Review Article

非甾体雄激素受体拮抗剂和前列腺癌:结合该快速突变目标的化学结构的调查。

卷 26, 期 33, 2019

页: [6053 - 6073] 页: 21

弟呕挨: 10.2174/0929867325666180913095239

价格: $65

摘要

雄激素受体(AR)途径在前列腺癌的发病机理和进展中均起着重要作用。 特别是,AR主要参与去势抵抗性前列腺癌(CRPC)的开发,以及对第二代AR拮抗剂enzalutamide和细胞色素P450 17A1(CYP17A1)阿比特龙的选择性抑制剂的耐药性。 到目前为止,由于表达该分子靶标的细胞具有迅速发展抗性并将纯受体拮抗剂转变为无效或事件有害分子的能力,因此已经设计并开发了几种用作AR拮抗剂的小分子。 这篇综述涵盖了对最有前景的非甾体雄激素受体拮抗剂类别的调查,还提供了其对前列腺癌的作用机理和功效的见解。

关键词: 雄激素受体,去势抵抗性前列腺癌,抗雄激素,点突变,PROTAC,AR蛋白降解剂,靶向AR的结合物。

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Buttigliero, C.; Tucci, M.; Bertaglia, V.; Vignani, F.; Bironzo, P.; Di Maio, M.; Scagliotti, G.V. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat. Rev., 2015, 41(10), 884-892.
[http://dx.doi.org/10.1016/j.ctrv.2015.08.002] [PMID: 26342718]
[3]
Galletti, G.; Leach, B.I.; Lam, L.; Tagawa, S.T. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat. Rev., 2017, 57, 16-27.
[http://dx.doi.org/10.1016/j.ctrv.2017.04.008] [PMID: 28527407]
[4]
Waltering, K.K.; Urbanucci, A.; Visakorpi, T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol. Cell. Endocrinol., 2012, 360(1-2), 38-43.
[http://dx.doi.org/10.1016/j.mce.2011.12.019] [PMID: 22245783]
[5]
Jenster, G.; van der Korput, H.A.; van Vroonhoven, C.; van der Kwast, T.H.; Trapman, J.; Brinkmann, A.O. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol. Endocrinol., 1991, 5(10), 1396-1404.
[http://dx.doi.org/10.1210/mend-5-10-1396] [PMID: 1775129]
[6]
Mohler, J.L.; Gregory, C.W.; Ford, O.H., III; Kim, D.; Weaver, C.M.; Petrusz, P.; Wilson, E.M.; French, F.S. The androgen axis in recurrent prostate cancer. Clin. Cancer Res., 2004, 10(2), 440-448.
[http://dx.doi.org/10.1158/1078-0432.CCR-1146-03] [PMID: 14760063]
[7]
Parimi, V.; Goyal, R.; Poropatich, K.; Yang, X.J. Neuroendocrine differentiation of prostate cancer: a review. Am. J. Clin. Exp. Urol., 2014, 2(4), 273-285.
[PMID: 25606573]
[8]
Martinez-Ariza, G.; Hulme, C. Recent advances in allosteric androgen receptor inhibitors for the potential treatment of castration-resistant prostate cancer. Pharm. Pat. Anal., 2015, 4(5), 387-402.
[http://dx.doi.org/10.4155/ppa.15.20] [PMID: 26389532]
[9]
Linja, M.J.; Savinainen, K.J.; Saramäki, O.R.; Tammela, T.L.; Vessella, R.L.; Visakorpi, T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res., 2001, 61(9), 3550-3555.
[PMID: 11325816]
[10]
Lallous, N.; Volik, S.V.; Awrey, S.; Leblanc, E.; Tse, R.; Murillo, J.; Singh, K.; Azad, A.A.; Wyatt, A.W.; LeBihan, S.; Chi, K.N.; Gleave, M.E.; Rennie, P.S.; Collins, C.C.; Cherkasov, A. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol., 2016, 17(1), 10.
[http://dx.doi.org/10.1186/s13059-015-0864-1] [PMID: 26813233]
[11]
Antonarakis, E.S.; Chandhasin, C.; Osbourne, E.; Luo, J.; Sadar, M.D.; Perabo, F. Targeting the N-terminal domain of the androgen receptor: A new approach for the treatment of advanced prostate cancer. Oncologist, 2016, 21(12), 1427-1435.
[http://dx.doi.org/10.1634/theoncologist.2016-0161] [PMID: 27628492]
[12]
Sprenger, C.C.T.; Plymate, S.R. The link between androgen receptor splice variants and castration-resistant prostate cancer. Horm. Cancer, 2014, 5(4), 207-217.
[http://dx.doi.org/10.1007/s12672-014-0177-y] [PMID: 24798453]
[13]
Kumagai, J.; Hofland, J.; Erkens-Schulze, S.; Dits, N.F.J.; Steenbergen, J.; Jenster, G.; Homma, Y.; de Jong, F.H.; van Weerden, W.M. Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis. Prostate, 2013, 73(15), 1636-1650.
[http://dx.doi.org/10.1002/pros.22655] [PMID: 23996639]
[14]
Cai, C.; Balk, S.P. Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr. Relat. Cancer, 2011, 18(5), R175-R182.
[http://dx.doi.org/10.1530/ERC-10-0339] [PMID: 21712345]
[15]
Li, Y.; Chan, S.C.; Brand, L.J.; Hwang, T.H.; Silverstein, K.A.T.; Dehm, S.M. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res., 2013, 73(2), 483-489.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3630] [PMID: 23117885]
[16]
Mostaghel, E.A.; Marck, B.T.; Plymate, S.R.; Vessella, R.L.; Balk, S.; Matsumoto, A.M.; Nelson, P.S.; Montgomery, R.B. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res., 2011, 17(18), 5913-5925.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0728] [PMID: 21807635]
[17]
Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer, 2015, 15(12), 701-711.
[http://dx.doi.org/10.1038/nrc4016] [PMID: 26563462]
[18]
Momtazi-Borojeni, A.A.; Abdollahi, E.; Ghasemi, F.; Caraglia, M.; Sahebkar, A. The novel role of pyrvinium in cancer therapy. J. Cell. Physiol., 2018, 233(4), 2871-2881.
[http://dx.doi.org/10.1002/jcp.26006] [PMID: 28500633]
[19]
Tan, M.H.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E-L. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin., 2015, 36(1), 3-23.
[http://dx.doi.org/10.1038/aps.2014.18] [PMID: 24909511]
[20]
Myung, J-K.; Banuelos, C.A.; Fernandez, J.G.; Mawji, N.R.; Wang, J.; Tien, A.H.; Yang, Y.C.; Tavakoli, I.; Haile, S.; Watt, K.; McEwan, I.J.; Plymate, S.; Andersen, R.J.; Sadar, M.D. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J. Clin. Invest., 2013, 123(7), 2948-2960.
[http://dx.doi.org/10.1172/JCI66398] [PMID: 23722902]
[21]
Cattrini, C.; Zanardi, E.; Vallome, G.; Cavo, A.; Cerbone, L.; Di Meglio, A.; Fabbroni, C.; Latocca, M.M.; Rizzo, F.; Messina, C.; Rubagotti, A.; Barboro, P.; Boccardo, F. Targeting androgen-independent pathways: new chances for patients with prostate cancer? Crit. Rev. Oncol. Hematol., 2017, 118, 42-53.
[http://dx.doi.org/10.1016/j.critrevonc.2017.08.009] [PMID: 28917268]
[22]
Tilki, D.; Schaeffer, E.M.; Evans, C.P. Understanding mechanisms of resistance in metastatic castration-resistant prostate cancer: the role of the androgen receptor. Eur. Urol. Focus, 2016, 2(5), 499-505.
[http://dx.doi.org/10.1016/j.euf.2016.11.013] [PMID: 28723515]
[23]
Hoang, D.T.; Iczkowski, K.A.; Kilari, D.; See, W.; Nevalainen, M.T. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget, 2017, 8(2), 3724-3745.
[http://dx.doi.org/10.18632/oncotarget.12554] [PMID: 27741508]
[24]
Liu, H-L.; Zhong, H-Y.; Song, T-Q.; Li, J-Z. A Molecular modeling study of the hydroxyflutamide resistance mechanism induced by androgen receptor mutations. Int. J. Mol. Sci., 2017, 18(9), 1823.
[http://dx.doi.org/10.3390/ijms18091823] [PMID: 28832499]
[25]
Krishnan, A.V.; Zhao, X-Y.; Swami, S.; Brive, L.; Peehl, D.M.; Ely, K.R.; Feldman, D. A glucocorticoid-responsive mutant androgen receptor exhibits unique ligand specificity: therapeutic implications for androgen-independent prostate cancer. Endocrinology, 2002, 143(5), 1889-1900.
[http://dx.doi.org/10.1210/endo.143.5.8778] [PMID: 11956172]
[26]
Zhao, X.Y.; Malloy, P.J.; Krishnan, A.V.; Swami, S.; Navone, N.M.; Peehl, D.M.; Feldman, D. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med., 2000, 6(6), 703-706.
[http://dx.doi.org/10.1038/76287] [PMID: 10835690]
[27]
Guerrini, A.; Tesei, A.; Ferroni, C.; Paganelli, G.; Zamagni, A.; Carloni, S.; Di Donato, M.; Castoria, G.; Leonetti, C.; Porru, M.; De Cesare, M.; Zaffaroni, N.; Beretta, G.L.; Del Rio, A.; Varchi, G. A new avenue toward androgen receptor pan-antagonists: C2 sterically hindered substitution of hydroxy-propanamides. J. Med. Chem., 2014, 57(17), 7263-7279.
[http://dx.doi.org/10.1021/jm5005122] [PMID: 25121586]
[28]
Balbas, M.D.; Evans, M.J.; Hosfield, D.J.; Wongvipat, J.; Arora, V.K.; Watson, P.A.; Chen, Y.; Greene, G.L.; Shen, Y.; Sawyers, C.L. Overcoming mutation-based resistance to antiandrogens with rational drug design. eLife, 2013, 2e00499
[http://dx.doi.org/10.7554/eLife.00499] [PMID: 23580326]
[29]
Bohl, C.E.; Gao, W.; Miller, D.D.; Bell, C.E.; Dalton, J.T. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl. Acad. Sci. USA, 2005, 102(17), 6201-6206.
[http://dx.doi.org/10.1073/pnas.0500381102] [PMID: 15833816]
[30]
Chen, Y.; Clegg, N.J.; Scher, H.I. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol., 2009, 10(10), 981-991.
[http://dx.doi.org/10.1016/S1470-2045(09)70229-3] [PMID: 19796750]
[31]
Kolvenbag, G.J.; Blackledge, G.R.; Gotting-Smith, K. Bicalutamide (Casodex) in the treatment of prostate cancer: history of clinical development. Prostate, 1998, 34(1), 61-72.
[http://dx.doi.org/10.1002/(SICI)1097-0045(19980101)34:1<61:AID-PROS8>3.0.CO;2-N] [PMID: 9428389]
[32]
Heidenreich, A.; Bastian, P.J.; Bellmunt, J.; Bolla, M.; Joniau, S.; van der Kwast, T.; Mason, M.; Matveev, V.; Wiegel, T.; Zattoni, F.; Mottet, N. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol., 2014, 65(2), 467-479.
[http://dx.doi.org/10.1016/j.eururo.2013.11.002] [PMID: 24321502]
[33]
Veldscholte, J.; Ris-Stalpers, C.; Kuiper, G.G.; Jenster, G.; Berrevoets, C.; Claassen, E.; van Rooij, H.C.; Trapman, J.; Brinkmann, A.O.; Mulder, E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun., 1990, 173(2), 534-540.
[http://dx.doi.org/10.1016/S0006-291X(05)80067-1] [PMID: 2260966]
[34]
Zuo, M.; Xu, X.; Xie, Z.; Ge, R.; Zhang, Z.; Li, Z.; Bian, J. Design and synthesis of indoline thiohydantoin derivatives based on enzalutamide as antiproliferative agents against prostate cancer. Eur. J. Med. Chem., 2017, 125, 1002-1022.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.049] [PMID: 27810589]
[35]
Tran, C.; Ouk, S.; Clegg, N.J.; Chen, Y.; Watson, P.A.; Arora, V.; Wongvipat, J.; Smith-Jones, P.M.; Yoo, D.; Kwon, A. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 2009, 324(5928), 787-790.
[http://dx.doi.org/10.1126/science.1168175] [PMID: 19359544]
[36]
Scher, H.I.; Beer, T.M.; Higano, C.S.; Anand, A.; Taplin, M.E.; Efstathiou, E.; Rathkopf, D.; Shelkey, J.; Yu, E.Y.; Alumkal, J.; Hung, D.; Hirmand, M.; Seely, L.; Morris, M.J.; Danila, D.C.; Humm, J.; Larson, S.; Fleisher, M.; Sawyers, C.L. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet, 2010, 375(9724), 1437-1446.
[http://dx.doi.org/10.1016/S0140-6736(10)60172-9] [PMID: 20398925]
[37]
Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; Davis, I.D.; de Bono, J.S.; Evans, C.P.; Fizazi, K.; Joshua, A.M.; Kim, C.S.; Kimura, G.; Mainwaring, P.; Mansbach, H.; Miller, K.; Noonberg, S.B.; Perabo, F.; Phung, D.; Saad, F.; Scher, H.I.; Taplin, M.E.; Venner, P.M.; Tombal, B. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med., 2014, 371(5), 424-433.
[http://dx.doi.org/10.1056/NEJMoa1405095] [PMID: 24881730]
[38]
Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M-E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; Armstrong, A.J.; Flaig, T.W.; Fléchon, A.; Mainwaring, P.; Fleming, M.; Hainsworth, J.D.; Hirmand, M.; Selby, B.; Seely, L.; de Bono, J.S. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med., 2012, 367(13), 1187-1197.
[http://dx.doi.org/10.1056/NEJMoa1207506] [PMID: 22894553]
[39]
Shore, N.D.; Chowdhury, S.; Villers, A.; Klotz, L.; Siemens, D.R.; Phung, D.; van Os, S.; Hasabou, N.; Wang, F.; Bhattacharya, S.; Heidenreich, A. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol., 2016, 17(2), 153-163.
[http://dx.doi.org/10.1016/S1470-2045(15)00518-5] [PMID: 26774508]
[40]
Siemens, D.R.; Klotz, L.; Heidenreich, A.; Chowdhury, S.; Villers, A.; Baron, B.; van Os, S.; Hasabou, N.; Wang, F.; Lin, P.; Shore, N.D. Efficacy and safety of enzalutamide vs bicalutamide in younger and older patients with metastatic castration resistant prostate cancer in the TERRAIN trial. J. Urol., 2018, 199(1), 147-154.
[http://dx.doi.org/10.1016/j.juro.2017.08.080] [PMID: 28827103]
[41]
Joseph, J.D.; Lu, N.; Qian, J.; Sensintaffar, J.; Shao, G.; Brigham, D.; Moon, M.; Maneval, E.C.; Chen, I.; Darimont, B.; Hager, J.H. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov., 2013, 3(9), 1020-1029.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0226] [PMID: 23779130]
[42]
Korpal, M.; Korn, J.M.; Gao, X.; Rakiec, D.P.; Ruddy, D.A.; Doshi, S.; Yuan, J.; Kovats, S.G.; Kim, S.; Cooke, V.G.; Monahan, J.E.; Stegmeier, F.; Roberts, T.M.; Sellers, W.R.; Zhou, W.; Zhu, P. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov., 2013, 3(9), 1030-1043.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0142] [PMID: 23842682]
[43]
Arora, V.K.; Schenkein, E.; Murali, R.; Subudhi, S.K.; Wongvipat, J.; Balbas, M.D.; Shah, N.; Cai, L.; Efstathiou, E.; Logothetis, C.; Zheng, D.; Sawyers, C.L. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell, 2013, 155(6), 1309-1322.
[http://dx.doi.org/10.1016/j.cell.2013.11.012] [PMID: 24315100]
[44]
Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; Lotan, T.L.; Zheng, Q.; De Marzo, A.M.; Isaacs, J.T.; Isaacs, W.B.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; Eisenberger, M.A.; Luo, J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med., 2014, 371(11), 1028-1038.
[http://dx.doi.org/10.1056/NEJMoa1315815] [PMID: 25184630]
[45]
Pippione, A.C.; Boschi, D.; Pors, K.; Oliaro-Bosso, S.; Lolli, M.L. Androgen-AR axis in primary and metastatic prostate cancer: chasing steroidogenic enzymes for therapeutic intervention. J. Cancer Metastasis Treat., 2017, 3(12), 328.
[http://dx.doi.org/10.20517/2394-4722.2017.44]
[46]
Crona, D.J.; Whang, Y.E. Posterior reversible encephalopathy syndrome induced by enzalutamide in a patient with castration-resistant prostate cancer. Invest. New Drugs, 2015, 33(3), 751-754.
[http://dx.doi.org/10.1007/s10637-014-0193-3] [PMID: 25467090]
[47]
Smith, M.R.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med., 2018, 378(15), 1408-1418.
[http://dx.doi.org/ 10.1056/NEJMoa1715546] [PMID: 29420164]
[48]
Moilanen, A-M.; Riikonen, R.; Oksala, R.; Ravanti, L.; Aho, E.; Wohlfahrt, G.; Nykänen, P.S.; Törmäkangas, O.P.; Palvimo, J.J.; Kallio, P.J. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci. Rep., 2015, 5(1), 12007.
[http://dx.doi.org/10.1038/srep12007] [PMID: 26137992]
[49]
Fizazi, K.; Albiges, L.; Loriot, Y.; Massard, C. ODM-201: a new-generation androgen receptor inhibitor in castration-resistant prostate cancer. Expert Rev. Anticancer Ther., 2015, 15(9), 1007-1017.
[http://dx.doi.org/10.1586/14737140.2015.1081566] [PMID: 26313416]
[50]
Shore, N.D. Darolutamide (ODM-201) for the treatment of prostate cancer. Expert Opin. Pharmacother., 2017, 18(9), 945-952.
[http://dx.doi.org/10.1080/14656566.2017.1329820] [PMID: 28490267]
[51]
Fizazi, K.; Massard, C.; Bono, P.; Jones, R.; Kataja, V.; James, N.; Garcia, J.A.; Protheroe, A.; Tammela, T.L.; Elliott, T.; Mattila, L.; Aspegren, J.; Vuorela, A.; Langmuir, P.; Mustonen, M. ARADES study group.Activity and safety of ODM-201 in patients with progressive metastatic castration-resistant prostate cancer (ARADES): an open-label phase 1 dose-escalation and randomised phase 2 dose expansion trial. Lancet Oncol., 2014, 15(9), 975-985.
[http://dx.doi.org/10.1016/S1470-2045(14)70240-2] [PMID: 24974051]
[52]
Andersen, R.J.; Mawji, N.R.; Wang, J.; Wang, G.; Haile, S.; Myung, J-K.; Watt, K.; Tam, T.; Yang, Y.C.; Bañuelos, C.A.; Williams, D.E.; McEwan, I.J.; Wang, Y.; Sadar, M.D. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell, 2010, 17(6), 535-546.
[http://dx.doi.org/10.1016/j.ccr.2010.04.027] [PMID: 20541699]
[53]
Ito, Y.; Sadar, M.D. Enzalutamide and blocking androgen receptor in advanced prostate cancer: lessons learnt from the history of drug development of antiandrogens. Res. Rep. Urol., 2018, 10, 23-32.
[http://dx.doi.org/10.2147/RRU.S157116] [PMID: 29497605]
[54]
Gunther, J.R.; Parent, A.A.; Katzenellenbogen, J.A. Alternative inhibition of androgen receptor signaling: peptidomimetic pyrimidines as direct androgen receptor/coactivator disruptors. ACS Chem. Biol., 2009, 4(6), 435-440.
[http://dx.doi.org/10.1021/cb900043e] [PMID: 19441848]
[55]
Hsu, C-L.; Liu, J-S.; Lin, T-W.; Chang, Y-H.; Kuo, Y-C.; Lin, A-C.; Ting, H-J.; Pang, S-T.; Lee, L-Y.; Ma, W-L.; Lin, C.C.; Wu, W.G. Characterization of a novel androgen receptor (AR) coregulator RIPK1 and related chemicals that suppress AR-mediated prostate cancer growth via peptide and chemical screening. Oncotarget, 2017, 8(41), 69508-69519.
[http://dx.doi.org/10.18632/oncotarget.17843] [PMID: 29050220]
[56]
Féau, C.; Arnold, L.A.; Kosinski, A.; Zhu, F.; Connelly, M.; Guy, R.K. Novel flufenamic acid analogues as inhibitors of androgen receptor mediated transcription. ACS Chem. Biol., 2009, 4(10), 834-843.
[http://dx.doi.org/10.1021/cb900143a] [PMID: 19645433]
[57]
Munuganti, R.S.N.N.; Hassona, M.D.H.H.; Leblanc, E.; Frewin, K.; Singh, K.; Ma, D.; Ban, F.; Hsing, M.; Adomat, H.; Lallous, N.; Andre, C.; Jonadass, J.P.; Zoubeidi, A.; Young, R.N.; Guns, E.T.; Rennie, P.S.; Cherkasov, A. Identification of a potent antiandrogen that targets the BF3 site of the androgen receptor and inhibits enzalutamide-resistant prostate cancer. Chem. Biol., 2014, 21(11), 1476-1485.
[http://dx.doi.org/10.1016/j.chembiol.2014.09.012] [PMID: 25459660]
[58]
Zhang, Y.; Mantravadi, P.K.; Jobbagy, S.; Bao, W.; Koh, J.T. Antagonizing the Androgen Receptor with a Biomimetic Acyltransferase. ACS Chem. Biol., 2016, 11(10), 2797-2802.
[http://dx.doi.org/10.1021/acschembio.6b00659] [PMID: 27548116]
[59]
Li, H.; Ban, F.; Dalal, K.; Leblanc, E.; Frewin, K.; Ma, D.; Adomat, H.; Rennie, P.S.; Cherkasov, A. Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. J. Med. Chem., 2014, 57(15), 6458-6467.
[http://dx.doi.org/10.1021/jm500802j] [PMID: 25062331]
[60]
Ivachtchenko, A.V.; Ivanenkov, Y.A.; Mitkin, O.D.; Vorobiev, A.A.; Kuznetsova, I.V.; Shevkun, N.A.; Koryakova, A.G.; Karapetian, R.N.; Trifelenkov, A.S.; Kravchenko, D.V.; Veselov, M.S.; Chufarova, N.V. Design, synthesis and biological evaluation of novel 5-oxo-2-thioxoimidazolidine derivatives as potent androgen receptor antagonists. Eur. J. Med. Chem., 2015, 99, 51-66.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.039] [PMID: 26046313]
[61]
Xu, X.; Ge, R.; Li, L.; Wang, J.; Lu, X.; Xue, S.; Chen, X.; Li, Z.; Bian, J. Exploring the tetrahydroisoquinoline thiohydantoin scaffold blockade the androgen receptor as potent anti-prostate cancer agents. Eur. J. Med. Chem., 2018, 143, 1325-1344.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.031] [PMID: 29117897]
[62]
Ferroni, C.; Pepe, A.; Kim, Y.S.; Lee, S.; Guerrini, A.; Parenti, M.D.; Tesei, A.; Zamagni, A.; Cortesi, M.; Zaffaroni, N.; De Cesare, M.; Beretta, G.L.; Trepel, J.B.; Malhotra, S.V.; Varchi, G. 1,4-substituted triazoles as nonsteroidal anti-androgens for prostate cancer treatment. J. Med. Chem., 2017, 60(7), 3082-3093.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00105] [PMID: 28272894]
[63]
Guo, Z.; Yang, X.; Sun, F.; Jiang, R.; Linn, D.E.; Chen, H.; Chen, H.; Kong, X.; Melamed, J.; Tepper, C.G.; Kung, H.J.; Brodie, A.M.; Edwards, J.; Qiu, Y. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res., 2009, 69(6), 2305-2313.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3795] [PMID: 19244107]
[64]
Johnson, J.K.; Skoda, E.M.; Zhou, J.; Parrinello, E.; Wang, D.; O’Malley, K.; Eyer, B.R.; Kazancioglu, M.; Eisermann, K.; Johnston, P.A.; Nelson, J.B.; Wang, Z.; Wipf, P. Small molecule antagonists of the nuclear androgen receptor for the treatment of castration-resistant prostate cancer. ACS Med. Chem. Lett., 2016, 7(8), 785-790.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00186] [PMID: 27563404]
[65]
Balog, A.; Rampulla, R.; Martin, G.S.; Krystek, S.R.; Attar, R.; Dell-John, J.; DiMarco, J.D.; Fairfax, D.; Gougoutas, J.; Holst, C.L.; Nation, A.; Rizzo, C.; Rossiter, L.M.; Schweizer, L.; Shan, W.; Spergel, S.; Spires, T.; Cornelius, G.; Gottardis, M.; Trainor, G.; Vite, G.D.; Salvati, M.E. Discovery of BMS-641988, a novel androgen receptor antagonist for the treatment of prostate cancer. ACS Med. Chem. Lett., 2015, 6(8), 908-912.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00173] [PMID: 26288692]
[66]
Song, C-H.; Yang, S.H.; Park, E.; Cho, S.H.; Gong, E-Y.; Khadka, D.B.; Cho, W-J.; Lee, K. Structure-based virtual screening and identification of a novel androgen receptor antagonist. J. Biol. Chem., 2012, 287(36), 30769-30780.
[http://dx.doi.org/10.1074/jbc.M112.379107] [PMID: 22798067]
[67]
Zhao, C.; Choi, Y.H.; Khadka, D.B.; Jin, Y.; Lee, K.Y.; Cho, W.J. Design and synthesis of novel androgen receptor antagonists via molecular modeling. Bioorg. Med. Chem., 2016, 24(4), 789-801.
[http://dx.doi.org/10.1016/j.bmc.2015.12.047] [PMID: 26780832]
[68]
Gomez, L.; Kovac, J.R.; Lamb, D.J. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 2015, 95, 80-87.
[http://dx.doi.org/10.1016/j.steroids.2014.12.021] [PMID: 25560485]
[69]
Ammannagari, N.; George, S. Anti-androgen therapies for prostate cancer: a focused review. Am. J. Hematol. Oncol., 2014, 11(2), 15-19.
[70]
Li, Z.; Bishop, A.C.; Alyamani, M.; Garcia, J.A.; Dreicer, R.; Bunch, D.; Liu, J.; Upadhyay, S.K.; Auchus, R.J.; Sharifi, N. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature, 2015, 523(7560), 347-351.
[http://dx.doi.org/10.1038/nature14406] [PMID: 26030522]
[71]
Imamura, Y.; Sadar, M.D. Androgen receptor targeted therapies in castration-resistant prostate cancer: Bench to clinic. Int. J. Urol., 2016, 23(8), 654-665.
[http://dx.doi.org/10.1111/iju.13137] [PMID: 27302572]
[72]
de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr; Saad, F.; Staffurth, J.N.; Mainwaring, P.; Harland, S.; Flaig, T.W.; Hutson, T.E.; Cheng, T.; Patterson, H.; Hainsworth, J.D.; Ryan, C.J.; Sternberg, C.N.; Ellard, S.L.; Fléchon, A.; Saleh, M.; Scholz, M.; Efstathiou, E.; Zivi, A.; Bianchini, D.; Loriot, Y.; Chieffo, N.; Kheoh, T.; Haqq, C.M.; Scher, H.I. COU-AA-301 Investigators.Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med., 2011, 364(21), 1995-2005.
[http://dx.doi.org/10.1056/NEJMoa1014618] [PMID: 21612468]
[73]
Clegg, N.J.; Wongvipat, J.; Joseph, J.D.; Tran, C.; Ouk, S.; Dilhas, A.; Chen, Y.; Grillot, K.; Bischoff, E.D.; Cai, L.; Aparicio, A.; Dorow, S.; Arora, V.; Shao, G.; Qian, J.; Zhao, H.; Yang, G.; Cao, C.; Sensintaffar, J.; Wasielewska, T.; Herbert, M.R.; Bonnefous, C.; Darimont, B.; Scher, H.I.; Smith-Jones, P.; Klang, M.; Smith, N.D.; De Stanchina, E.; Wu, N.; Ouerfelli, O.; Rix, P.J.; Heyman, R.A.; Jung, M.E.; Sawyers, C.L.; Hager, J.H. ARN-509: A novel antiandrogen for prostate cancer treatment. Cancer Res., 2012, 72(6), 1494-1503.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3948] [PMID: 22266222]
[74]
Yuan, X.; Cai, C.; Chen, S.; Chen, S.; Yu, Z.; Balk, S.P. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene, 2014, 33(22), 2815-2825.
[http://dx.doi.org/10.1038/onc.2013.235] [PMID: 23752196]
[75]
van Soest, R.J.; van Royen, M.E.; de Morrée, E.S.; Moll, J.M.; Teubel, W.; Wiemer, E.A.C.; Mathijssen, R.H.J.; de Wit, R.; van Weerden, W.M. Cross-resistance between taxanes and new hormonal agents abiraterone and enzalutamide may affect drug sequence choices in metastatic castration-resistant prostate cancer. Eur. J. Cancer, 2013, 49(18), 3821-3830.
[http://dx.doi.org/10.1016/j.ejca.2013.09.026] [PMID: 24200698]
[76]
Njar, V.C.O.; Brodie, A.M.H. Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem., 2015, 58(5), 2077-2087.
[http://dx.doi.org/10.1021/jm501239f] [PMID: 25591066]
[77]
Bastos, D.A.; Antonarakis, E.S. Galeterone for the treatment of advanced prostate cancer: the evidence to date. Drug Des. Devel. Ther., 2016, 10, 2289-2297.
[http://dx.doi.org/10.2147/DDDT.S93941] [PMID: 27486306]
[78]
Montgomery, B.; Eisenberger, M.A.; Rettig, M.B.; Chu, F.; Pili, R.; Stephenson, J.J.; Vogelzang, N.J.; Koletsky, A.J.; Nordquist, L.T.; Edenfield, W.J.; Mamlouk, K.; Ferrante, K.J.; Taplin, M.E. Androgen receptor modulation optimized for response (ARMOR) phase I and II Studies: galeterone for the treatment of castration-resistant prostate cancer. Clin. Cancer Res., 2016, 22(6), 1356-1363.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1432] [PMID: 26527750]
[79]
Kwegyir-Afful, A.K.; Ramalingam, S.; Purushottamachar, P.; Ramamurthy, V.P.; Njar, V.C.O. Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget, 2015, 6(29), 27440-27460.
[http://dx.doi.org/10.18632/oncotarget.4578] [PMID: 26196320]
[80]
Yu, Z.; Cai, C.; Gao, S.; Simon, N.I.; Shen, H.C.; Balk, S.P. Galeterone prevents androgen receptor binding to chromatin and enhances degradation of mutant androgen receptor. Clin. Cancer Res., 2014, 20(15), 4075-4085.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0292] [PMID: 24874833]
[81]
Larsen, M.; Hansen, C.H.; Rasmussen, T.B.; Islin, J.; Styrishave, B.; Olsen, L.; Jørgensen, F.S. Structure-based optimisation of non-steroidal cytochrome P450 17A1 inhibitors. Chem. Commun. (Camb.), 2017, 53(21), 3118-3121.
[http://dx.doi.org/10.1039/C6CC08680B] [PMID: 28245012]
[82]
Wang, M.; Fang, Y.; Gu, S.; Chen, F.; Zhu, Z.; Sun, X.; Zhu, J. Discovery of novel 1,2,3,4-tetrahydrobenzo[4, 5]thieno[2, 3-c]pyridine derivatives as potent and selective CYP17 inhibitors. Eur. J. Med. Chem., 2017, 132, 157-172.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.037] [PMID: 28350999]
[83]
Toren, P.J.; Kim, S.; Pham, S.; Mangalji, A.; Adomat, H.; Guns, E.S.T.; Zoubeidi, A.; Moore, W.; Gleave, M.E. Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer. Mol. Cancer Ther., 2015, 14(1), 59-69.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0521] [PMID: 25351916]
[84]
Purushottamachar, P.; Kwegyir-Afful, A.K.; Martin, M.S.; Ramamurthy, V.P.; Ramalingam, S.; Njar, V.C.O. Identification of novel steroidal androgen receptor degrading agents inspired by galeterone 3β-imidazole carbamate. ACS Med. Chem. Lett., 2016, 7(7), 708-713.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00137] [PMID: 27437082]
[85]
Levine, P.M.; Garabedian, M.J.; Kirshenbaum, K. Targeting the androgen receptor with steroid conjugates. J. Med. Chem., 2014, 57(20), 8224-8237.
[http://dx.doi.org/10.1021/jm500101h] [PMID: 24936953]
[86]
Tian, X.; He, Y.; Zhou, J. Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance. Front. Pharmacol., 2015, 6, 57.
[http://dx.doi.org/10.3389/fphar.2015.00057] [PMID: 25852559]
[87]
Toure, M.; Crews, C.M. Small-Molecule PROTACS: new approaches to protein degradation. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 1966-1973.
[http://dx.doi.org/10.1002/anie.201507978] [PMID: 26756721]
[88]
Churcher, I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J. Med. Chem., 2018, 61(2), 444-452.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01272] [PMID: 29144739]
[89]
Cromm, P.M.; Crews, C.M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem. Biol., 2017, 24(9), 1181-1190.
[http://dx.doi.org/10.1016/j.chembiol.2017.05.024] [PMID: 28648379]
[90]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.141230798] [PMID: 11438690]
[91]
Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.027] [PMID: 28223226]
[92]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.114] [PMID: 18752944]
[93]
Gustafson, J.L.; Neklesa, T.K.; Cox, C.S.; Roth, A.G.; Buckley, D.L.; Tae, H.S.; Sundberg, T.B.; Stagg, D.B.; Hines, J.; McDonnell, D.P.; Norris, J.D.; Crews, C.M. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew. Chem. Int. Ed. Engl., 2015, 54(33), 9659-9662.
[http://dx.doi.org/10.1002/anie.201503720] [PMID: 26083457]
[94]
Tinworth, C.P.; Lithgow, H.; Churcher, I. Small molecule-mediated protein knockdown as a new approach to drug discovery. MedChemComm, 2016, 7(12), 2206-2216.
[http://dx.doi.org/10.1039/C6MD00347H]
[95]
Raina, K.; Lu, J.; Qian, Y.; Altieri, M.; Gordon, D.; Rossi, A.M.K.; Wang, J.; Chen, X.; Dong, H.; Siu, K.; Winkler, J.D.; Crew, A.P.; Crews, C.M.; Coleman, K.G. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(26), 7124-7129.
[http://dx.doi.org/10.1073/pnas.1521738113] [PMID: 27274052]
[96]
Raina, K.; Crews, C.M. Targeted protein knockdown using small molecule degraders. Curr. Opin. Chem. Biol., 2017, 39, 46-53.
[http://dx.doi.org/10.1016/j.cbpa.2017.05.016] [PMID: 28605671]
[97]
Itoh, Y.; Kitaguchi, R.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg. Med. Chem., 2011, 19(22), 6768-6778.
[http://dx.doi.org/10.1016/j.bmc.2011.09.041] [PMID: 22014751]
[98]
Lai, A.C.; Crews, C.M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov., 2017, 16(2), 101-114.
[http://dx.doi.org/10.1038/nrd.2016.211] [PMID: 27885283]
[99]
Neklesa, T.; Snyder, L. B.; Willard, R. R.; Vitale, N.; Raina, K.; Pizzano, J.; Gordon, D. A.; Bookbinder, M.; Macaluso, J.; Dong, H. An Oral Androgen Receptor PROTAC Degrader for Prostate Cancer, J. of Clin. Oncol., 36(6_suppl), 381, 2018..
[http://dx.doi.org/10.1200/JCO.2018.36.6_suppl.381]
[100]
Bradbury, R.H.; Hales, N.J.; Rabow, A.A.; Walker, G.E.; Acton, D.G.; Andrews, D.M.; Ballard, P.; Brooks, N.A.N.; Colclough, N.; Girdwood, A.; Hancox, U.J.; Jones, O.; Jude, D.; Loddick, S.A.; Mortlock, A.A. Small-molecule androgen receptor downregulators as an approach to treatment of advanced prostate cancer. Bioorg. Med. Chem. Lett., 2011, 21(18), 5442-5445.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.122] [PMID: 21782422]
[101]
Omlin, A.; Jones, R.J.; van der Noll, R.; Satoh, T.; Niwakawa, M.; Smith, S.A.; Graham, J.; Ong, M.; Finkelman, R.D.; Schellens, J.H.M.; Zivi, A.; Crespo, M.; Riisnaes, R.; Nava-Rodrigues, D.; Malone, M.D.; Dive, C.; Sloane, R.; Moore, D.; Alumkal, J.J.; Dymond, A.; Dickinson, P.A.; Ranson, M.; Clack, G.; de Bono, J.; Elliott, T. AZD3514, an oral selective androgen receptor down-regulator in patients with castration-resistant prostate cancer - results of two parallel first-in-human phase I studies. Invest. New Drugs, 2015, 33(3), 679-690.
[http://dx.doi.org/10.1007/s10637-015-0235-5] [PMID: 25920479]
[102]
Yamashita, S.; Lai, K-P.; Chuang, K-L.; Xu, D.; Miyamoto, H.; Tochigi, T.; Pang, S-T.; Li, L.; Arai, Y.; Kung, H-J.; Yeh, S.; Chang, C. ASC-J9 suppresses castration-resistant prostate cancer growth through degradation of full-length and splice variant androgen receptors. Neoplasia, 2012, 14(1), 74-83.
[http://dx.doi.org/10.1593/neo.111436] [PMID: 22355276]
[103]
Wang, R.; Lin, W.; Lin, C.; Li, L.; Sun, Y.; Chang, C. ASC-J9(®) suppresses castration resistant prostate cancer progression via degrading the enzalutamide-induced androgen receptor mutant AR-F876L. Cancer Lett., 2016, 379(1), 154-160.
[http://dx.doi.org/10.1016/j.canlet.2016.05.018] [PMID: 27233475]
[104]
Liu, C.; Lou, W.; Zhu, Y.; Nadiminty, N.; Schwartz, C.T.; Evans, C.P.; Gao, A.C. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res., 2014, 20(12), 3198-3210.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3296] [PMID: 24740322]
[105]
Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy - an update from drug design perspective. Drug Des. Devel. Ther., 2017, 11, 599-616.
[http://dx.doi.org/10.2147/DDDT.S119488] [PMID: 28424538]
[106]
Sonnenburg, D.W.; Morgans, A.K. Emerging therapies in metastatic prostate cancer. Curr. Oncol. Rep., 2018, 20(6), 46.
[http://dx.doi.org/10.1007/s11912-018-0692-z] [PMID: 29644451]
[107]
Cossa, G.; Gatti, L.; Zunino, F.; Perego, P. Strategies to improve the efficacy of platinum compounds. Curr. Med. Chem., 2009, 16(19), 2355-2365.
[http://dx.doi.org/10.2174/092986709788682083] [PMID: 19601785]
[108]
Masood, I.; Kiani, M.H.; Ahmad, M.; Masood, M.I.; Sadaquat, H. Major contributions towards finding a cure for cancer through chemotherapy: A historical review. Tumori, 2016, 102(1), 6-17.
[http://dx.doi.org/10.5301/tj.5000387] [PMID: 26350183]
[109]
Shah, N.; Dizon, D.S. New-generation platinum agents for solid tumors. Future Oncol., 2009, 5(1), 33-42.
[http://dx.doi.org/10.2217/14796694.5.1.33] [PMID: 19243296]
[110]
Huxley, M.; Sanchez-Cano, C.; Browning, M.J.; Navarro-Ranninger, C.; Quiroga, A.G.; Rodger, A.; Hannon, M.J. An androgenic steroid delivery vector that imparts activity to a non-conventional platinum(II) metallo-drug. Dalton Trans., 2010, 39(47), 11353-11364.
[http://dx.doi.org/10.1039/c0dt00838a] [PMID: 21031218]
[111]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[112]
Gryder, B.E.; Akbashev, M.J.; Rood, M.K.; Raftery, E.D.; Meyers, W.M.; Dillard, P.; Khan, S.; Oyelere, A.K. Selectively targeting prostate cancer with antiandrogen equipped histone deacetylase inhibitors. ACS Chem. Biol., 2013, 8(11), 2550-2560.
[http://dx.doi.org/10.1021/cb400542w] [PMID: 24004176]
[113]
Cogan, P.S.; Koch, T.H. Studies of targeting and intracellular trafficking of an anti-androgen doxorubicin-formaldehyde conjugate in PC-3 prostate cancer cells bearing androgen receptor-GFP chimera. J. Med. Chem., 2004, 47(23), 5690-5699.
[http://dx.doi.org/10.1021/jm0495226] [PMID: 15509168]
[114]
Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis, 2017, 22(11), 1321-1335.
[http://dx.doi.org/10.1007/s10495-017-1424-9] [PMID: 28936716]
[115]
Kataoka, H.; Nishie, H.; Hayashi, N.; Tanaka, M.; Nomoto, A.; Yano, S.; Joh, T. New photodynamic therapy with next-generation photosensitizers. Ann. Transl. Med., 2017, 5(8), 183-183.
[http://dx.doi.org/10.21037/atm.2017.03.59] [PMID: 28616398]
[116]
Rapozzi, V.; Ragno, D.; Guerrini, A.; Ferroni, C.; della Pietra, E.; Cesselli, D.; Castoria, G.; Di Donato, M.; Saracino, E.; Benfenati, V.; Varchi, G. androgen receptor targeted conjugate for bimodal photodynamic therapy of prostate cancer in vitro. Bioconjug. Chem., 2015, 26(8), 1662-1671.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00261] [PMID: 26108715]
[117]
Sortino, S. Light-controlled nitric oxide delivering molecular assemblies. Chem. Soc. Rev., 2010, 39(8), 2903-2913.
[http://dx.doi.org/10.1039/b908663n] [PMID: 20556272]
[118]
Rapozzi, V.; Varchi, G.; Della Pietra, E.; Ferroni, C.; Xodo, L.E. A photodynamic bifunctional conjugate for prostate cancer: an in vitro mechanistic study. Invest. New Drugs, 2017, 35(1), 115-123.
[http://dx.doi.org/10.1007/s10637-016-0396-x] [PMID: 27726093]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy