Review Article

硼基药物递送策略的现状与展望

卷 26, 期 26, 2019

页: [5019 - 5035] 页: 17

弟呕挨: 10.2174/0929867325666180904105212

价格: $65

摘要

含硼化合物尽管是低水平的天然存在,但却是动植物必需的微量营养素。 它们可以增强植物的细胞壁,并且在支持骨骼健康中起重要作用。 然而,令人惊讶地,在药物中很少发现含硼化合物。 实际上,到目前为止,在将硼掺入药物方面还没有固有的缺点。 确实,已经研究了基于含硼化合物的药物,例如tavaborole(标记为Kerydin)和bortezomib(商品名为Velcade),并将其用于临床治疗。 此外,随着硼中子俘获疗法的发展和新出现的质子硼融合疗法的出现,人们有望获得更多的含硼药物。 这篇综述讨论了含硼药物的递送策略的现状和前景。

关键词: 硼,含硼化合物,含硼药物,甲癣治疗,抗癌药,药物递送,硼中子捕获疗法

[1]
Laubengayer, A.W.; Hurd, D.T.; Newkirk, A.E.; Hoard, J.L. Boron. I. Preparation and Properties of Pure Crystalline Boron. J. Am. Chem. Soc., 1943, 65, 1924-1931.
[http://dx.doi.org/10.1021/ja01250a036]
[3]
Hammond, C.R. The Elements. Handbook of Chemistry and Physics, 81st ed; CRC press, 2004.
[4]
Klotz, J.H.; Moss, J.I.; Zhao, R.; Davis, L.R., Jr; Patterson, R.S. Oral toxicity of boric acid and other boron compounds to immature cat fleas (Siphonaptera: Pulicidae). J. Econ. Entomol., 1994, 87(6), 1534-1536.
[http://dx.doi.org/10.1093/jee/87.6.1534] [PMID: 7836612]
[5]
Eisler, R. Handbook of chemical risk assessment: Health hazards to humans, plants, and animals. Vol 3.Metalloids, radiation, cumulative index to chemicals and species; Lewis Publishers, 2000, 3, pp. 1501-1903.
[6]
Fort, D.J.; Rogers, R.L.; Stover, E.L.; Strong, P.L.; Murray, F.J. Nutritional Essentiality of Boron for Development, Maturation, and Reproduction in Frogs.Trace Elements in Man and Animals 10; Roussel, A.M.; Anderson, R.A; Favrier, A.E., Ed.; Springer: Boston, MA, 2002, pp. 1057-1060.
[http://dx.doi.org/10.1007/0-306-47466-2_324]
[7]
Mogoşanu, G.D.; Biţă, A.; Bejenaru, L.E.; Bejenaru, C.; Croitoru, O.; Rău, G.; Rogoveanu, O.C.; Florescu, D.N.; Neamţu, J.; Scorei, I.D.; Scorei, R.I. Calcium Fructoborate for Bone and Cardiovascular Health. Biol. Trace Elem. Res., 2016, 172(2), 277-281.
[http://dx.doi.org/10.1007/s12011-015-0590-2] [PMID: 26686846]
[9]
Moss, R.L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot., 2014, 88, 2-11.
[http://dx.doi.org/10.1016/j.apradiso.2013.11.109] [PMID: 24355301]
[10]
Hosmane, N.S.; Maguire, J.A.; Zhu, Y.; Masao, T. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment, World Scientific Publishing Co. Pte. Ltd: Singapore. 2012.
[http://dx.doi.org/10.1142/8056]
[11]
Zhu, Y.; Hosmane, N.S. Nanostructured Boron Compounds for Cancer Therapy. Pure Appl. Chem., 2018, 90, 653-663.
[http://dx.doi.org/10.1515/pac-2017-0903]
[12]
Mogoşanu, G.D.; Biţă, A.; Bejenaru, L.E.; Bejenaru, C.; Croitoru, O.; Rău, G.; Rogoveanu, O.C.; Florescu, D.N.; Neamţu, J.; Scorei, I.D.; Scorei, R.I. Calcium Fructoborate for Bone and Cardiovascular Health. Biol. Trace Elem. Res., 2016, 172(2), 277-281.
[http://dx.doi.org/10.1007/s12011-015-0590-2] [PMID: 26686846]
[13]
Dinca, L.; Scorei, R. Boron in human nutrition and its regulations use. J. Nutr. Ther., 2013, 2, 22-29.
[16]
"U.S. Department of Health and Human Services". fda. gov. June 23, 2008.
[17]
"Millenium: The Takeda Oncology Company". Millennium. com.2014-08-08.
[18]
Gelman, J.S.; Sironi, J.; Berezniuk, I.; Dasgupta, S.; Castro, L.M.; Gozzo, F.C.; Ferro, E.S.; Fricker, L.D. Alterations of the intracellular peptidome in response to the proteasome inhibitor bortezomib. PLoS One, 2013, 8(1)e53263
[http://dx.doi.org/10.1371/journal.pone.0053263] [PMID: 23308178]
[19]
Bonvini, P.; Zorzi, E.; Basso, G.; Rosolen, A. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia, 2007, 21(4), 838-842.
[http://dx.doi.org/10.1038/sj.leu.2404528] [PMID: 17268529]
[20]
Adams, J. The proteasome: A suitable antineoplastic target. Nat. Rev. Cancer, 2004, 4(5), 349-360.
[http://dx.doi.org/10.1038/nrc1361] [PMID: 15122206]
[21]
Reece, D.E.; Sullivan, D.; Lonial, S.; Mohrbacher, A.F.; Chatta, G.; Shustik, C.; Burris, H., III; Venkatakrishnan, K.; Neuwirth, R.; Riordan, W.J.; Karol, M.; von Moltke, L.L.; Acharya, M.; Zannikos, P.; Keith Stewart, A. Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemother. Pharmacol., 2011, 67(1), 57-67.
[http://dx.doi.org/10.1007/s00280-010-1283-3] [PMID: 20306195]
[22]
Voorhees, P.M.; Dees, E.C.; O’Neil, B.; Orlowski, R.Z. The proteasome as a target for cancer therapy. Clin. Cancer Res., 2003, 9(17), 6316-6325.
[PMID: 14695130]
[23]
Moreau, P.; Pylypenko, H.; Grosicki, S.; Karamanesht, I.; Leleu, X.; Grishunina, M.; Rekhtman, G.; Masliak, Z.; Robak, T.; Shubina, A.; Arnulf, B.; Kropff, M.; Cavet, J.; Esseltine, D.L.; Feng, H.; Girgis, S.; van de Velde, H.; Deraedt, W.; Harousseau, J.L. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol., 2011, 12(5), 431-440.
[http://dx.doi.org/10.1016/S1470-2045(11)70081-X] [PMID: 21507715]
[25]
Alexander, T.; Sarfert, R.; Klotsche, J.; Kühl, A.A.; Rubbert-Roth, A.; Lorenz, H-M.; Rech, J.; Hoyer, B.F.; Cheng, Q.; Waka, A.; Taddeo, A.; Wiesener, M.; Schett, G.; Burmester, G.R.; Radbruch, A.; Hiepe, F.; Voll, R.E. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis., 2015, 74(7), 1474-1478.
[http://dx.doi.org/10.1136/annrheumdis-2014-206016] [PMID: 25710470]
[27]
FDA Approves Anacor Pharmaceuticals' KERYDIN™ (Tavaborole) Topical Solution, 5% for the Treatment of Onychomycosis of the Toenails. Market Watch. 2014.
[28]
Rosen, T.; Stein Gold, L.F. Antifungal drugs for onychomycosis: Efficacy, safety, and mechanism of Action. Semin. Cutan. Med. Surg., 2016, 35(3)(Suppl. 3), S51-S55.
[http://dx.doi.org/10.12788/j.sder.2016.009] [PMID: 27074700]
[29]
Elewski, B.E.; Aly, R.; Baldwin, S.L.; González Soto, R.F.; Rich, P.; Weisfeld, M.; Wiltz, H.; Zane, L.T.; Pollak, R. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-based antifungal agent, for the treatment of toenail onychomycosis: Results from 2 randomized phase-III studies. J. Am. Acad. Dermatol., 2015, 73(1), 62-69.
