[1]
Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011; 411: 325-43.
[2]
Sarnow P, Jopling CL, Norman KL, et al. MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nat Rev Microbiol 2006; 4: 651-9.
[3]
Melo CA, Melo SA. Biogenesis and physiology of microRNAs.In:
non-coding RNAs and cancer; Fabbri M, Ed.; Springer: New York,
2014; pp. 5-24.
[4]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-54.
[5]
Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901-6.
[6]
Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-97.
[7]
Wahid F, Shehzad A, Khan T, et al. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 2010; 1803: 1231-43.
[8]
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642-55.
[9]
Ghorai A, Ghosh U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Genet 2014; 5: 100.
[10]
Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 2005; 11: 241-7.
[11]
Diederichs S, Haber DA. Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res 2006; 66: 6097-104.
[12]
Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189-98.
[13]
Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol 2007; 27: 1859-67.
[14]
Pires IM, Bencokova Z, Milani M, et al. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res 2010; 70: 925-35.
[15]
Hubbi ME, Luo W, Baek JH, et al. MCM proteins are negative regulators of hypoxia-inducible factor 1. Mol Cell 2011; 42: 700-12.
[16]
Bartel DP. microRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-33.
[17]
Hertel J, Lindemeyer M, Missal K, et al. The expansion of the metazoan microRNA repertoire. BMC Genomics 2006; 7: 25.
[18]
Lee H, Han S, Kwon CS, et al. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 2016; 7: 100-13.
[19]
Ketley A, Warren A, Holms E, et al. The miR-30 microRNA family targets smoothened to regulate hedgehog signalling in zebrafish early muscle development. PLoS One 2013; 8: e65170.
[20]
Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol 2008; 18: 505-16.
[21]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15: 509-24.
[22]
Monteys AM, Spengler RM, Wan J, et al. Structure and activity of putative intronic miRNA promoters. RNA 2010; 16: 495-505.
[23]
Achkar NA, Cambiagno DA, Manavella PA. miRNA biogenesis: a dynamic pathway. Trends Plant Sci 2016; 21: 1034-44.
[24]
O’Donnell KA, Wentzel EA, Zeller KA, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839-43.
[25]
Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13: 1097-101.
[26]
Koo CX, Kobiyama K, Shen YJ, et al. RNA polymerase III regulates cytosolic RNA: DNA hybrids and intracellular microRNA expression. J Biol Chem 2015; 290: 7463-73.
[27]
Van Driessche B, Rodari A, Delacourt N, et al. Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the bovine leukemia virus genome. Sci Rep 2016; 6: 31125.
[28]
Desvignes T, Batzel P, Berezikov E, et al. miRNA nomenclature: a view incorporating genetic origins, biosynthetic pathways, and sequence variants. Trends Genet 2015; 31: 613-26.
[29]
MacFarlane LA, Murphy PR. microRNA: biogenesis, function and role in cancer. Curr Genomics 2010; 11: 537-61.
[30]
Sun W, Julie Li YS, Huang HD, et al. microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 2010; 12: 1-27.
[31]
Zeng C, Xia J, Chen X, et al. MicroRNA-like RNAs from the same miRNA precursors play a role in cassava chilling responses. Sci Rep 2017; 7: 17135.
[32]
Goymer P. Introducing the mirtron. Nat Rev Genet 2007; 8: 568-9.
[33]
Westholm JO, Lai EC. Mirtrons: microRNA biogenesis via splicing. Biochimie 2011; 93: 1897-904.
[34]
Cifuentes D, Xue H, Taylor DW, et al. A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science 2010; 328: 1694-8.
[35]
Yang JS, Maurin T, Robine N, et al. Conserved vertebrate miR-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci USA 2010; 107: 15163-8.
[36]
Barbiarz JE, Ruby JG, Wang Y, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008; 22: 2773-85.
[37]
Desvignes T, Beam MJ, Batzel P, et al. Expanding the annotation of zebrafish microRNAs based on small RNA sequencing. Gene 2014; 546: 386-9.
[38]
Chen L, Dahlstrom JE, Lee SH, et al. Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics 2012; 7: 758-71.
[39]
Moran Y, Fredman D, Praher D, et al. Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res 2014; 24: 651-63.
[40]
Stark A, Brennecke J, Bushati N, et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 2005; 123: 1133-46.
[41]
Lai EC, Tomancak P, Williams RW, et al. Computational identification of Drosophila microRNA genes. Genome Biol 2003; 4: R42.
[42]
Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003; 115: 787-98.
[43]
Stark A, Brennecke J, Russell RB, et al. Identification of Drosophila microRNA targets. PLoS Biol 2003; 1: 397-409.
[44]
Mortensen RD, Serra M, Steitz JA, et al. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc Natl Acad Sci USA 2011; 108: 8281-6.
[45]
Truesdell SS, Mortensen RD, Seo M, et al. microRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci Rep 2012; 2: 842.
[46]
Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128-36.
[47]
Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 2008; 105: 14879-84.
[48]
Wang WX, Wilfred BR, Xie K, et al. Individual microRNAs (miRNAs) display distinct mRNA targeting “rules”. RNA Biol 2010; 7: 373-80.
[49]
Chen PS, Su JL, Cha ST, et al. miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans. J Clin Invest 2011; 121: 3442-55.
[50]
Saxena S, Jónsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. J Biol Chem 2003; 278: 44312-9.
[51]
Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett 2005; 579: 5911-22.
[52]
Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA 2007; 104: 9667-72.
[53]
Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 2006; 38: 1452-6.
[54]
Chen X. MicroRNA metabolism in plants. Curr Top Microbiol Immunol 2008; 320: 117-36.
[55]
Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 2006; 13: 1108-12.
[56]
Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132: 9-14.
[57]
Thermann R, Hentze MW. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 2007; 447: 875-8.
[58]
Bazzini AA, Lee MT, Giraldez AJ. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 2012; 336: 233-7.
[59]
Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med 2009; 13: 39-53.
[60]
Calin GA, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166-71.
[61]
Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2006; 102: 13944-9.
[62]
Zhang L, Wang T, Wright AF, et al. A microdeletion in Xp11.3 accounts for co-segregation of retinitis pigmentosa and mental retardation in a large kindred. Am J Med Genet A 2006; 140: 349-57.
[63]
Lu M, Zhang Q, Deng M, et al. An analysis of human MicroRNA and disease associations. PLoS One 2008; 3: e3420.
[64]
Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell 2012; 148(6): 1172-87.
[65]
Das J, Podder S, Ghosh TC. Insights into the miRNA regulations in human disease genes. BMC Genomics 2014; 15: 1010.
[66]
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857-66.
[67]
Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20: 460-9.
[68]
Makunin IV, Pheasant M, Simons C, et al. Orthologous microRNA genes are located in cancer-associated genomic regions in human and mouse. PLoS One 2007; 2: e1133.
[69]
Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999-3004.
[70]
Zhang X, Cairns M, Rose B, et al. Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer 2009; 124: 2855-63.
[71]
Li Y, Kowdley KV. MicroRNAs in common human diseases. Genomics Proteomics Bioinformatics 2012; 10: 246-53.
[72]
Liu L, Wang D, Qiu Y, et al. Overexpression of microRNA-15 increases the chemosensitivity of colon cancer cells to 5-flourouracil and Oxaliplatin by inhibiting the nuclear factor-κB signalling pathway and inducing apoptosis. Exp Ther Med 2018; 15: 2655-60.
[73]
Wang B, Hsu SH, Wang X, et al. Reciprocal regulation of miR-122 and c-Myc in hepatocellular cancer: role of E2F1 and TFDP2. Hepatology 2014; 59: 555-66.
[74]
Walz AL, Ooms A, Gadd S, et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 2015; 27: 286-97.
[75]
Faggad A, Budczies J, Tchernitsa O, et al. Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol 2010; 220: 382-91.
[76]
Melo SA, Moutinho C, Ropero S, et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 2010; 18: 303-15.
[77]
Liu S, An J, Lin J, et al. Single nucleotide polymorphisms of microRNA processing machinery genes and outcome of hepatocellular carcinoma. PLoS One 2014; 9: e92791.
[78]
Osuch-Wojcikiewicz E, Bruzgielewicz A, Niemczyk K, et al. Association of polymorphic variants of miRNA processing genes with larynx cancer risk in a polish population. BioMed Res Int 2015; 2015: 298378.
[79]
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435(7043): 834-8.
[80]
Riaz M, van Jaarsveld MT, Hollestelle A, et al. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res 2013; 15: R33.
[81]
Ghazizadeh M, Hadi F, Zare M. Direct Assay of miR-16, miR-145 and miR-223 by a novel method of mimic PCR in serum of breast cancer patients. J Genet Resour 2016; 2: 98-108.
[82]
Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res 2011; 39: 6845-53.
[83]
Liu B, Li J, Cairns MJ. Identifying miRNAs, targets, and functions. Brief Bioinform 2012; 15: 1-19.
[84]
Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 2008; 3: 190-6.
[85]
Deepak S, Kottapalli K, Rakwal R, et al. Real-time PCR: revolutionizing detection and expression analysis of genes. Curr Genomics 2007; 8: 234-51.
[86]
Varkonyi-Gasic E, Wu R, Wood M, et al. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 2007; 3: 12.
[87]
Hunt EA, Broyles D, Head T, et al. MicroRNA detection: current technology and research strategies. Ann Rev Anal Chem 2015; 8: 217-37.
[88]
Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem 2009; 394: 1117-24.
[89]
Williamson V, Kim A, Xie B, et al. Detecting miRNAs in deep sequencing data: a software performance comparison and evaluation. Brief Bioinform 2012; 14: 36-45.
[90]
Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769-73.
[91]
Hayashida Y, Nishibu T, Inoue K, et al. A useful approach to total analysis of RISC-associated RNA. BMC Res Notes 2009; 2: 169.
[92]
Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30: 460-71.
[93]
Andachi Y. A novel biochemical method to identify target genes of individual microRNAs: identification of a new Caenorhabditis elegans let-7 target. RNA 2008; 14: 2440-51.
[94]
Stadler M, Artiles K, Pak J, et al. Contributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. elegans heterochronic miRNA targets. Genome Res 2012; 22: 2418-26.
[95]
Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835-41.
[96]
Zhang X, Zuo X, Yang B, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014; 158: 607-19.
[97]
Großhans H, Filipowicz W. Proteomics joins the search for microRNA targets. Cell 2008; 134: 560-2.
[98]
Wu S, Huang S, Ding J, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 2010; 29: 2302-8.
[99]
Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One 2013; 8: e62589.
[100]
Jiang Q, Feng MG, Mo YY. Systematic validation of predicted microRNAs for cyclin D1. BMC Cancer 2009; 9: 194.
[101]
Vo NK, Dalton RP, Liu N, et al. Affinity purification of microRNA-133a with the cardiac transcription factor, Hand2. Proc Natl Acad Sci USA 2010; 107: 19231-6.
[102]
Singh NK. microRNAs databases: developmental methodologies, structural and functional annotations. Interdiscip Sci 2017; 9: 357-77.
[103]
Khurana R, Verma VK, Rawoof A, et al. OncomiRdbB: a comprehensive database of microRNAs and their targets in breast cancer. BMC Bioinformatics 2014; 15: 15.
[104]
Zorc M, Obsteter J, Dovc P, et al. Genetic variability of microRNA genes in 15 animal species. J Genomics 2015; 3: 51-6.
[105]
Gerlach D, Kriventseva EV, Rahman N, et al. miROrtho: computational survey of microRNA genes. Nucleic Acids Res 2009; 37: D111-7.
[106]
Girijadevi R, Sreedevi VC, Sreedharan JV, et al. IntmiR: a complete catalogue of intronic miRNAs of human and mouse. Bioinformation 2011; 5: 458-9.
[107]
Ludwig N, Leidinger P, Becker K, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res 2016; 44: 3865-77.
[108]
Bhartiya D, Laddha SV, Mukhopadhyay A, et al. miRvar: A comprehensive database for genomic variations in microRNAs. Hum Mutat 2011; 32: E2226-45.
[109]
Mooney C, Becker BA, Raoof R, et al. EpimiRBase: a comprehensive database of microRNA-epilepsy associations. Bioinformatics 2016; 32: 1436-8.
[110]
Laganà A, Paone A, Veneziano D, et al. miR-EdiTar: a database of predicted A-to-I edited miRNA target sites. Bioinformatics 2012; 28: 3166-8.