Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Food Components with the Potential to be Used in the Therapeutic Approach of Mental Diseases

Author(s): María J.F. Fernández*, Estefanía Valero-Cases and Laura Rincon-Frutos

Volume 20, Issue 2, 2019

Page: [100 - 113] Pages: 14

DOI: 10.2174/1389201019666180925120657

Price: $65

Abstract

Background: Neurological disorders represent a high influence in our society throughout the world. Although the symptoms arising from those diseases are well known, the causes and mechanisms are complex and depending on multiple factors. Some food components consumed as part of our diet have been studied regarding their incidence in different common neurological diseases such as Alzheimer disease, major depression, Parkinson disease, autism and schizophrenia among others.

Objective: In this review, information has been gathered on the main evidences arising from studies on the most promising food components, related to their therapeutic potential, as part of dietary supplements or through the diet, as an alternative or a complement of the traditional drug treatments. Those food components include vitamins, minerals, fatty acids, carotenoids, polyphenols, bioactive peptides, probiotics, creatine and saponins.

Results: Many in vitro and in vivo animal studies, randomized and placebo control trials, and systematic reviews on the scientific results published in the literature, have been discussed, highlighting the more recent advances, also with the aim to explore the main research needs. Particular attention has been paid to the mechanisms of action of the compounds regarding their anti-inflammatory, antioxidative properties and neuronal protection.

Conclusion: More research is needed to prove the therapeutic potential of the food components based on scientific evidence, also on intervention studies to demonstrate the improvement of neuronal and cognitive impairments.

Keywords: Neurological disorders, Alzheimer disease, Parkinson disease, depression, epillepsia, polyphenols, brain health, bioactives.

Next »
Graphical Abstract

[1]
Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr., 2011, 2, 32-50.
[2]
Navabi, S.M.; Daglia, M.; Braidy, N.; Nabavi, S.F. Natural products, micronutrients, and nutraceuticals for the treatment of depression: A short review. Nutr. Neurosci., 2017, 20(3), 180-194.
[3]
Bahramsoltani, R.; Farzaei, M.H.; Farahani, M.S.; Rahimi, R. Phytochemical constituents as future anti-depressants: A comprehensive review. Rev. Neurosci., 2015, 26, 699-719.
[4]
Williams, R.J.; Mohanakumar, K.P.; Beart, P.M. Neuro-nutraceuticals: The path to brain health via nourishment is not so distant. Neurochem. Int., 2015, 89, 1-6.
[5]
Lakhan, S.E.; Vieira, K.F. Nutritional therapies for mental disorders. Nutr. J., 2008, 7, 2.
[6]
Spencer, S.J.; Korosi, A.; Layé, S.; Shukitt-Hale, B.; Barrientos, R.M. Food for thought: How nutrition impacts cognition and emotion. N.P.J. Sci. Food, 2017, 1, 7.
[7]
Vauzour, D. Polyphenols and brain health. OCL-Ol. Corps. Gras. Li, 2017, 24(2), A202.
[8]
Abraham, R.P.; Denton, D.A.; Al-Assaf, A.S.; Rutjes, A.W.S.; Chong, L.Y.; Malik, M.A.; Tabet, N. Vitamin and mineral supplementation for prevention of dementia or delaying cognitive decline in people with mild cognitive impairment (Protocol). Cochrane DB. Syst. Rev., 2015, 10, Art. No CD011905.
[9]
Lei, E.; Vacy, K.; Boon, W.C. Fatty acids and their therapeutic potential in neurological disorders. Neurochem. Int., 2016, 95, 75-84.
[10]
Guest, J.; Grant, R. Carotenoids and neurobiological health. Adv. Neurobiol., 2016, 12, 199-228.
[11]
Mo, J.J.; Liu, L.Y.; Peng, W.B.; Rao, J.; Liu, Z.; Cui, L.L. the effectiveness of creatine treatment for Parkinson’s disease: an updated meta-analysis of randomized controlled trials. BMC Neurol., 2017, 17(1), 105.
[12]
Xie, W.; Meng, X.; Zhai, Y.; Zhou, P.; Ye, T.; Wang, Z.; Sun, G.; Sun, X. Panax notogingseng saponins: A review of its mechanisms of antidepressant or anxiolytic effects and network analysis on phytochemistry and pharmacology. Molecules, 2018, 23, 940.
[13]
Bouglé, D.; Bouhallab, S. Dietary bioactive peptides: Human studies. Crit. Rev. Food Sci., 2017, 2, 335-343.
[14]
Kennedy, P.J.; Murphy, A.B.; Cryan, J.F.; Ross, P.R.; Dinan, T.G.; Stanton, C. Microbiome in brain function and mental health. Trends Food. Sci. Tech., 2016, 1-13.
[15]
Hasler, C.M. Functional foods: Their role in disease prevention and health promotion. Food Technol., 1998, 52, 61-70.
[16]
Martins, I.J. Functional foods and bioactive molecules with relevance to health and chronic disease. Funct. Food Health Dis., 2017, 7(10), 849-852.
[17]
Li, W.; Ling, S.; Yang, Y.; Hu, Z.; Davies, H.; Fang, M. Systematic hypothesis for post-stroke depression caused inflammation and neurotransmission and resultant on possible treatments. Neuroendocrinol. Lett., 2014, 35, 104-109.
[18]
Allison, D.J.; Ditor, D.S. The common inflammatory etiology of depression and cognitive impairment: A therapeutic target. J. Neuroinflammation, 2014, 11, 151.
[19]
Grundman, M. Vitamin E and Alzheimer disease: The basis for additional clinical trials. Am. J. Clin. Nutr., 2000, 71, 630S-636S.
[20]
Yokota, T.; Igarashi, K.; Uchihara, T.; Jishage, K-i.; Tomita, H.; Inaba, A.; Li, Y.; Arita, M.; Suzuki, H.; Mizusawa, H.; Arai, H. Delayed-onset ataxia in mice lacking -tocopherol transfer protein: Model for neuronal degeneration caused by chronic oxidative stress. Proc. Natl. Acad. Sci., 2001, 98, 15185-15190.
[21]
Fariss, M.W.; Zhang, J-G. Vitamin E therapy in Parkinson’s disease. Toxicology, 2003, 189, 129-146.
[22]
Goodman, Y.; Mattson, M.P. Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp. Neurol., 1994, 128, 1-12.
[23]
Takahashi, T.; Nakaso, K.; Horikoshi, Y.; Hanaki, T.; Yamakawa, M.; Nakasone, M.; Kitagawa, Y.; Koike, T.; Matsura, T. Rice bran dietary supplementation improves neurological symptoms and loss of purkinje cells in vitamin e-deficient mice. Yonago Acta Med., 2016, 59, 188-195.
[24]
Afzal, S.; Bojesen, S.E.; Nordestgaard, B.G. Reduced 25-hydroxyvitamin D and risk of Alzheimer’s disease and vascular dementia. Alzheimers Dement., 2014, 10, 296-302.
[25]
Littlejohns, T.J.; Henley, W.E.; Lang, I.A.; Annweiler, C.; Beauchet, O.; Chaves, P.H.M.; Fried, L.; Kestenbaum, B.R.; Kuller, L.H.; Langa, K.M.; Lopez, O.L.; Kos, K.; Soni, M.; Llewellyn, D.J. Vitamin D and the risk of dementia and Alzheimer disease. Neurology, 2014, 83, 920-928.
[26]
Balion, C.; Griffith, L.E.; Strifler, L.; Henderson, M.; Patterson, C.; Heckman, G.; Llewellyn, D.J.; Raina, P. Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology, 2012, 79, 1397-1405.
[27]
Lin, A.M.Y.; Fan, S.F.; Yang, D.M.; Hsu, L.L.; Yang, C.H.J. Zinc-induced apoptosis in substantia nigra of rat brain: Neuroprotection by vitamin D3. Free Radic. Biol. Med., 2003, 34, 1416-1425.
[28]
Sanchez, B.; Relova, J.L.; Gallego, R.; Ben-Batalla, I.; Perez-Fernandez, R. 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J. Neurosci. Res., 2009, 87, 723-732.
[29]
Taghizadeh, M.; Talaei, S.A.; Djazayeri, A.; Salami, M. Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer’s disease. Nutr. Neurosci., 2014, 17, 172-177.
[30]
Latimer, C.S.; Brewer, L.D.; Searcy, J.L.; Chen, K-C.; Popovic, J.; Kraner, S.D.; Thibault, O.; Blalock, E.M.; Landfield, P.W.; Porter, N.M. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc. Natl. Acad. Sci., 2014, 111, E4359-E4366.
[31]
Armstrong, D.J.; Meenagh, G.K.; Bickle, I.; Lee, A.S.H.; Curran, E-S.; Finch, M.B. Vitamin D deficiency is associated with anxiety and depression in fibromyalgia. Clin. Rheumatol., 2007, 26, 551-554.
[32]
Patrick, R.P.; Ames, B.N. Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB J., 2014, 28, 2398-2413.
[33]
Naylor, G.J.; Smith, A.H. Vanadium: a possible aetiological factor in manic depressive illness. Psychol. Med., 1981, 11, 249-256.
[34]
Alpert, J.E.; Mischoulon, D.; Nierenberg, A.A.; Fava, M. Nutrition and depression: Focus on folate. Nutrition, 2000, 16, 544-546.
[35]
Morris, M.S.; Fava, M.; Jacques, P.F.; Selhub, J.; Rosenberg, I.H. Depression and Folate Status in the US Population. Psychother. Psychosom., 2003, 72, 80-87.
[36]
Coppen, A.; Bolander-Gouaille, C. Treatment of depression: time to consider folic acid and vitamin B12. J. Psychopharmacol., 2005, 19, 59-65.
[37]
Durand, C.; Mary, S.; Brazo, P.; Dollfus, S. Psychiatric manifestations of vitamin B12 deficiency: A case report. Encephale, 2003, 29, 560-565.
[38]
Reynolds, E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol., 2006, 5, 949-960.
[39]
Tufan, A.; Bilici, R.; Usta, G.; Erdoğan, A. Mood disorder with mixed, psychotic features due to vitamin b12 deficiency in an adolescent: Case report. Child Adolesc. Psychiatry Ment. Health, 2012, 6, 25.
[40]
Wang, H.X.; Wahlin, A.; Basun, H.; Fastbom, J.; Winblad, B.; Fratiglioni, L. Vitamin B[ ]12) and folate in relation to the development of Alzheimer’s disease. Neurology, 2001, 56, 1188-1194.
[41]
Sánchez-Villegas, A.; Henríquez, P.; Bes-Rastrollo, M.; Doreste, J. Mediterranean diet and depression. Public Health Nutr., 2006, 1104-1109.
[42]
Murakami, K.; Mizoue, T.; Sasaki, S.; Ohta, M.; Sato, M.; Matsushita, Y.; Mishima, N. Dietary intake of folate, other B vitamins, and ω-3 polyunsaturated fatty acids in relation to depressive symptoms in Japanese adults. Nutrition, 2008, 24, 140-147.
[43]
Nanri, A.; Mizoue, T.; Matsushita, Y.; Sasaki, S.; Ohta, M.; Sato, M.; Mishima, N. Serum folate and homocysteine and depressive symptoms among Japanese men and women. Eur. J. Clin. Nutr., 2010, 64, 289-296.
[44]
Young, S.N. Folate and depression-a neglected problem. J. Psychiatry Neurosci., 2007, 32, 80-82.
[45]
Skarupski, K.A.; Tangney, C.; Li, H.; Ouyang, B.; Evans, D.A.; Morris, M.C. Longitudinal association of vitamin B-6, folate, and vitamin B-12 with depressive symptoms among older adults over time. Am. J. Clin. Nutr., 2010, 92, 330-335.
[46]
Bourre, J.M. Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 1: micronutrients. J. Nutr. Health Aging, 2006, 10, 377-385.
[47]
Williams, A.; Cotter, A.; Sabina, A.; Girard, C.; Goodman, J.; Katz, D.L. The role for vitamin B-6 as treatment for depression: a systematic review. Fam. Pract., 2005, 22, 532-537.
[48]
Nowak, G. Does interaction between zinc and glutamate system play a significant role in the mechanism of antidepressant action? Acta Pol. Pharm., 2001, 8, 73-75.
[49]
Nowak, G.; Siwek, M.; Dudek, D.; Zieba, A.; Pilc, A. Effect of zinc supplementation on antidepressant therapy in unipolar depression: A preliminary placebo-controlled study. Pol. J. Pharmacol., 2003, 55, 1143-1117.
[50]
Howland, J.G.; Wang, Y.T. Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog. Brain Res., 2008, 169, 145-158.
[51]
Eby, G.A.; Eby, K.L. Rapid recovery from major depression using magnesium treatment. Med. Hypotheses, 2006, 67(2), 362-370.
[52]
Singewald, N.; Sinner, C.; Hetzenauer, A.; Sartori, S.B.; Murck, H. Magnesium-deficient diet alters depression- and anxietyrelated behavior in mice: influence of desipramine and Hypericum perforatum extract. Neuropharmacology, 2004, 47, 1189-1197.
[53]
Imada, Y.; Yoshioka, S.; Ueda, T.; Katayama, S.; Kuno, Y.; Kawahara, R. Relationships between serum magnesium levels and clinical background factors in patients with mood disorders. Psychiatry Clin. Neurosci., 2002, 56, 509-514.
[54]
Jacka, F.N.; Overland, S.; Stewart, R.; Tell, G.S.; Bjelland, I.; Mykletun, A. Association between magnesium intake and depression and anxiety in community-dwelling adults: The Hordaland Health Study. Aust. N. Z. J. Psychiatry, 2009, 43, 45-52.
[55]
Yary, T.; Lehto, S.M.; Tolmunen, T.; Tuomainen, P.; Kauhanen, J.; Voutilainen, S.; Ruusunen, A. Dietary magnesium intake and the incidence of depression: a 20-year follow-up study. J. Affect. Disord., 2016, 193, 94-98.
[56]
Rajizadeh, A.; Mozzafari-Khosravi, H.; Yassini-Ardakani, M.; Dehghani, A. Effect of magnesium supplementation on depression status in depressed patients with magnesium deficiency: A randomized, double-blind, placebo-controlled trial. Nutrition, 2017, 35, 56-60.
[57]
Ordak, M.; Matras, J.; Muszynska, E.; Nasierowski, T.; Bujalska-Zadrozny, M. Magnesium in schizophrenia. Pharmacol. Rep., 2017, 69(5), 929-934.
[58]
Chen, S.; Hsu, J.W.; Huang, K.L.; Chang, W.H.; Chen, T.J.; Bai, Y.M. Association between psychiatric disorders and iron deficiency anemia among children and adolescents: A nationwide population-based study. BMC Psychiatry, 2013, 13, 161-169.
[59]
Tseng, P.T.; Cheng, Y.S.; Yen, C.F.; Chen, Y.W.; Stubbs, B.; Whiteley, P.; Carvalho, A.F.; Li, D.J.; Chen, T.Y.; Yang, W.C.; Tang, C.H.; Chu, C.S.; Yang, W.C.; Liang, H.Y.; Wu, C.K.; Lin, P.Y. Peripheral iron levels in children with attention-deficit hyperactivity disorder: A systematic review and meta-analysis. Sci. Rep., 2018, 8, 788-799.
[60]
Greig, A.J.; Patterson, A.J.; Collins, C.E.; Chalmers, K.A. Iron deficiency, cognition, mental health and fatigue in women of childbearing age: A systematic review. J. Nutr. Sci., 2013, 2, 1-14.
[61]
Carrie, I.; Clément, M.; De Javel, D. Francès. H.; Bourre, Jean-Marie. Specific phospholipid fatty acid composition of brain regions in mice: Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J. Lipid Res., 2000, 41, 465-472.
[62]
Rodriguez-Navas, C.; Morselli, E.; Clegg, D.J. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice. Mol. Metab., 2016, 5, 680-689.
[63]
Ciappolino, V.; Delvecchio, G.; Agostini, C.; Mazzocchi, A.; Carlo-Altamura, A.; Brambilla, P. The role of n-3 polyunsaturated fatty acids (n-3PUFAs) in affective disorders. J. Affect. Disord., 2017, 224, 32-47.
[64]
Hashimoto, M.; Maekawa, M.; Katakura, M.; Hamazaki, K.; Matsuoka, Y. Possibility of polyunsaturated fatty acids for the prevention and treatment of neuropsychiatric illnesses. J. Pharmacol. Sci., 2014, 124, 294-300.
[65]
Thesing, C.S.; Bot, M.; Milaneschi, Y.; Giltay, E.J.; Penninx, B.W.J.H. Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders. Psychoneuroendocrinol., 2018, 87, 53-62.
[66]
Chen-Chang, J.P.; Lin, C.Y.; Lin, P.Y.; Shih, Y.H.; Chiu, T.H.; Ho, M.; Yang, H.T.; Huang, S.Y.; Galecki, P.; Su, P.K. Polyunsaturated fatty acids and inflammatory markers in major depressive episodes during pregnancy. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80, 273-278.
[67]
Christian, L.M. Psychoneuroimmunology in pregnancy: Immune pathway linking stress with maternal health, adverse birth outcomes, and fetal development. Neurosci. Biobehav. Rev., 2012, 36, 350-361.
[68]
Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K. Lanctôt. A meta-analysis of cytokines in major depression. Biol. Psychiatry, 2010, 67, 446-457.
[69]
Grosso, G.; Pajak, A.; Marventano, S.; Castellano, S.; Galvano, F.; Bucolo, C.; Drago, F.; Caraci, F. Role of omega-3 fatty acids in the treatment of depressive disorders: A comprehensive meta-analysis of randomized clinical trials. PLoS One, 2014, 9, e96905.
[70]
Lin, P.Y.; Huang, S.Y.; Su, K.P. A Meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol. Psychiatry, 2010, 68, 140-147.
[71]
Sarris, J.; Mischoulon, D.; Schweitzer, I. Omega-3 for bipolar disorder: Meta-analyses of use in mania and bipolar depression. J. Clin. Psychiatry, 2012, 73(1), 81-86.
[72]
Satogami, K.; Takahashi, S.; Yamada, S.; Ukai, S.; Shinosaki, K. Omega-3 fatty acids related to cognitive impairment in patients with schizophrenia. Schizophr. Res. Cogn., 2017, 9, 8-12.
[73]
Cutuli, D.; De Bartolo, P.; Caporali, P.; Laricchiuta, D.; Foti, F.; Ronci, M.; Rossi, C.; Neri, C.; Spalletta, G.; Caltagirone, C. Farioli-Vecchioli.; Petrosini, L. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice. Front. Neurosci., 2014, 6, 1-17.
[74]
Qiao, Y.; Meo, Y.; Han, H.; Liu, F.; Yang, M.Y.; Shao, Y.; Xie, B.; Long, B. Effects of Omega-3 in the treatment of violent schizophrenia patients. Schizophr. Res., 2017, 17, 30501-30507.
[75]
Watari, M.; Hamazaki, K.; Hirata, T.; Hamazaki, T.; Okubo, Y. Hostility of drug-free patients with schizophrenia and n-3 polyunsaturated fatty acid levels in red blood cells. Psychiatry Res., 2010, 177, 22-26.
[76]
Granado-Lorencio, F.; Blanco-Navarro, I.; Pérez-Sacristán, B.; Hernández-Álvarez, E. Biomarkers of carotenoid bioavailability. Food Res. Int., 2017, 99, 902-916.
[77]
Rodriguez-Concepción, M.; Avalos, J.; Bonet, M.L.; Bonorat, A.; Gomez-Gomez, L.; Hornero-Mendez, M.; Limon, C.; Meñendez-Martínez, J.; Olmedilla-Alonso, B.; Palou, A. Ribot. J.; Rodrigo, M.J.; Zacarias, L.; Zhu, C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res., 2018, 70, 62-93.
[78]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Sci, 2002, 297(5580), 353-356.
[79]
Tiribuzi, R.; Crispoltoni, L.; Chiurchiù, V.; Casella, A.; Monecchiani, C.; Marco Del Pino, A.; Maccarrone, M.; Palmerini, C.A.; Caltagirone, C.; Kawarai, T.; Orlacchio, A.; Orlacchi, A. Trans-crocetin improves amyloid-β degradation in monocytes from Alzheimer’s disease patients. J. Neurol. Sci., 2017, 372, 408-412.
[80]
Sun, B.; Zhou, Y.; Halabisky, B.; Lo, I.; Cho, S.H.; Mueller-Steiner, S.; Devidze, N.; Wang, X.; Grubb, A.; Gan, L. Cystatin C-cathepsin b axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron, 2008, 60, 247-257.
[81]
Linardaki, Z.I.; Orkoula, M.G.; Kokkosis, A.G.; Lamari, F.N.; Margarity, M. Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem. Toxicol., 2013, 52, 163-170.
[82]
Costa-Rodrigues, J.; Pinho, O.; Monteiro, P.R.R. Can lycopene be considered an effective protection against cardiovascular disease? Food Chem., 2018, 245, 1148-1153.
[83]
Zhang, F.; Fu, Y.; Zhou, X.; Pan, W.; Shi, Y.; Wang, M.; Zhang, X.; Qi, D.; Li, L.; Ma, K.; Tang, R.; Zheng, K.; Song, Y. Depression-like behaviors and heme oxygenase-1 are regulated by Lycopene in lipopolysaccharide-induced neuroinflammation. J. Neuroimmunol., 2016, 298, 1-8.
[84]
Zhao, B.; Ben, B.; Zhang, W. Ma, Shaobo.; Yao, Y.; Yuan, T.; Liu, Z.; Liu, X. Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-κB transcriptional pathway. Food Chem. Toxicol., 2017, 219, 505-516.
[85]
Caldeira-Morcelle, M.; Mastrodi Salgado, J.; Telles, M.; Mourelle, D.; Bachiega, P.; Sousa Buck, H. Araujo Viel; T. Neuroprotective Effects of pomegranate peel extract after chronic infusion with amyloid-beta- peptide in Mice. PLoS One, 2016, 11(11), 1-20.
[86]
Branquinho Andrade, P.; Grosso, C.; Valentao, P.; Bernardo, J. Flavonoids in neurodegeneration: Limitations and strategies to cross CNS barriers. Curr. Med. Chem., 2016, 23, 4151-4174.
[87]
Khan, H.; Perviz, S.; Sureda, A.; Nabavi, S.M.; Tejada, S. Current standing of plant derived flavonoids as an antidepressant. Food. Chem. Toxicol, 2018, Reference available from.
[http://dx.doi.org/10.1016/j.fct.2018.04.052]
[88]
Mercer, L.D.; Kelly, B.L.; Horne, M.K.; Beart, P.M. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: Investigations in primary rat mesencephalic cultures. Biochem. Pharmacol., 2005, 69, 339-345.
[89]
Hanrahan, J.R.; Chebib, M.; Johnston, G.A.R. Flavonoid modulation of GABAA receptors. Br. J. Pharmacol., 2011, 163(2), 234-245.
[90]
Cox, C.J.; Choudhry, F.; Peacey, E.; Perkinton, M.S.; Richardson, J.C.; Howlett, D.R.; Lichtenthaler, S.F.; Francis, P.T.; Williams, R.J. Dietary (-)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing. Neurobiol. Aging, 2015, 36(1), 178-187.
[91]
Williams, R.J.; Spencer, J.P. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med., 2012, 52, 35-45.
[92]
Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and vegetable juices and Alzheimer’s disease: The Kame Project. Am. J. Med., 2006, 119, 751-759.
[93]
Kuriyama, S.; Hozawa, A.; Ohmori, K.; Shimazu, T.; Matsui, T.; Ebihara, S.; Awata, S.; Nagatomi, R.; Arai, H.; Tsuji, I. Green tea consumption and cognitive function: A cross-sectional study from the Tsurugaya Project 1. Am. J. Clin. Nutr., 2006, 83, 355-361.
[94]
Sharma, V.; Mishra, M.; Ghosh, S.; Tewari, R.; Basu, A.; Seth, P.; Sen, E. Modulation of interleukin-1beta mediated inflammatory response in human astrocytes by flavonoids: Implications in neuroprotection. Brain Res. Bull., 2007, 73, 55-63.
[95]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22, 19-34.
[96]
Yoshino, S.; Hara, A.; Sakakibara, H.; Kawabata, K.; Tokumura, A.; Ishisaka, A.; Kawai, Y.; Terao, J. Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition, 2011, 27(7-8), 847-852.
[97]
Singh, T.; Kaur, T.; Kumar Goel, R. Adjuvant quercetin therapy for combined treatment of epilepsy and comorbid depression. Neurochem. Int., 2017, 104, 27-33.
[98]
Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr., 2000, 130, 2243-2250.
[99]
Kimira, M.; Arai, Y.; Shimoi, K.; Watanabe, S. Japanese intake of flavonoids and isoflavonoids from foods. J. Epidemiol., 1998, 8, 168-175.
[100]
Khan, N.; Syed, D.N.; Ahmad, N.; Mukhtar, H. Fisetin: a dietary antioxidant for health promotion. Antioxid. Redox Signal., 2013, 19, 151-162.
[101]
Sagara, Y.; Vanhnasy, J. Maher.; P. Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation. J. Neurochem., 2004, 90, 1144-1155.
[102]
Zhen, L.; Zhu, J.; Zhao, X.; Huang, W.; An, Y.; Li, S.; Du, X.; Lin, M.; Wang, Q.; Xu, Y.; Pan, J. The antidepressant-like effect of fisetin involves the serotonnergic and noradrenergic system. Behav. Brain Res., 2012, 228, 359-366.
[103]
Maher, P.; Akaishi, T.; Abe, K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhaces memory. Proc. Natl. Acad. Sci. USA, 2006, 103, 16568-16573.
[104]
Wang, J.; Varghese, M.; Ono, K.; Yamada, M.; Levine, S.; Tzavaras, N.; Gong, B.; Hurst, W.J.; Blitzer, R.D.; Pasinetti, G.M. Cocoa extracts reduce oligomerization of Amyloid-β: Implications for cognitive improvement in Alzheimer’s disease. J. Alzheimers Dis., 2014, 41, 643-650.
[105]
Brickman, A.; Khan, U.A.; Provenzano, F.A.; Yeung, L.K.; Suzuki, W.; Schroeter, H.; Wall, M.; Sloan, R.P.; Scott, A. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat. Neurosci., 2014, 17(12), 1798-1803.
[106]
Currais, A.; Prior, M.; Dargusch, R.; Armando, A.; Ehren, J. Schubert, D.; Quehenberger, O.; Maher, P. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging Cell, 2014, 13, 379-390.
[107]
Nieoczym, D.; Socala, K.; Raszewski, G.; Wlaz, P. Effect of quercetin and rutin in some acute seizure models in mice. Prog. Neuro-Psychoph, 2014, 54, 50-58.
[108]
Matias, I.; Schmidt-Buosi, A.; Carvalho, F.; Gomes, A. Functions of flavonoids in the central nervous system: Astrocytes as targets for natural compounds. Neurochem. Int., 2015, 95, 85-91.
[109]
Rendeiro, C.; Vauzour, D.; Kean, R.J.; Butler, L.T.; Rattray, M.; Spencer, J.P.E.; Williams, C.M. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology., 2012, 223(3), 319-330.
[110]
Zhang, F.; Lu, Y.F.; Wu, Q.; Liu, J.; Shi, J.S. Resveratrol promotes neurotrophic factor release from astroglia. Exp. Biol. Med. (Maywood), 2012, 237, 943-948.
[111]
Poulose, S.M.; Thangthaeng, N.; Miller, M.G.; Shukitt-Hale, B. effects of pterostilbene and resveratrol on brain and behaviour. Neurochem. Int., 2015, 89, 227-233.
[112]
Said, M.M.; Abd Rabo, M.M. Neuroprotective effects of eugenol against aluminium-induced toxicity in the rat brain. Arh. Hig. Rada Toksikol., 2017, 68, 27-37.
[113]
Kaur, H.; Patro, I. tikoo, K.; Sandhir, R. curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem. Int., 2015, 89, 40-50.
[114]
Morzelle, M.C.; Salgado, J.M.; Telles, M.; Mourelle, D.; Bachiega, P.; Buck, H.S. Neuroprotective effects of pomegranate peel extract after chronic infusion with amyloid-β peptide in mice. PLoS One, 2016, 11(11), 16-23.
[115]
Kim, Y.E.; Hwang, C.J.; Lee, H.P.; Kim, C.S.; Son, D.J.; Ham, Y.W.; Hellström, M.; Han, S.B.; Kim, H.S.; Park, E.K.; Hong, J.T. Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation, oxidative stress and memory impairment via inhibition of nuclear factor-kappaB. Neuropharmacology, 2017, 117, 21-32.
[116]
Pimenta, D.C.; Lebrun, I. Cryptides: Buried secrets in proteins. Peptides, 2007, 28, 2403-2410.
[117]
Hayes, M.; Tiwari, B.K. Bioactive carbohydrates and peptides in foods: An overview of sources, downstream processing steps and associated bioactivities. Int. J. Mol. Sci., 2015, 16, 22485-22508.
[118]
Lucarini, M. Bioactive peptides in milk: From encrypted sequences to nutraceutical aspects. Beverages, 2017, 3, 41.
[119]
Maes, M.; Goossens, F.; Lin, A.; De Meester, I.; Van Gastel, A.; Scharpé, S. Effects of psychological stress on serum prolyl endopeptidase and dipeptidyl peptidase IV activity in humans: higher serum prolyl endopeptidase activity is related to stress-induced anxiety. Psychoneuroendocrinology, 1998, 23, 485-495.
[120]
Maes, M.; Lin, A.H.; Bonaccorso, S.; Goossens, F.; Van Gastel, A.; Pioli, R.; Delmeire, L.; Scharpé, S. Higher serum prolyl endopeptidase activity in patients with post-traumatic stress disorder. J. Affect. Disord., 1999, 53, 27-34.
[121]
Lawandi, J.; Gerber-Lemaire, S.; Juillerat-Jeanneret, L.; Moitessier, N. Inhibitors of prolyl oligopeptidases for the therapy of human diseases: defining diseases and inhibitors. J. Med. Chem., 2010, 53, 3423-3438.
[122]
Toide, K.; Fujiwara, T.; Iwamoto, Y.; Shinoda, M.; Okamiya, K.; Kato, T. Effect of a novel prolyl endopeptidase inhibitor, JTP-4819, on neuropeptide metabolism in the rat brain. Naunyn Schmiedebergs Arch. Pharmacol., 1996, 353, 355-362.
[123]
Toide, K.; Shinoda, M.; Fujiwara, T.; Iwamoto, Y. Effect of a novel prolyl endopeptidase inhibitor, JTP-4819, on spatial memory and central cholinergic neurons in aged rats. Pharmacol. Biochem. Behav., 1997, 56, 427-434.
[124]
Shinoda, M.; Toide, K.; Ohsawa, I.; Kohsaka, S. Specific inhibitor for prolyl endopeptidase suppresses the generation of amyloid beta protein in NG108-15 cells. Biochem. Biophys. Res. Commun., 1997, 235, 641-645.
[125]
Kato, A.; Fukunari, A.; Sakai, Y.; Nakajima, T. Prevention of amyloid-like deposition by a selective prolyl endopeptidase inhibitor, Y-29794, in senescence-accelerated mouse. J. Pharmacol. Exp. Ther., 1997, 283, 328-335.
[126]
Myöhänen, T.; Hannula, M.; Van Elzen, R.; Gerard, M.; Van Der Veken, P.; García-Horsman, J.; Baekelandt, V.; Männistö, P.; Lambeir, A. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson’s disease. Br. J. Pharmacol., 2012, 166, 1097-1113.
[127]
Pripp, A.H. Quantitative structure-activity relationship of prolyl oligopeptidase inhibitory peptides derived from beta-casein using simple amino acid descriptors. J. Agric. Food Chem., 2006, 54, 224-228.
[128]
Park, Y-S.; Jang, H-J.; Lee, K-H.; Hahn, T-R.; Paik, Y-S. Prolyl Endopeptidase inhibitory activity of unsaturated fatty acids. J. Agric. Food Chem., 2006, 54, 1238-1242.
[129]
Lee, S-H.; Jun, M.; Choi, J-Y.; Yang, E-J.; Hur, J-M.; Bae, K.; Seong, Y-H.; Huh, T-L.; Song, K-S. Plant phenolics as prolyl endopeptidase inhibitors. Arch. Pharm. Res., 2007, 30, 827-833.
[130]
Saito, Y.; Ohura, S.; Kawato, A.; Suginami, K. Prolyl endopeptidase inhibitors in sake and its byproducts. J. Agric. Food Chem., 1997, 45, 720-724.
[131]
Sørensen, R.; Kildal, E.; Stepaniak, L.; Pripp, A.H.; Sørhaug, T. Screening for peptides from fish and cheese inhibitory to prolyl endopeptidase. Nahrung, 2004, 48, 53-56.
[132]
López, A.; Mendieta, L.; Prades, R.; Royo, S.; Tarragó, T.; Giralt, E. Peptide POP inhibitors for the treatment of the cognitive symptoms of schizophrenia. Future Med. Chem., 2013, 5, 1509-1523.
[133]
Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr., 2005, 10, 6-9.
[134]
Grantham, C.; Geerts, H. The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J. Neurol. Sci., 2002, 203-204, 131-136.
[135]
Lahiri, D.K.; Farlow, M.R.; Greig, N.H.; Sambamurti, K. Current drug targets for Alzheimer’s disease treatment. Drug Dev. Res., 2002, 56, 267-281.
[136]
Rees, T.M.; Brimijoin, S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today (Barc), 2003, 39, 75-83.
[137]
Kihara, T.; Shimohama, S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol. Exp. (Warsz.), 2004, 64, 99-105.
[138]
Rozzini, L.; Vicini Chilovi, B.; Bertoletti, E.; Trabucchi, M.; Padovani, A. Acetylcholinesterase inhibitors and depressive symptoms in patients with mild to moderate Alzheimer’s disease. Aging Clin. Exp. Res., 2007, 19, 220-223.
[139]
Ahn, C-B.; Lee, K-H.; Je, J-Y. Enzymatic production of bioactive protein hydrolysates from tuna liver: effects of enzymes and molecular weight on bioactivity. Int. J. Food Sci. Technol., 2010, 45, 562-568.
[140]
Liu, Y.; Wang, L.; Cheng, Y.; Saito, M.; Yamaki, K.; Qiao, Z.; Li, L. Isoflavone content and anti-acetylcholinesterase activity in commercial douchi (a traditional chinese salt-fermented soybean food). Japan Agric. Res. Q. JARQ, 2009, 43, 301-307.
[141]
Malomo, S.A.; Aluko, R.E. In vitro acetylcholinesterase-inhibitory properties of enzymatic hemp seed protein hydrolysates. J. Am. Oil Chem. Soc., 2016, 93, 411-420.
[142]
Mineur, Y.S.; Obayemi, A.; Wigestrand, M.B.; Fote, G.M.; Calarco, C.A.; Li, A.M.; Picciotto, M.R. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc. Natl. Acad. Sci., 2013, 110, 3573-3578.
[143]
Risch, S.C.; Cohen, R.M.; Janowsky, D.S.; Kalin, N.H.; Murphy, D.L. Mood and behavioral effects of physostigmine on humans are accompanied by elevations in plasma beta-endorphin and cortisol. Science, 1980, 209, 1545-1546.
[144]
Skidgel, R.A.; Erdös, E.G. The broad substrate specificity of human angiotensin I converting enzyme. Clin. Exp. Hypertens. A, 1987, 9, 243-259.
[145]
Kehoe, P.G.; Wilcock, G.K. Is inhibition of the renin-angiotensin system a new treatment option for Alzheimer’s disease? Lancet Neurol., 2007, 6, 373-378.
[146]
Gao, Y.; O’Caoimh, R.; Healy, L.; Kerins, D.M.; Eustace, J.; Guyatt, G.; Sammon, D.; Molloy, D.W. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open, 2013, 3(7), e002881.
[147]
Ohrui, T.; Tomita, N.; Sato-Nakagawa, T.; Matsui, T.; Maruyama, M.; Niwa, K.; Arai, H.; Sasaki, H. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology, 2004, 63, 1324-1325.
[148]
Tidona, F.; Criscione, A.; Guastella, A.M.; Zuccaro, A.; Bordonaro, S.; Marletta, D.; Donata, M. Bioactive peptides in dairy products. Ital. J. Anim. Sci., 2009, 8, 315-340.
[149]
Amado, I.R.; Vázquez, J.A.; González, P.; Esteban-Fernández, D.; Carrera, M.; Piñeiro, C. Identification of the major ACE-inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate from cuttlefish wastewater. Mar. Drugs, 2014, 12, 1390-1405.
[150]
Lafarga, T.; O’Connor, P.; Hayes, M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides, 2014, 59, 53-62.
[151]
Mallikarjun Gouda, K.G.; Gowda, L.R.; Rao, A.G.A.; Prakash, V. Angiotensin I-Converting Enzyme Inhibitory Peptide Derived from Glycinin, the 11S Globulin of Soybean (Glycine max). J. Agric. Food Chem., 2006, 54, 4568-4573.
[152]
Yousr, M.; Howell, N. Antioxidant and ACE inhibitory bioactive peptides purified from egg yolk proteins. Int. J. Mol. Sci., 2015, 16, 29161-29178.
[153]
Eck, P.; Shamloo, M.; Beta, T. Food science angiotensin converting enzyme inhibitory peptides derived from cereals. J. Hum. Nutr. Food Sci., 2015, 3(1), 1057.
[154]
Treisman, G.J. The role of the brain-gut-microbiome in mental health and mental disorders. The Microbiota in Gastrointestinal Pathophysiology, Ed.; Elsevier Inc. London 2017, (Part E, pp. 389- 397)
[155]
Bruce-Keller, A.J.; Salbaum, M.J.; Berthoud, H.R. Harnessing gut microbes for mental health: getting from here to there. Biol. Psychiatry, 2017, 83, 214-223.
[156]
Rieder, R.; Wisniewski, P.J.; Alderman, B.L.; Campbell, S.C. Microbes and mental health: A review. Brain Behav. Immun., 2017, 66, 9-17.
[157]
Ng, Q.X.; Peters, C.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord., 2018, 228, 13-19.
[158]
FAO/WHO. Health and nutritional properties of probiotics in food including poder milk with lactic. Cordoba, Argentina, 2001. Food and Agriculture Organization of the United Nations and World Health Organzation Expert Consulation Report at. http://www.fao.org/3/a-a0512e.pdf
[159]
Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z. Shi.; Li, L.; Ruan, B. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun., 2015, 48, 186-194.
[160]
Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 2016, 32, 315-320.
[161]
Steenbergen, L. A randomized controlled trial to best the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun., 2015, 48, 258-264.
[162]
Östlund-Lagerström, L.; Kihlgren, A.; Repsilber, D.; Björkstén, B.; Brummer, R.J.; Schoultz, I. Probiotic administration among free-living older adults: A double blinded, randomized, placebo-controlled clinical trial. Nutr. J., 2016, 15(80), 1-10.
[163]
Wallace, C.J.K.; Milev, R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry, 2017, 16(14), 1-10.
[164]
Huang, R.; Wang, K.; Hu, J. Effect of probiotics on depression: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 2016, 8(483), 1-12.
[165]
Valero-Cases, E.; Roy, N.; Frutos, M.J.; Anderson, R.C. Influence of the fruit juice carriers on the ability of Latobacillus plantarum DSM20205 to improve in vitro intestinal barrier integrity and its probiotic properties. J. Agric. Food Chem., 2017, 65(28), 5632-5638.
[166]
Andres, R.H.; Ducray, A.D.; Schlattner, U.; Wallimann, T.; Widmer, H.R. Functions and effects of creatine in the central nervous system. Brain Res. Bull., 2008, 76, 329-343.
[167]
Allen, P. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci. Biobehav. Rev., 2012, 36(5), 1442-1462.
[168]
Dechent, P.; Pouwels, P.J.; Wilken, B.; Hanefeld, F.; Frahm, J. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol., 1999, 277(3), 698-704.
[169]
Snow, W.M.; Cadonic, C.; Cortes-Perez, C.; Roy Chowdhury, S.K.; Djordjevic, J.; Thomson, E.; Bernstein, M.J.; Suh, M.; Fernyhough, P.; Albensi, B.C. Chronic dietary creatine enhances hippocampal-dependent spatial memory, bioenergetics, and levels of plasticity-related proteins associated with NF-kB. Learn. Mem., 2018, 25(2), 54-66.
[170]
Allah Yar, R.; Akbar, A.; Iqbal, F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res., 2015, 1595, 92-100.
[171]
Allah Yar, R.; Akbar, A.; Iqbal, F. Effect of creatine monohydrate supplementation on learning, memory and neuromuscular coordination in female albino mice. Acta Neuropsychiatr., 2017, 29(1), 27-34.
[172]
Allen, P.J.; D’Anci, K.E.; Kanarek, R.B.; Renshaw, P.F. Chronic Creatine supplementation alters depression-like behavior in rodents in a sex-dependent manner. Neurophsychopharmacology, 2010, 35, 534-546.
[173]
Rezin, G.T.; Amboni, G.; Zugno, A.I.; Quevedo, J.; Streck, E.L. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res., 2008, 34, 1021-1029.
[174]
Amital, D.; Vishne, T.; Roitman, S.; Kotler, M.; Levine, J. Open study of creatine monohydrate in treatment-resistant posttraumatic stress disorder. J. Clin. Psychiatry, 2006, 67, 836-837.
[175]
Liener, I.E. In: Encyclopedia of Food Sciences and Nutrition; Benjamin , Caballero., Ed.; Elsevier Science B.V: Amsterdam, 2003, pp. 4587-4593.
[176]
Liwa, A.C.; Barton, E.N.; Cole, W.C.; Nwokocha, C.R. In: Pharmacognosy. Fundamentals, Applications and Strategies, Simone Badal and Rupika Delgoda Eds.; Elsevier Science B.V: Amsterdam, 2017, pp. 315-336
[177]
Nah, S.Y.; Kim, D.H.; Rhim, H. Ginsenosides: Are any of them candidates for drugs acting on the central nervous system. CNS Drug Rev., 2007, 13, 381-404.
[178]
Dang, H.; Chen, Y.; Liu, X.; Wang, Q.; Wang, L.; Jia, W.; Wang, C. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog. Neuro-Psychoph, 2009, 331, 417-1424.
[179]
Ong, W.Y.; Farooqui, T.; Koh, H.L.; Farooqui, A.A.; Ling, E.A. Protective effects of ginseng on neurological disorders. Front. Aging Neurosci., 2015, 7, 129-142.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy