[1]
Li, M.; Zhao, B.X. Progress of the synthesis of condensed pyrazole derivatives. Eur. J. Med. Chem., 2014, 85, 311-340.
[2]
Khan, M.F.; Alam, M.M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem., 2016, 120, 170-201.
[3]
Kelland, L.R. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics-current status and future prospects. Eur. J. Cancer, 2005, 41, 971-979.
[4]
Kategaonkar, A.H.; Shinde, P.V.; Kategaonkar, A.H.; Pasale, S.K.; Shingate, B.B.; Shingare, M.S. Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quino- line derivatives via click chemistry approach. Eur. J. Med. Chem., 2010, 45, 3142-3146.
[5]
Zhang, Q-L.; Liu, J-G.; Chao, H.; Xue, G-Q.; Ji, L-N. DNA-binding and cleavage studies of novel binuclear copper(II) complex with 1,10-dimethyl-2,20-biimidazole ligand. J. Inorg. Biochem., 2001, 83, 49-55.
[6]
Solis, P.N.; Wright, C.W.; Anderson, M.M.; Gupta, M.P.; Phillipson, J.D. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med., 1993, 59, 250-252.
[7]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110, 5959-5967.
[8]
Hopfinger, A.J.; Wang, S.; Tokarski, J.S.; Jin, B.; Albuquerque, M.; Madhav, P.J.; Duraiswami, C. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc., 1997, 119, 10509-10524.
[9]
Vedani, A.; Dobler, M. 5D-QSAR: The key for simulating induced fit? J. Med. Chem., 2002, 45, 2139-2149.
[10]
Vedani, A.; Dobler, M.; Lill, M.A. Combining protein modeling and 6d-qsar. simulating the binding of structurally diverse ligands to the estrogen receptor. J. Med. Chem., 2005, 48, 3700-3703.
[11]
Fujita, T.; Winkler, D.A. Understanding the roles of the “Two QSARs”. J. Chem. Inf. Model., 2016, 56, 269-274.
[12]
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, Methods and Principles in Medicinal Chemistry; Wiley-VCH: Weinheim, Germany, 2000, Vol. 11, .
[13]
Cho, S.J.; Hermsmeier, M.A. Genetic algorithm guided selection: variable selection and subset selection. J. Chem. Inf. Comput. Sci., 2002, 42, 927-936.
[14]
Zaheer-ul-Haq. Uddin, R.; Yuan, H.; Petukhov, P.A.; Choudhary, M.I.; Madura, J.D. Receptor-based modeling and 3d-qsar for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm. J. Chem. Inf. Model., 2008, 48, 1092-1103.
[15]
Özalp, A.; Yavuz, S.Ç.; Sabancı, N.; Çopur, F.; Kökbudak, Z.; Sarıpınar, E. 4D-QSAR investigation and pharmacophore identification of pyrrolo[2,1-c] [1,4] benzodiazepines using electron conformational-genetic algorithm method. SAR QSAR Environ. Res., 2016, 27, 317-342.
[16]
Yanmaz, E.; Saripinar, E.; Şahin, K.; Geçen, N.; Çopur, F. 4D-QSAR analysis and pharmacophore modeling: Electron conformational-genetic algorithm approach for penicillins. Bioorg. Med. Chem., 2011, 19, 2199-2210.
[17]
Sahin, K.; Saripinar, E.; Yanmaz, E.; Gecen, N. 4D-QSAR analysis and pharmacophore modeling: Propoxy methylphenyl oxasiazole. derivatives by electron conformatitional-genetic algorithm method. SAR QSAR Environ. Res., 2011, 22, 217-238.
[18]
Geçen, N.; Saripinar, E.; Yanmaz, E.; Şahin, K. Application of electron conformational-genetic algorithm approach to 1,4-dihydropyridines as calcium channel antagonists: pharmacophore identification and bioactivity prediction. J. Mol. Model., 2012, 18, 65-82.
[19]
Akyüz, L.; Saripinar, E.; Kaya, E.; Yanmaz, E. 4D-QSAR study of HEPT derivatives by electron conformational-genetic algorithm method. SAR QSAR Environ. Res., 2012, 23, 409-433.
[20]
Akyüz, L.; Saripinar, E. Conformation depends on 4D-QSAR analysis using EC–GA method: pharmacophore identification and bioactivity prediction of TIBOs as non-nucleoside reverse transcriptase inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28, 776-791.
[21]
İlhan, İ.; Çağlayan, A.; Önal, Z.; Akkoç, S.; Çadır, M. Reactions of Some Pyrazole-3-Carboxylic Acids and Carboxylic Acid Chlorides with Various O- and N- Nucleophiles. Lett. Org. Chem., 2013, 10, 602-610.
[22]
İlhan, İ.Ö.; Demirkol, K.; Önal, Z.; Akkoç, S.; Çadir, M. Functionalization Reactions of Various Pyrazole-3-carboxylic Acid Chlorides with Some Ureas. Asian J. Chem., 2014, 26, 2365-2368.
[23]
İlhan, İ.Ö.; Çadir, M.; Saracoglu, M.; Kandemirli, F.; Kökbudak, Z.; Akkoç, S. The Quantum Chemical and QSAR Studies for the Development of MRI Contrast. Chem. Sci. Rev. Lett., 2015, 4, 838-850.
[24]
Murray, P.R.; Baron, E.J.; Pfaller, M.A.; Tenover, F.C.; Yolken, R.H. Manual Clin. Microbiol., Wood, G.L.; Washington, J.A.,
(6th Edt). American Society for Microbiology. Washington, DC; , 1995. 308-316.
[25]
Gümüş, F.; Eren, G.; Açık, L.; Çelebi, A.; Öztürk, F.; Yılmaz, S.; Saǧkan, R.I.; Gür, S.; Özkul, A.; Elmalı, A. Synthesis, cytotoxicity, and DNA interactions of new cisplatin analogues containing substituted benzimidazole ligands. J. Med. Chem., 2009, 52, 1345-1357.
[26]
Rahman, A.; Choudhary, I.M.; Thomsen, W.J. Bioassay Techniques for Drug Development; Harwood Academic Publishers: Amsterdam, The Netherlands, 2001.
[27]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Gawande, N.M.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg. Med. Chem., 2009, 17, 8168-8173.
[28]
Nikaido, H.; Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev., 1985, 49, 1-32.
[29]
Déciga-Campos, M.; Rivero-Cruz, I.; Arriaga-Alba, M.; Castañeda-Corral, G.; Angeles-López, G.E.; Navarrete, A.; Mata, R. Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J. Ethnopharmacol., 2007, 110, 334-342.
[30]
Patra, A.K.; Dhar, S.; Nethaji, M.; Chakravarty, A.R. Metal-assisted red light-induced DNA cleavage by ternary L-methionine copper(II) complexes of planar heterocyclic bases. Dalton Trans., 2005, 2, 896-902.
[31]
Gao, E.; Sun, Y.; Liu, Q.; Duan, L. An anticancer metallobenzylmalonate: crystal structure and anticancer activity of a palladium complex of 2,2′-bipyridine and benzylmalonate. J. Coord. Chem., 2006, 59, 1295-1300.
[32]
Naik, H.S. Synthesis and DNA binding studies of novel heterocyclic substituted quinoline schiff bases: a potent antimicrobial agent. Nucleosides Nucleotides Nucleic Acids, 2008, 27, 1197-1210.
[33]
Spartan’10; Wavefunction, Inc.: Irvine, CA, 2011.
[34]
Bersuker, I.B.; Bahceci, S.; Boggs, J.E.; Pearlman, R.S. An electron-conformational method of identification of pharmacophore and anti-pharmacophore shielding: Application to rice blast activity. J. Comput. Aided Mol. Des., 1999, 13, 419-434.
[35]
Bersuker, I.B.; Bahçeci, S.; Boggs, J.E. Improved electron-conformational method of pharmacophore identification and bioactivity prediction. Application to angiotensin converting enzyme inhibitors. J. Chem. Inf. Comput. Sci., 2000, 40, 1363-1376.
[36]
Saripinar, E.; Guzel, Y.; Patat, S.; Yildirim, I.; Akcamur, Y.; Dimoglo, A.S. Electron-topological investigation of structure-antitubercular activity relationship of thiosemicarbazone derivatives. Arzneimittelforschung, 1996, 46, 824-828.
[37]
Güzel, Y.; Saripinar, E.; Yilidrim, I. Electron-topological (ET) investigation of structure-antagonist activity of a series of dibenzo[a,d]cycloalkenimines. J. Mol. Struct: Theo. Chem, 1997, 418, 83-91.
[38]
Bersuker, I.B. Pharmacophore identification and quantitative bioactivity prediction using the electron-conformational method. Curr. Pharm. Des., 2003, 9, 1575-1606.
[39]
Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the Definition of the Q2 Parameter for QSAR Validation. J. Chem. Inf. Model., 2009, 49, 1669-1678.
[40]
Lin, L.I.K. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989, 45, 255-268.
[41]
Lin, L.I.K. Assay validation using the concordance correlation coefficient. Biometrics, 1992, 48, 599-604.
[42]
Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model., 2011, 51, 2320-2335.