[http://dx.doi.org/10.1016/j.jaad.2015.04.010] [PMID: 25956661]
[30]
Gupta, A.K.; Daigle, D. Potential role of tavaborole for the treatment of onychomycosis. Future Microbiol., 2014, 9(11), 1243-1250.
[http://dx.doi.org/10.2217/fmb.14.76] [PMID: 25437186]
[31]
Elewski, B.E.; Tosti, A. Tavaborole for the treatment of onychomycosis. Expert Opin. Pharmacother., 2014, 15(10), 1439-1448.
[http://dx.doi.org/10.1517/14656566.2014.921158] [PMID: 24856836]
[34]
Nazarian, R.; Weinberg, J.M. AN-2728, a PDE4 inhibitor for the potential topical treatment of psoriasis and atopic dermatitis. Curr. Opin. Investig. Drugs, 2009, 10(11), 1236-1242.
[PMID: 19876791]
[35]
Bieber, T. Atopic dermatitis. Ann. Dermatol., 2010, 22(2), 125-137.
[http://dx.doi.org/10.5021/ad.2010.22.2.125] [PMID: 20548901]
[36]
Eichenfield, L.F.; Tom, W.L.; Berger, T.G.; Krol, A.; Paller, A.S.; Schwarzenberger, K.; Bergman, J.N.; Chamlin, S.L.; Cohen, D.E.; Cooper, K.D.; Cordoro, K.M.; Davis, D.M.; Feldman, S.R.; Hanifin, J.M.; Margolis, D.J.; Silverman, R.A.; Simpson, E.L.; Williams, H.C.; Elmets, C.A.; Block, J.; Harrod, C.G.; Smith Begolka, W.; Sidbury, R. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Dermatol., 2014, 71(1), 116-132.
[http://dx.doi.org/10.1016/j.jaad.2014.03.023] [PMID: 24813302]
[37]
Arkwright, P.D.; Motala, C.; Subramanian, H.; Spergel, J.; Schneider, L.C.; Wollenberg, A. Management of difficult-to-treat atopic dermatitis. J. Allergy Clin. Immunol. Pract., 2013, 1(2), 142-151.
[http://dx.doi.org/10.1016/j.jaip.2012.09.002] [PMID: 24565453]
[38]
Paller, A.S.; Tom, W.L.; Lebwohl, M.G.; Blumenthal, R.L.; Boguniewicz, M.; Call, R.S.; Eichenfield, L.F.; Forsha, D.W.; Rees, W.C.; Simpson, E.L.; Spellman, M.C.; Stein Gold, L.F.; Zaenglein, A.L.; Hughes, M.H.; Zane, L.T.; Hebert, A.A. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J. Am. Acad. Dermatol., 2016, 75(3), 494-503.e6.
[http://dx.doi.org/10.1016/j.jaad.2016.05.046] [PMID: 27417017]
[39]
Carr, W.W. Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations. Paediatr. Drugs, 2013, 15(4), 303-310.
[http://dx.doi.org/10.1007/s40272-013-0013-9] [PMID: 23549982]
[40]
Schneider, L.; Tilles, S.; Lio, P.; Boguniewicz, M.; Beck, L.; LeBovidge, J.; Novak, N.; Bernstein, D.; Blessing-Moore, J.; Khan, D.; Lang, D.; Nicklas, R.; Oppenheimer, J.; Portnoy, J.; Randolph, C.; Schuller, D.; Spector, S.; Tilles, S.; Wallace, D. Atopic dermatitis: a practice parameter update 2012. J. Allergy Clin. Immunol.,2013, 131(2), 295-9.e1, 27.
[http://dx.doi.org/10.1016/j.jaci.2012.12.672] [PMID: 23374261]
[41]
Bäumer, W.; Hoppmann, J.; Rundfeldt, C.; Kietzmann, M. Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm. Allergy Drug Targets, 2007, 6(1), 17-26.
[http://dx.doi.org/10.2174/187152807780077318] [PMID: 17352685]
[42]
Moustafa, F.; Feldman, S.R. A review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology. Dermatol. Online J., 2014, 20(5), 22608.
[PMID: 24852768]
[44]
Tom, W.L.; Van Syoc, M.; Chanda, S.; Zane, L.T. Pharmacokinetic profile, safety, and tolerability of crisaborole topical ointment, 2% in adolescents with atopic dermatitis: an open-label phase 2a study. Pediatr. Dermatol., 2016, 33(2), 150-159.
[http://dx.doi.org/10.1111/pde.12780] [PMID: 26777394]
[45]
Murrell, D.F.; Gebauer, K.; Spelman, L.; Zane, L.T. Crisaborole topical ointment, 2% in adults with atopic dermatitis: a phase 2A, vehicle-controlled, proof-of-concept study. J. Drugs Dermatol., 2015, 14(10), 1108-1112.
[PMID: 26461821]
[46]
Stein Gold, L.F.; Spelman, L.; Spellman, M.C.; Hughes, M.H.; Zane, L.T. A phase 2, randomized, controlled, dose-ranging study evaluating crisaborole topical ointment, 0.5% and 2% in adolescents with mild to moderate atopic dermatitis. J. Drugs Dermatol., 2015, 14(12), 1394-1399.
[PMID: 26659931]
[47]
Mehta, S.C.; Lu, D.R. Targeted drug delivery for boron neutron capture therapy. Pharm. Res., 1996, 13(3), 344-351.
[http://dx.doi.org/10.1023/A:1016076022267] [PMID: 8692724]
[48]
Lu, D.R.; Mehta, S.C.; Chen, W. Selective boron drug delivery to brain tumors for boron neutron capture therapy. Adv. Drug Deliv. Rev., 1997, 26(2-3), 231-247.
[http://dx.doi.org/10.1016/S0169-409X(97)00037-9] [PMID: 10837545]
[49]
Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron neutron capture therapy of cancer: current status and future prospects. Clin. Cancer Res., 2005, 11(11), 3987-4002.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0035] [PMID: 15930333]
[50]
Ramadan, M.; Alay, A.E. Boron delivery agents used in boron neutron capture therapy for cancer treatment: An overview. Int. J. Pharm. Res. Biosci., 2015, 4, 14-39.
[51]
Luderer, M.J.; de la Puente, P.; Azab, A.K. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm. Res., 2015, 32(9), 2824-2836.
[http://dx.doi.org/10.1007/s11095-015-1718-y] [PMID: 26033767]
[52]
Issa, F.; Kassiou, M.; Rendina, L.M. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem. Rev., 2011, 111(9), 5701-5722.
[http://dx.doi.org/10.1021/cr2000866] [PMID: 21718011]
[53]
Soloway, A.H.; Tjarks, W.; Barnum, B.A.; Rong, F.G.; Barth, R.F.; Codogni, I.M.; Wilson, J.G. The Chemistry of Neutron Capture Therapy. Chem. Rev., 1998, 98(4), 1515-1562.
[http://dx.doi.org/10.1021/cr941195u] [PMID: 11848941]
[54]
Schmidt, E.; Dooley, N.; Ford, S.J.; Elliott, M.; Halbert, G.W. Physicochemical investigation of the influence of saccharide-based parenteral formulation excipients on L-p-boronphenylalanine solubilisation for boron neutron capture therapy. J. Pharm. Sci., 2012, 101(1), 223-232.
[http://dx.doi.org/10.1002/jps.22761] [PMID: 21918989]
[55]
Wittig, A.; Sauerwein, W.A.; Coderre, J.A. Mechanisms of transport of p-borono-phenylalanine through the cell membrane in vitro. Radiat. Res., 2000, 153(2), 173-180.
[56]
Capuani, S.; Gili, T.; Bozzali, M.; Russo, S.; Porcari, P.; Cametti, C.; Muolo, M.; D’Amore, E.; Maraviglia, B.; Lazzarino, G.; Pastore, F.S. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S34-S36.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.017] [PMID: 19375337]
[57]
Wongthai, P.; Hagiwara, K.; Miyoshi, Y.; Wiriyasermkul, P.; Wei, L.; Ohgaki, R.; Kato, I.; Hamase, K.; Nagamori, S.; Kanai, Y. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci., 2015, 106(3), 279-286.
[http://dx.doi.org/10.1111/cas.12602] [PMID: 25580517]
[58]
Bergenheim, A.T.; Capala, J.; Roslin, M.; Henriksson, R. Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study. J. Neurooncol., 2005, 71(3), 287-293.
[http://dx.doi.org/10.1007/s11060-004-1724-0] [PMID: 15735919]
[59]
Evangelista, L.; Jori, G.; Martini, D.; Sotti, G. Boron neutron capture therapy and 18F-labelled borophenylalanine positron emission tomography: a critical and clinical overview of the literature. Appl. Radiat. Isot., 2013, 74, 91-101.
[http://dx.doi.org/10.1016/j.apradiso.2013.01.001] [PMID: 23395785]
[60]
Kawabata, S.; Miyatake, S.; Nonoguchi, N.; Hiramatsu, R.; Iida, K.; Miyata, S.; Yokoyama, K.; Doi, A.; Kuroda, Y.; Kuroiwa, T.; Michiue, H.; Kumada, H.; Kirihata, M.; Imahori, Y.; Maruhashi, A.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Ono, K. Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S15-S18.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.015] [PMID: 19398348]
[61]
Wittig, A.; Stecher-Rasmussen, F.; Hilger, R.A.; Rassow, J.; Mauri, P.; Sauerwein, W. Sodium mercaptoundecahydro-closo-dodecaborate (BSH), a boron carrier that merits more attention. Appl. Radiat. Isot., 2011, 69(12), 1760-1764.
[http://dx.doi.org/10.1016/j.apradiso.2011.02.046] [PMID: 21420870]
[62]
Rice, S.L.; Roney, C.A.; Daumar, P.; Lewis, J.S. The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin. Nucl. Med., 2011, 41(4), 265-282.
[http://dx.doi.org/10.1053/j.semnuclmed.2011.02.002] [PMID: 21624561]
[63]
Hattori, Y.; Kusaka, S.; Mukumoto, M.; Ishimura, M.; Ohta, Y.; Takenaka, H.; Uehara, K.; Asano, T.; Suzuki, M.; Masunaga, S.; Ono, K.; Tanimori, S.; Kirihata, M. Synthesis and in vitro evaluation of thiododecaborated α, α- cycloalkylamino acids for the treatment of malignant brain tumors by boron neutron capture therapy. Amino Acids, 2014, 46(12), 2715-2720.
[http://dx.doi.org/10.1007/s00726-014-1829-5] [PMID: 25173737]
[64]
Futamura, G.; Kawabata, S.; Nonoguchi, N.; Hiramatsu, R.; Toho, T.; Tanaka, H.; Masunaga, S.I.; Hattori, Y.; Kirihata, M.; Ono, K.; Kuroiwa, T.; Miyatake, S.I. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiat. Oncol., 2017, 12(1), 26.
[http://dx.doi.org/10.1186/s13014-017-0765-4] [PMID: 28114947]
[65]
Chandra, S.; Barth, R.F.; Haider, S.A.; Yang, W.; Huo, T.; Shaikh, A.L.; Kabalka, G.W. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC) by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas. PLoS One, 2013, 8(9)e75377
[http://dx.doi.org/10.1371/journal.pone.0075377] [PMID: 24058680]
[66]
Barth, R.F.; Kabalka, G.W.; Yang, W.; Huo, T.; Nakkula, R.J.; Shaikh, A.L.; Haider, S.A.; Chandra, S. Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas. Appl. Radiat. Isot., 2014, 88, 38-42.
[http://dx.doi.org/10.1016/j.apradiso.2013.11.133] [PMID: 24393770]
[67]
Chandra, S.; Ahmad, T.; Barth, R.F.; Kabalka, G.W. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS). J. Microsc., 2014, 254(3), 146-156.
[http://dx.doi.org/10.1111/jmi.12126] [PMID: 24684609]
[68]
Khalil, A.; Ishita, K.; Ali, T.; Tjarks, W. Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective. Future Med. Chem., 2013, 5, 677-692.
[http://dx.doi.org/10.4155/fmc.13.31] [PMID: 23617430]
[69]
Byun, Y.; Thirumamagal, B.T.S.; Yang, W.; Eriksson, S. Preparation and biological evaluation of 10B-enriched 3-[5-2-(2,3-dihydroxyprop-1-yl)-o-carboran-1-ylpentan-1-yl]thymidine (N5-2OH), a new boron delivery agent for boron neutron capture therapy of brain tumors. J. Med. Chem., 2006, 49, 5513-5523.
[http://dx.doi.org/10.1021/jm060413w] [PMID: 16942024]
[70]
Barth, R.F.; Yang, W.; Wu, G.; Swindall, M.; Byun, Y.; Narayanasamy, S.; Tjarks, W.; Tordoff, K.; Moeschberger, M.L.; Eriksson, S.; Binns, P.J.; Riley, K.J. Thymidine kinase 1 as a molecular target for boron neutron capture therapy of brain tumors. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17493-17497.
[http://dx.doi.org/10.1073/pnas.0809569105] [PMID: 18981415]
[71]
Barth, R.F.; Yang, W.; Nakkula, R.J.; Byun, Y.; Tjarks, W.; Wu, L.C.; Binns, P.J.; Riley, K.J. Evaluation of TK1 targeting carboranyl thymidine analogs as potential delivery agents for neutron capture therapy of brain tumors. Appl. Radiat. Isot., 2015, 106, 251-255.
[http://dx.doi.org/10.1016/j.apradiso.2015.06.031] [PMID: 26282567]
[72]
Agarwal, H.K.; Khalil, A.; Ishita, K.; Yang, W.; Nakkula, R.J.; Wu, L.C.; Ali, T.; Tiwari, R.; Byun, Y.; Barth, R.F.; Tjarks, W. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer. Eur. J. Med. Chem., 2015, 100, 197-209.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.042] [PMID: 26087030]
[73]
Gottumukkala, V.; Luguya, R.; Fronczek, F.R.; Vicente, M.G.H. Synthesis and cellular studies of an octa-anionic 5,10,15,20-tetra[3,5-(nido-carboranylmethyl)phenyl]porphyrin (H(2)OCP) for application in BNCT. Bioorg. Med. Chem., 2005, 13(5), 1633-1640.
[http://dx.doi.org/10.1016/j.bmc.2004.12.016] [PMID: 15698781]
[74]
Bhupathiraju, N.V.S.D.K.; Gottumukkala, V.; Hao, E.; Hu, X.; Fronczek, F.R.; Baker, D.B.; Wakamatsu, N.; Vicente, M.G.H. Synthesis and toxicity of cobalt bisdicarbollide-containing porphyrins of high boron content. J. Porphyr. Phthalocyanines, 2011, 15, 973-983.
[http://dx.doi.org/10.1142/S1088424611003902]
[75]
Bhupathiraju, N.V.S.D.K.; Vicente, M.G.H. Synthesis and cellular studies of polyamine conjugates of a mercaptomethyl-carboranylporphyrin. Bioorg. Med. Chem., 2013, 21(2), 485-495.
[http://dx.doi.org/10.1016/j.bmc.2012.11.007] [PMID: 23219853]
[76]
Callahan, D.E.; Forte, T.M.; Afzal, S.M.J.; Deen, D.F.; Kahl, S.B.; Bjornstad, K.A.; Bauer, W.F.; Blakely, E.A. Boronated protoporphyrin (BOPP): localization in lysosomes of the human glioma cell line SF-767 with uptake modulated by lipoprotein levels. Int. J. Radiat. Oncol. Biol. Phys., 1999, 45(3), 761-771.
[http://dx.doi.org/10.1016/S0360-3016(99)00172-8] [PMID: 10524433]
[77]
Ozawa, T.; Afzal, J.; Lamborn, K.R.; Bollen, A.W.; Bauer, W.F.; Koo, M.S.; Kahl, S.B.; Deen, D.F. Toxicity, biodistribution, and convection-enhanced delivery of the boronated porphyrin BOPP in the 9L intracerebral rat glioma model. Int. J. Radiat. Oncol. Biol. Phys., 2005, 63(1), 247-252.
[http://dx.doi.org/10.1016/j.ijrobp.2005.05.030] [PMID: 16111595]
[78]
Jori, G.; Soncin, M.; Friso, E.; Vicente, M.G.; Hao, E.; Miotto, G.; Colautti, P.; Moro, D.; Esposito, J.; Rosi, G.; Nava, E.; Sotti, G.; Fabris, C. A novel boronated-porphyrin as a radio-sensitizing agent for boron neutron capture therapy of tumours: in vitro and in vivo studies. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S321-S324.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.071] [PMID: 19376726]
[79]
Backer, M.V.; Gaynutdinov, T.I.; Patel, V.; Bandyopadhyaya, A.K.; Thirumamagal, B.T.S.; Tjarks, W.; Barth, R.F.; Claffey, K.; Backer, J.M. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol. Cancer Ther., 2005, 4(9), 1423-1429.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0161] [PMID: 16170035]
[80]
Shirakawa, M.; Yamamto, T.; Nakai, K.; Aburai, K.; Kawatobi, S.; Tsurubuchi, T.; Yamamoto, Y.; Yokoyama, Y.; Okuno, H.; Matsumura, A. Synthesis and evaluation of a novel liposome containing BPA-peptide conjugate for BNCT. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S88-S90.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.101] [PMID: 19446462]
[81]
Schirrmacher, E.; Schirrmacher, R.; Beck, C. Synthesis of a Tyr3-octreotate conjugated closo-carborane. [HC2B10H10]: a potential compound for boron neutron capture therapy. Tetrahedron Lett., 2003, 44, 9143-9145.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.048]
[82]
Kimura, S.; Masunaga, S.; Harada, T.; Kawamura, Y.; Ueda, S.; Okuda, K.; Nagasawa, H. Synthesis and evaluation of cyclic RGD-boron cluster conjugates to develop tumor-selective boron carriers for boron neutron capture therapy. Bioorg. Med. Chem., 2011, 19(5), 1721-1728.
[http://dx.doi.org/10.1016/j.bmc.2011.01.020] [PMID: 21315608]
[83]
Wu, G.; Barth, R.F.; Yang, W.; Chatterjee, M.; Tjarks, W.; Ciesielski, M.J.; Fenstermaker, R.A. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug. Chem., 2004, 15(1), 185-194.
[http://dx.doi.org/10.1021/bc0341674] [PMID: 14733599]
[84]
Yang, W.; Barth, R.F.; Wu, G.; Tjarks, W.; Binns, P.; Riley, K. Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S328-S331.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.030] [PMID: 19467880]
[85]
Yang, W.; Wu, G.; Barth, R.F.; Swindall, M.R.; Bandyopadhyaya, A.K.; Tjarks, W.; Tordoff, K.; Moeschberger, M.; Sferra, T.J.; Binns, P.J.; Riley, K.J.; Ciesielski, M.J.; Fenstermaker, R.A.; Wikstrand, C.J. Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Clin. Cancer Res., 2008, 14(3), 883-891.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1968] [PMID: 18245552]
[86]
Feng, B.; Tomizawa, K.; Michiue, H.; Miyatake, S.; Han, X.J.; Fujimura, A.; Seno, M.; Kirihata, M.; Matsui, H. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials, 2009, 30(9), 1746-1755.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.010] [PMID: 19121537]
[87]
Sun, T.; Li, Y.; Huang, Y.; Zhang, Z.; Yang, W.; Du, Z.; Zhou, Y. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy. Oncotarget, 2016, 7(28), 43095-43108.
[http://dx.doi.org/10.18632/oncotarget.9355] [PMID: 27191269]
[88]
Michiue, H.; Sakurai, Y.; Kondo, N.; Kitamatsu, M.; Bin, F.; Nakajima, K.; Hirota, Y.; Kawabata, S.; Nishiki, T.; Ohmori, I.; Tomizawa, K.; Miyatake, S.; Ono, K.; Matsui, H. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials, 2014, 35(10), 3396-3405.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.055] [PMID: 24452095]
[89]
Iguchi, Y.; Michiue, H.; Kitamatsu, M.; Hayashi, Y.; Takenaka, F.; Nishiki, T.; Matsui, H. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials, 2015, 56, 10-17.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.061] [PMID: 25934274]
[90]
Wang, J.; Wu, W.; Jiang, X. Nanoscaled boron-containing delivery systems and therapeutic agents for cancer treatment. Nanomedicine (Lond.), 2015, 10(7), 1149-1163.
[http://dx.doi.org/10.2217/nnm.14.213] [PMID: 25929571]
[91]
Zhu, Y.; Lin, Y.; Zhu, Y.Z.; Lu, J.; Maguire, J.A. Hosmane. N.S. Boron Drug Delivery via Encapsulated Magnetic. Nanocomposites: A New Approach for BNCT in Cancer Treatment. J. Nanomater., 2010.Article ID 409320
[http://dx.doi.org/10.1155/2010/409320]
[92]
Chertok, B.; Moffat, B.A.; David, A.E.; Yu, F.; Bergemann, C.; Ross, B.D.; Yang, V.C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 2008, 29(4), 487-496.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.050] [PMID: 17964647]
[93]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
[94]
Icten, O.; Hosmane, N.S.; Kose, D.A.; Zumreoglu-Karan, B. Fabrication and characterization of magnetite-gadolinium borate nanocomposites. Z. Anorg. Allg. Chem., 2016, 642, 828-832.
[http://dx.doi.org/10.1002/zaac.201600181]
[95]
Issei, T.; Kensuke, N.; Kimiko, M. Hydrophobic boron compound-loaded poly(l-lactide-co-glycolide) nanoparticles for boron neutron capture therapy. Coll. Surf. B Biointerf., 2017, 159, 360-365.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.002]
[96]
Yinghuai, Z.; Peng, A.T.; Carpenter, K.; Maguire, J.A.; Hosmane, N.S.; Takagaki, M. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc., 2005, 127(27), 9875-9880.
[http://dx.doi.org/10.1021/ja0517116] [PMID: 15998093]
[97]
Lee, C.H.; Bhandari, S.; Tiwari, B.; Yapici, N.; Zhang, D. Yap. Y.K. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications. Molecules, 2016, 21, 922.
[http://dx.doi.org/10.3390/molecules21070922]
[98]
Dash, B.P.; Satapathy, R.; Bode, B.P. ‘Click’ chemistry-mediated phenylene-cored carborane dendrimers. Organometallics, 2012, 31, 2931-2935.
[http://dx.doi.org/10.1021/om201255b]
[99]
Parrott, M.C.; Marchington, E.B.; Valliant, J.F.; Adronov, A. Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J. Am. Chem. Soc., 2005, 127, 12081-12089.
[http://dx.doi.org/10.1021/ja053730l] [PMID: 16117549]
[100]
Yinghuai, Z.; Hosmane, N.S. Applications and perspectives of boron-enriched nanocomposites in cancer therapy. Future Med. Chem., 2013, 5(6), 705-714. [and references therein]
[http://dx.doi.org/10.4155/fmc.13.47] [PMID: 23617432]
[101]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[102]
Kang, J.H.; Jang, W.Y.; Ko, Y.T. The Effect of Surface Charges on the Cellular Uptake of Liposomes Investigated by Live Cell Imaging. Pharm. Res., 2017, 34(4), 704-717.
[http://dx.doi.org/10.1007/s11095-017-2097-3] [PMID: 28078484]
[103]
Nakamura, H. Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective. Future Med. Chem., 2013, 5(6), 715-730.
[http://dx.doi.org/10.4155/fmc.13.48] [PMID: 23617433]
[104]
Peter, J.K.; Charles, A.M.; Aslam, A.K. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc. Natl. Acad. Sci. USA, 2013, 110, 6512-6517.
[105]
Issei, T.; Yukiko, I.; Hiromi, U.; Kimiko, M. Detailed biodistribution of liposomes prepared with polyborane instead of cholesterol for BNCT: effects of PEGylation. Colloid Polym. Sci., 2017, 295, 1455-1461.
[http://dx.doi.org/10.1007/s00396-017-4113-x]
[106]
Masunaga, S.I.; Kimura, S.; Harada, T.; Okuda, K.; Sakurai, Y.; Tanaka, H.; Suzuki, M.; Kondo, N.; Maruhashi, A.; Nagasawa, H.; Ono, K. Evaluating the Usefulness of a Novel 10B-Carrier Conjugated With Cyclic RGD Peptide in Boron Neutron Capture Therapy. World J. Oncol., 2012, 3(3), 103-112.
[http://dx.doi.org/10.4021/wjon477w] [PMID: 29147290]
[107]
Kang, W.; Svirskis, D.; Sarojini, V.; McGregor, A.L.; Bevitt, J.; Wu, Z. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget, 2017, 8(22), 36614-36627.
[http://dx.doi.org/10.18632/oncotarget.16625] [PMID: 28402271]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy