] [PMID: 1611848]
[51]
Nedbalcova, K.; Nechvatalova, K.; Pokludova, L.; Bures, J.; Kucerova, Z.; Koutecka, L.; Hera, A. Resistance to selected beta-lactam antibiotics. Vet. Microbiol., 2014, 171(3-4), 328-336.
[http://dx.doi.org/10.1016/j.vetmic.2014.02.004] [PMID: 24612952]
[52]
Zhao, D.H.; Wang, X.F.; Wang, Q.; Li, L.D. Pharmacokinetics, bioavailability and dose assessment of Cefquinome against Escherichia coli in black swans (Cygnus atratus). BMC Vet. Res., 2017, 13(1), 226.
[http://dx.doi.org/10.1186/s12917-017-1148-7] [PMID: 28754112]
[53]
Aarestrup, F-M.; Hasman, H.; Veldman, K.; Mevius, D. Evaluation of eight different cephalosporins for detection of cephalosporin resistance in Salmonella enterica and Escherichia coli. Microb. Drug Resist., 2010, 16(4), 253-261.
[http://dx.doi.org/10.1089/mdr.2010.0036] [PMID: 20624078]
[54]
Shan, Q.; Yang, F.; Wang, J.; Ding, H.; He, L.; Zeng, Z. Pharmacokinetic/pharmacodynamic relationship of cefquinome against Pasteurella multocida in a tissue-cage model in yellow cattle. J. Vet. Pharmacol. Ther., 2014, 37(2), 178-185.
[http://dx.doi.org/10.1111/jvp.12076] [PMID: 23980645]
[55]
El-Hewaity, M.; Abd El Latif, A.; Soliman, A.; Aboubakr, M. Comparative Pharmacokinetics of Cefquinome (Cobactan 2.5%) following Repeated Intramuscular Administrations in Sheep and Goats. J. Vet. Med., 2014.
[http://dx.doi.org/10.1155/2014/949642] [PMID: 26464946]
[56]
Xiong, M.; Wu, X.; Ye, X.; Zhang, L.; Zeng, S.; Huang, Z.; Wu, Y.; Sun, J.; Ding, H. Relationship between cefquinome pk/pd parameters and emergence of resistance of staphylococcus aureus in rabbit tissue-cage infection model. Front. Microbiol., 2016, 7(7), 874.
[http://dx.doi.org/10.3389/fmicb.2016.00874] [PMID: 27375594]
[57]
Zhou, Y.F.; Shi, W.; Yu, Y.; Tao, M.T.; Xiong, Y.Q.; Sun, J.; Liu, Y.H. Pharmacokinetic/Pharmacodynamic correlation of cefquinome against experimental catheter-associated biofilm infection due to staphylococcus aureus. Front. Microbiol., 2016, 6(6), 1513.
[http://dx.doi.org/10.3389/fmicb.2015.01513] [PMID: 26779167]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy