Review Article

肿瘤血管生成的循环生物标志物:我们在哪里?

卷 27, 期 14, 2020

页: [2361 - 2380] 页: 20

弟呕挨: 10.2174/0929867325666180821151409

价格: $65

摘要

背景:近年来,已经开发了几种抗血管生成药物,将它们添加到标准治疗中已带来临床益处。然而,对抗血管生成疗法的反应的特征在于相当大的可变性。在这种情况下,动态非侵入性生物标志物的开发将有助于阐明抗血管生成抗药性的出现,并有助于正确治疗。 目的:本综述的目的是描述有关血管生成的循环诊断和预后生物标志物的最新报道。我们将进一步讨论这种非侵入性策略如何改善对肿瘤治疗的监测并帮助临床策略。 结果:我们讨论了文献中有关循环抗血管生成标记物的最新证据。除生长因子蛋白外,不同的循环miRNA还可发挥促血管生成或抗血管生成活性,从而代表非侵入性策略的合适候选对象。最近 报告表明,肿瘤来源的外来体是富含生物液体的小膜囊泡,也对血管重塑有影响。 结论:近年来已鉴定出许多与血管生成有关的循环生物标志物。它们的使用将有助于确定更可能受益于特定抗血管生成治疗的患者,以及发现那些会产生耐药性和/或 不利影响。但是,需要进一步的研究来阐明这些生物标志物在临床中的作用。

关键词: 生物标志物,肿瘤血管生成,外泌体,微小RNA,蛋白质,抗血管生成治疗。

[1]
Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Hashimoto, T.; Shibasaki, F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr., 2015, 3, 33.
[http://dx.doi.org/10.3389/fped.2015.00033] [PMID: 25964891]
[4]
Mashreghi, M.; Azarpara, H.; Bazaz, M.R.; Jafari, A.; Masoudifar, A.; Mirzaei, H.; Jaafari, M.R. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J. Cell. Physiol., 2018, 233(4), 2949-2965.
[http://dx.doi.org/10.1002/jcp.26049] [PMID: 28608549]
[5]
Todorova, D.; Simoncini, S.; Lacroix, R.; Sabatier, F.; Dignat-George, F. Extracellular vesicles in angiogenesis. Circ. Res., 2017, 120(10), 1658-1673.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309681] [PMID: 28495996]
[6]
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[7]
Petrovic, khiN. Targeting angiogenesis in cancer treatments: where do we stand? J. Pharm. Pharm. Sci., 2016, 19(2), 226-238.
[http://dx.doi.org/10.18433/J30033] [PMID: 27518172]
[8]
Russo, A.E.; Priolo, D.; Antonelli, G.; Libra, M.; McCubrey, J.A.; Ferraù, F. Bevacizumab in the treatment of NSCLC: patient selection and perspectives. Lung Cancer (Auckl.), 2017, 8, 259-269.
[http://dx.doi.org/10.2147/LCTT.S110306] [PMID: 29276417]
[9]
Raphael, J.; Chan, K.; Karim, S.; Kerbel, R.; Lam, H.; Santos, K.D.; Saluja, R.; Verma, S. Antiangiogenic therapy in advanced non-small-cell lung cancer: a meta-analysis of phase III randomized trials. Clin. Lung Cancer, 2017, 18(4), 345-353.e5.
[http://dx.doi.org/10.1016/j.cllc.2017.01.004] [PMID: 28188101]
[10]
Loupakis, F.; Cremolini, C.; Fioravanti, A.; Orlandi, P.; Salvatore, L.; Masi, G.; Di Desidero, T.; Canu, B.; Schirripa, M.; Frumento, P.; Di Paolo, A.; Danesi, R.; Falcone, A.; Bocci, G. Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer. Br. J. Cancer, 2011, 104(8), 1262-1269.
[http://dx.doi.org/10.1038/bjc.2011.85] [PMID: 21407216]
[11]
Gressett, S.M.; Shah, S.R. Intricacies of bevacizumab-induced toxicities and their management. Ann. Pharmacother., 2009, 43(3), 490-501.
[http://dx.doi.org/10.1345/aph.1L426] [PMID: 19261963]
[12]
Ciombor, K.K.; Berlin, J. Aflibercept--a decoy VEGF receptor. Curr. Oncol. Rep., 2014, 16(2), 368.
[http://dx.doi.org/10.1007/s11912-013-0368-7] [PMID: 24445500]
[13]
Fala, L. Cyramza (Ramucirumab) approved for the treatment of advanced gastric cancer and metastatic non-smallcell lung cancer. Am. Health Drug Benefits, 2015, 8(Spec Feature), 49-53.
[PMID: 26629266]
[14]
Paplomata, E.; Zelnak, A.; O’Regan, R. Everolimus: side effect profile and management of toxicities in breast cancer. Breast Cancer Res. Treat., 2013, 140(3), 453-462.
[http://dx.doi.org/10.1007/s10549-013-2630-y] [PMID: 23907751]
[15]
Vazakidou, M.E.; Magkouta, S.; Moschos, C.; Psallidas, I.; Pappas, A.; Psarra, K.; Kalomenidis, I. Temsirolimus targets multiple hallmarks of cancer to impede mesothelioma growth in vivo. Respirology, 2015, 20(8), 1263-1271.
[http://dx.doi.org/10.1111/resp.12604] [PMID: 26245309]
[16]
Dinney, C.P.; Bielenberg, D.R.; Perrotte, P.; Reich, R.; Eve, B.Y.; Bucana, C.D.; Fidler, I.J. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res., 1998, 58(4), 808-814.
[PMID: 9485039]
[17]
Singh, R.K.; Gutman, M.; Bucana, C.D.; Sanchez, R.; Llansa, N.; Fidler, I.J. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA, 1995, 92(10), 4562-4566.
[http://dx.doi.org/10.1073/pnas.92.10.4562] [PMID: 7753843]
[18]
Escudier, B.; Bellmunt, J.; Négrier, S.; Bajetta, E.; Melichar, B.; Bracarda, S.; Ravaud, A.; Golding, S.; Jethwa, S.; Sneller, V. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol., 2010, 28(13), 2144-2150.
[http://dx.doi.org/10.1200/JCO.2009.26.7849] [PMID: 20368553]
[19]
Grignol, V.P.; Olencki, T.; Relekar, K.; Taylor, C.; Kibler, A.; Kefauver, C.; Wei, L.; Walker, M.J.; Chen, H.X.; Kendra, K.; Carson, W.E., III A phase 2 trial of bevacizumab and high-dose interferon alpha 2B in metastatic melanoma. J. Immunother., 2011, 34(6), 509-515.
[http://dx.doi.org/10.1097/CJI.0b013e31821dcefd] [PMID: 21654521]
[20]
Tageja, N. Lenalidomide - current understanding of mechanistic properties. Anticancer. Agents Med. Chem., 2011, 11(3), 315-326.
[http://dx.doi.org/10.2174/187152011795347487] [PMID: 21426296]
[21]
Yu, J.P.; Sun, S.P.; Sun, Z.Q.; Ni, X.C.; Wang, J.; Li, Y.; Hu, L.J.; Li, D.Q. Clinical trial of thalidomide combined with radiotherapy in patients with esophageal cancer. World J. Gastroenterol., 2014, 20(17), 5098-5103.
[http://dx.doi.org/10.3748/wjg.v20.i17.5098] [PMID: 24803825]
[22]
van der Graaf, W.T.; Blay, J.Y.; Chawla, S.P.; Kim, D.W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; Le Cesne, A.; Gelderblom, H.; Judson, I.R.; Araki, N.; Ouali, M.; Marreaud, S.; Hodge, R.; Dewji, M.R.; Coens, C.; Demetri, G.D.; Fletcher, C.D.; Dei Tos, A.P.; Hohenberger, P. EORTC Soft tissue and bone sarcoma group. PALETTE study group. Pazopanib for metastttic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet, 2012, 379(9829), 1879-1886.
[http://dx.doi.org/10.1016/S0140-6736(12)60651-5] [PMID: 22595799]
[23]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[24]
Motzer, R.J.; Escudier, B.; Gannon, A.; Figlin, R.A. Sunitinib: ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist, 2017, 22(1), 41-52.
[http://dx.doi.org/10.1634/theoncologist.2016-0197] [PMID: 27807302]
[25]
Valle, J.W.; Faivre, S.; Hubner, R.A.; Grande, E.; Raymond, E. Practical management of sunitinib toxicities in the treatment of pancreatic neuroendocrine tumors. Cancer Treat. Rev., 2014, 40(10), 1230-1238.
[http://dx.doi.org/10.1016/j.ctrv.2014.09.001] [PMID: 25283354]
[26]
Berry, V.; Basson, L.; Bogart, E.; Mir, O.; Blay, J.Y.; Italiano, A.; Bertucci, F.; Chevreau, C.; Clisant-Delaine, S.; Liegl-Antzager, B.; Tresch-Bruneel, E.; Wallet, J.; Taieb, S.; Decoupigny, E.; Le Cesne, A.; Brodowicz, T.; Penel, N. REGOSARC: Regorafenib versus placebo in doxorubicin-refractory soft-tissue sarcoma-A quality-adjusted time without symptoms of progression or toxicity analysis. Cancer, 2017, 123(12), 2294-2302.
[http://dx.doi.org/10.1002/cncr.30661] [PMID: 28295221]
[27]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[28]
Gordon, M.S.; Robert, F.; Matei, D.; Mendelson, D.S.; Goldman, J.W.; Chiorean, E.G.; Strother, R.M.; Seon, B.K.; Figg, W.D.; Peer, C.J.; Alvarez, D.; Adams, B.J.; Theuer, C.P.; Rosen, L.S. An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer. Clin. Cancer Res., 2014, 20(23), 5918-5926.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1143] [PMID: 25261556]
[29]
Ahluwalia, M.S.; Rogers, L.R.; Chaudhary, R.T.; Newton, H.B.; Seon, B.K.; Jivani, M.A.; Adams, B.J.; Shazer, R.L.; Theuer, C.P. A Phase 2 trial of TRC105 with bevacizumab for bevacizumab refractory glioblastoma. Journal of Clinical Oncology., 2016, 34(Suppl. 15), 2035-2035.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.2035]
[30]
Dorff, T.B.; Longmate, J.A.; Pal, S.K.; Stadler, W.M.; Fishman, M.N.; Vaishampayan, U.N.; Rao, A.; Pinksi, J.K.; Hu, J.S.; Quinn, D.I.; Lara, P.N., Jr Bevacizumab alone or in combination with TRC105 for patients with refractory metastatic renal cell cancer. Cancer, 2017, 123(23), 4566-4573.
[http://dx.doi.org/10.1002/cncr.30942] [PMID: 28832978]
[31]
Ballas, M.S.; Chachoua, A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. OncoTargets Ther., 2011, 4, 43-58.
[http://dx.doi.org/10.2147/OTT.S18155] [PMID: 21691577]
[32]
Welti, J.; Loges, S.; Dimmeler, S.; Carmeliet, P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest., 2013, 123(8), 3190-3200.
[http://dx.doi.org/10.1172/JCI70212] [PMID: 23908119]
[33]
Kopetz, S.; Hoff, P.M.; Morris, J.S.; Wolff, R.A.; Eng, C.; Glover, K.Y.; Adinin, R.; Overman, M.J.; Valero, V.; Wen, S.; Lieu, C.; Yan, S.; Tran, H.T.; Ellis, L.M.; Abbruzzese, J.L.; Heymach, J.V. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol., 2010, 28(3), 453-459.
[http://dx.doi.org/10.1200/JCO.2009.24.8252] [PMID: 20008624]
[34]
Clarke, J.M.; Hurwitz, H.I. Understanding and targeting resistance to anti-angiogenic therapies. J. Gastrointest. Oncol., 2013, 4(3), 253-263.https://dx.doi.org/10.3978%2Fj.issn.2078-6891.2013.036
[PMID: 23997938]
[35]
Qian, C.N.; Tan, M.H.; Yang, J.P.; Cao, Y. Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation. Chin. J. Cancer, 2016, 35, 10.
[http://dx.doi.org/10.1186/s40880-015-0070-2] [PMID: 26747273]
[36]
Donnem, T.; Hu, J.; Ferguson, M.; Adighibe, O.; Snell, C.; Harris, A.L.; Gatter, K.C.; Pezzella, F. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med., 2013, 2(4), 427-436.
[http://dx.doi.org/10.1002/cam4.105] [PMID: 24156015]
[37]
Viglietto, G.; Maglione, D.; Rambaldi, M.; Cerutti, J.; Romano, A.; Trapasso, F.; Fedele, M.; Ippolito, P.; Chiappetta, G.; Botti, G. Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PlGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene, 1995, 11(8), 1569-1579.
[PMID: 7478581]
[38]
Wei, L.H.; Kuo, M.L.; Chen, C.A.; Chou, C.H.; Lai, K.B.; Lee, C.N.; Hsieh, C.Y. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene, 2003, 22(10), 1517-1527.
[http://dx.doi.org/10.1038/sj.onc.1206226] [PMID: 12629515]
[39]
Jahangiri, A.; Aghi, M.K. Biomarkers predicting tumor response and evasion to anti-angiogenic therapy. Biochim. Biophys. Acta, 2012, 1825(1), 86-100.
[http://dx.doi.org/10.1016/j.bbcan.2011.10.004] [PMID: 22067555]
[40]
Goede, V.; Coutelle, O.; Neuneier, J.; Reinacher-Schick, A.; Schnell, R.; Koslowsky, T.C.; Weihrauch, M.R.; Cremer, B.; Kashkar, H.; Odenthal, M.; Augustin, H.G.; Schmiegel, W.; Hallek, M.; Hacker, U.T. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br. J. Cancer, 2010, 103(9), 1407-1414.
[http://dx.doi.org/10.1038/sj.bjc.6605925] [PMID: 20924372]
[41]
Burrows, F.J.; Derbyshire, E.J.; Tazzari, P.L.; Amlot, P.; Gazdar, A.F.; King, S.W.; Letarte, M.; Vitetta, E.S.; Thorpe, P.E. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin. Cancer Res., 1995, 1(12), 1623-1634.
[PMID: 9815965]
[42]
Cho, W.C. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol., 2010, 42(8), 1273-1281.
[http://dx.doi.org/10.1016/j.biocel.2009.12.014] [PMID: 20026422]
[43]
Zhou, F.; Zhou, Y.; Dong, J.; Tan, W. Circulating endothelial cells and their subsets: novel biomarkers for cancer. Biomarkers Med., 2017, 11(8), 665-676.
[http://dx.doi.org/10.2217/bmm-2017-0143] [PMID: 28597689]
[44]
Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B.A.; Callahan, M.K.; Yuan, J.; Martins, V.R.; Skog, J.; Kaplan, R.N.; Brady, M.S.; Wolchok, J.D.; Chapman, P.B.; Kang, Y.; Bromberg, J.; Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med., 2012, 18(6), 883-891.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
[45]
Burstein, H.J.; Chen, Y.H.; Parker, L.M.; Savoie, J.; Younger, J.; Kuter, I.; Ryan, P.D.; Garber, J.E.; Chen, H.; Campos, S.M.; Shulman, L.N.; Harris, L.N.; Gelman, R.; Winer, E.P. VEGF as a marker for outcome among advanced breast cancer patients receiving anti-VEGF therapy with bevacizumab and vinorelbine chemotherapy. Clin. Cancer Res., 2008, 14(23), 7871-7877.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0593] [PMID: 19047116]
[46]
Hanrahan, E.O.; Ryan, A.J.; Mann, H.; Kennedy, S.J.; Langmuir, P.; Natale, R.B.; Herbst, R.S.; Johnson, B.E.; Heymach, J.V. Baseline vascular endothelial growth factor concentration as a potential predictive marker of benefit from vandetanib in non-small cell lung cancer. Clin. Cancer Res., 2009, 15(10), 3600-3609.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2568] [PMID: 19447868]
[47]
Rini, B.I.; Michaelson, M.D.; Rosenberg, J.E.; Bukowski, R.M.; Sosman, J.A.; Stadler, W.M.; Hutson, T.E.; Margolin, K.; Harmon, C.S.; DePrimo, S.E.; Kim, S.T.; Chen, I.; George, D.J. Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J. Clin. Oncol., 2008, 26(22), 3743-3748.
[http://dx.doi.org/10.1200/JCO.2007.15.5416] [PMID: 18669461]
[48]
Willett, C.G.; Duda, D.G.; di Tomaso, E.; Boucher, Y.; Ancukiewicz, M.; Sahani, D.V.; Lahdenranta, J.; Chung, D.C.; Fischman, A.J.; Lauwers, G.Y.; Shellito, P.; Czito, B.G.; Wong, T.Z.; Paulson, E.; Poleski, M.; Vujaskovic, Z.; Bentley, R.; Chen, H.X.; Clark, J.W.; Jain, R.K. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J. Clin. Oncol., 2009, 27(18), 3020-3026.
[http://dx.doi.org/10.1200/JCO.2008.21.1771] [PMID: 19470921]
[49]
Vasudev, N.S.; Reynolds, A.R. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis, 2014, 17(3), 471-494.
[http://dx.doi.org/10.1007/s10456-014-9420-y] [PMID: 24482243]
[50]
Dowlati, A.; Gray, R.; Sandler, A.B.; Schiller, J.H.; Johnson, D.H. Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab--an Eastern Cooperative Oncology Group Study. Clin. Cancer Res., 2008, 14(5), 1407-1412.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1154] [PMID: 18316562]
[51]
Hirashima, Y.; Yamada, Y.; Matsubara, J.; Takahari, D.; Okita, N.; Takashima, A.; Kato, K.; Hamaguchi, T.; Shirao, K.; Shimada, Y.; Taniguchi, H.; Shimoda, T. Impact of vascular endothelial growth factor receptor 1, 2, and 3 expression on the outcome of patients with gastric cancer. Cancer Sci., 2009, 100(2), 310-315.
[http://dx.doi.org/10.1111/j.1349-7006.2008.01020.x] [PMID: 19068081]
[52]
Paule, B.; Bastien, L.; Deslandes, E.; Cussenot, O.; Podgorniak, M.P.; Allory, Y.; Naïmi, B.; Porcher, R.; de La Taille, A.; Menashi, S.; Calvo, F.; Mourah, S. Soluble isoforms of vascular endothelial growth factor are predictors of response to sunitinib in metastatic renal cell carcinomas. PLoS One, 2010, 5(5)e10715
[http://dx.doi.org/10.1371/journal.pone.0010715] [PMID: 20502715]
[53]
Rangwala, F.; Bendell, J.C.; Kozloff, M.F.; Arrowood, C.C.; Dellinger, A.; Meadows, J.; Tourt-Uhlig, S.; Murphy, J.; Meadows, K.L.; Starr, A.; Broderick, S.; Brady, J.C.; Cushman, S.M.; Morse, M.A.; Uronis, H.E.; Hsu, S.D.; Zafar, S.Y.; Wallace, J.; Starodub, A.N.; Strickler, J.H.; Pang, H.; Nixon, A.B.; Hurwitz, H.I.; Phase, I. Phase I study of capecitabine, oxaliplatin, bevacizumab, and everolimus in advanced solid tumors. Invest. New Drugs, 2014, 32(4), 700-709.
[http://dx.doi.org/10.1007/s10637-014-0089-2] [PMID: 24711126]
[54]
Kelly, R.J.; Rajan, A.; Force, J.; Lopez-Chavez, A.; Keen, C.; Cao, L.; Yu, Y.; Choyke, P.; Turkbey, B.; Raffeld, M.; Xi, L.; Steinberg, S.M.; Wright, J.J.; Kummar, S.; Gutierrez, M.; Giaccone, G. Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin. Cancer Res., 2011, 17(5), 1190-1199.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2331] [PMID: 21224376]
[55]
Fiedler, W.; Mesters, R.; Heuser, M.; Ehninger, G.; Berdel, W.E.; Zirrgiebel, U.; Robertson, J.D.; Puchalski, T.A.; Collins, B.; Jürgensmeier, J.M.; Serve, H. An open-label, Phase I study of cediranib (RECENTIN) in patients with acute myeloid leukemia. Leuk. Res., 2010, 34(2), 196-202.
[http://dx.doi.org/10.1016/j.leukres.2009.07.020] [PMID: 19674789]
[56]
Norden-Zfoni, A.; Desai, J.; Manola, J.; Beaudry, P.; Force, J.; Maki, R.; Folkman, J.; Bello, C.; Baum, C.; DePrimo, S.E.; Shalinsky, D.R.; Demetri, G.D.; Heymach, J.V. Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clin. Cancer Res., 2007, 13(9), 2643-2650.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0919] [PMID: 17473195]
[57]
Pircher, A.; Hilbe, W.; Heidegger, I.; Drevs, J.; Tichelli, A.; Medinger, M. Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int. J. Mol. Sci., 2011, 12(10), 7077-7099.
[http://dx.doi.org/10.3390/ijms12107077] [PMID: 22072937]
[58]
Deprimo, S.E.; Bello, C.L.; Smeraglia, J.; Baum, C.M.; Spinella, D.; Rini, B.I.; Michaelson, M.D.; Motzer, R.J. Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J. Transl. Med., 2007, 5, 32.
[http://dx.doi.org/10.1186/1479-5876-5-32] [PMID: 17605814]
[59]
Duda, D.G.; Willett, C.G.; Ancukiewicz, M.; di Tomaso, E.; Shah, M.; Czito, B.G.; Bentley, R.; Poleski, M.; Lauwers, G.Y.; Carroll, M.; Tyler, D.; Mantyh, C.; Shellito, P.; Clark, J.W.; Jain, R.K. Plasma soluble VEGFR-1 is a potential dual biomarker of response and toxicity for bevacizumab with chemoradiation in locally advanced rectal cancer. Oncologist, 2010, 15(6), 577-583.
[http://dx.doi.org/10.1634/theoncologist.2010-0029] [PMID: 20484123]
[60]
Meyerhardt, J.A.; Ancukiewicz, M.; Abrams, T.A.; Schrag, D.; Enzinger, P.C.; Chan, J.A.; Kulke, M.H.; Wolpin, B.M.; Goldstein, M.; Blaszkowsky, L.; Zhu, A.X.; Elliott, M.; Regan, E.; Jain, R.K.; Duda, D.G. Phase I study of cetuximab, irinotecan, and vandetanib (ZD6474) as therapy for patients with previously treated metastastic colorectal cancer. PLoS One, 2012, 7(6)e38231
[http://dx.doi.org/10.1371/journal.pone.0038231] [PMID: 22701615]
[61]
Batchelor, T.T.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Plotkin, S.R.; Gerstner, E.; Eichler, A.F.; Drappatz, J.; Hochberg, F.H.; Benner, T.; Louis, D.N.; Cohen, K.S.; Chea, H.; Exarhopoulos, A.; Loeffler, J.S.; Moses, M.A.; Ivy, P.; Sorensen, A.G.; Wen, P.Y.; Jain, R.K. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol., 2010, 28(17), 2817-2823.
[http://dx.doi.org/10.1200/JCO.2009.26.3988] [PMID: 20458050]
[62]
Zhu, A.X.; Sahani, D.V.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Catalano, O.A.; Sindhwani, V.; Blaszkowsky, L.S.; Yoon, S.S.; Lahdenranta, J.; Bhargava, P.; Meyerhardt, J.; Clark, J.W.; Kwak, E.L.; Hezel, A.F.; Miksad, R.; Abrams, T.A.; Enzinger, P.C.; Fuchs, C.S.; Ryan, D.P.; Jain, R.K. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J. Clin. Oncol., 2009, 27(18), 3027-3035.
[http://dx.doi.org/10.1200/JCO.2008.20.9908] [PMID: 19470923]
[63]
Addison, C.L.; Ding, K.; Seymour, L.; Zhao, H.; Laurie, S.A.; Shepherd, F.A.; Goss, G.D.; Bradbury, P.A. Analysis of serum protein levels of angiogenic factors and their soluble receptors as markers of response to cediranib in the NCIC CTG BR.24 clinical trial. Lung Cancer, 2015, 90(2), 288-295.
[http://dx.doi.org/10.1016/j.lungcan.2015.09.004] [PMID: 26415995]
[64]
Daly, S.; Kubasiak, J.C.; Rinewalt, D.; Pithadia, R.; Basu, S.; Fhied, C.; Lobato, G.C.; Seder, C.W.; Hong, E.; Warren, W.H.; Chmielewski, G.; Liptay, M.J.; Bonomi, P.; Borgia, J.A. Circulating angiogenesis biomarkers are associated with disease progression in lung adenocarcinoma. Ann. Thorac. Surg., 2014, 98(6), 1968-1975.
[http://dx.doi.org/10.1016/j.athoracsur.2014.06.071] [PMID: 25301368]
[65]
Harmon, C.S.; DePrimo, S.E.; Raymond, E.; Cheng, A.L.; Boucher, E.; Douillard, J.Y.; Lim, H.Y.; Kim, J.S.; Lechuga, M.J.; Lanzalone, S.; Lin, X.; Faivre, S. Mechanism-related circulating proteins as biomarkers for clinical outcome in patients with unresectable hepatocellular carcinoma receiving sunitinib. J. Transl. Med., 2011, 25, 9-120.
[66]
Tabernero, J.; Hozak, R.R.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Prausová, J.; Muro, K.; Siegel, R.W.; Konrad, R.J.; Ouyang, H.; Melemed, S.A.; Ferry, D.; Nasroulah, F.; Van Cutsem, E. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann. Oncol., 2018, 29(3), 602-609.
[http://dx.doi.org/10.1093/annonc/mdx767] [PMID: 29228087]
[67]
Persico, M.G.; Vincenti, V.; DiPalma, T. Structure, expression and receptor-binding properties of placenta growth factor (PlGF). Curr. Top. Microbiol. Immunol., 1999, 237, 31-40.
[http://dx.doi.org/10.1007/978-3-642-59953-8_2] [PMID: 9893344]
[68]
Parr, C.; Watkins, G.; Boulton, M.; Cai, J.; Jiang, W.G. Placenta growth factor is over-expressed and has prognostic value in human breast cancer. Eur. J. Cancer, 2005, 41(18), 2819-2827.
[http://dx.doi.org/10.1016/j.ejca.2005.07.022] [PMID: 16275058]
[69]
Zhang, L.; Chen, J.; Ke, Y.; Mansel, R.E.; Jiang, W.G. Expression of Placenta growth factor (PlGF) in non-small cell lung cancer (NSCLC) and the clinical and prognostic significance. World J. Surg. Oncol., 2005, 3, 68.
[http://dx.doi.org/10.1186/1477-7819-3-68] [PMID: 16223445]
[70]
Wei, S.C.; Tsao, P.N.; Yu, S.C.; Shun, C.T.; Tsai-Wu, J.J.; Wu, C.H.; Su, Y.N.; Hsieh, F.J.; Wong, J.M. Placenta growth factor expression is correlated with survival of patients with colorectal cancer. Gut, 2005, 54(5), 666-672.
[http://dx.doi.org/10.1136/gut.2004.050831] [PMID: 15831913]
[71]
Matsumoto, K.; Suzuki, K.; Koike, H.; Okamura, K.; Tsuchiya, K.; Uchida, T.; Takezawa, Y.; Kobayashi, M.; Yamanaka, H. Prognostic significance of plasma placental growth factor levels in renal cell cancer: an association with clinical characteristics and vascular endothelial growth factor levels. Anticancer Res., 2003, 23(6D), 4953-4958.
[http://dx.doi.org/10.1016/S0022-5347(18)38960-2] [PMID: 14981951]
[72]
Sowter, H.M.; Corps, A.N.; Evans, A.L.; Clark, D.E.; Charnock-Jones, D.S.; Smith, S.K. Expression and localization of the vascular endothelial growth factor family in ovarian epithelial tumors. Lab. Invest., 1997, 77(6), 607-614.
[PMID: 9426398]
[73]
Batchelor, T.T.; Sorensen, A.G.; di Tomaso, E.; Zhang, W.T.; Duda, D.G.; Cohen, K.S.; Kozak, K.R.; Cahill, D.P.; Chen, P.J.; Zhu, M.; Ancukiewicz, M.; Mrugala, M.M.; Plotkin, S.; Drappatz, J.; Louis, D.N.; Ivy, P.; Scadden, D.T.; Benner, T.; Loeffler, J.S.; Wen, P.Y.; Jain, R.K. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 2007, 11(1), 83-95.
[http://dx.doi.org/10.1016/j.ccr.2006.11.021] [PMID: 17222792]
[74]
Bass, M.B.; Sherman, S.I.; Schlumberger, M.J.; Davis, M.T.; Kivman, L.; Khoo, H.M.; Notari, K.H.; Peach, M.; Hei, Y.J.; Patterson, S.D. Biomarkers as predictors of response to treatment with motesanib in patients with progressive advanced thyroid cancer. J. Clin. Endocrinol. Metab., 2010, 95(11), 5018-5027.
[http://dx.doi.org/10.1210/jc.2010-0947] [PMID: 20739388]
[75]
Nikolinakos, P.G.; Altorki, N.; Yankelevitz, D.; Tran, H.T.; Yan, S.; Rajagopalan, D.; Bordogna, W.; Ottesen, L.H.; Heymach, J.V. Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res., 2010, 70(6), 2171-2179.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2533] [PMID: 20215520]
[76]
Porta, C.; Paglino, C.; De Amici, M.; Quaglini, S.; Sacchi, L.; Imarisio, I.; Canipari, C. Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving sunitinib. Kidney Int., 2010, 77(9), 809-815.
[http://dx.doi.org/10.1038/ki.2009.552] [PMID: 20147887]
[77]
Perez-Gracia, J.L.; Prior, C.; Guillén-Grima, F.; Segura, V.; Gonzalez, A.; Panizo, A.; Melero, I.; Grande-Pulido, E.; Gurpide, A.; Gil-Bazo, I.; Calvo, A. Identification of TNF-alpha and MMP-9 as potential baseline predictive serum markers of sunitinib activity in patients with renal cell carcinoma using a human cytokine array. Br. J. Cancer, 2009, 101(11), 1876-1883.
[http://dx.doi.org/10.1038/sj.bjc.6605409] [PMID: 19904265]
[78]
Wang, J.M.; Kumar, S.; Pye, D.; van Agthoven, A.J.; Krupinski, J.; Hunter, R.D. A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int. J. Cancer, 1993, 54(3), 363-370.
[http://dx.doi.org/10.1002/ijc.2910540303] [PMID: 8509210]
[79]
Fonsatti, E.; Jekunen, A.P.; Kairemo, K.J.; Coral, S.; Snellman, M.; Nicotra, M.R.; Natali, P.G.; Altomonte, M.; Maio, M. Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin. Cancer Res., 2000, 6(5), 2037-2043.
[PMID: 10815930]
[80]
Di Paolo, V.; Russo, I.; Boldrini, R.; Ravà, L.; Pezzullo, M.; Benedetti, M.C.; Galardi, A.; Colletti, M.; Rota, R.; Orlando, D.; Crocoli, A.; Peinado, H.; Milano, G.M.; Di Giannatale, A. Evaluation of Endoglin (CD105) expression in pediatric rhabdomyosarcoma. BMC Cancer, 2018, 18(1), 31.
[http://dx.doi.org/10.1186/s12885-017-3947-4] [PMID: 29304781]
[81]
Takahashi, N.; Kawanishi-Tabata, R.; Haba, A.; Tabata, M.; Haruta, Y.; Tsai, H.; Seon, B.K. Association of serum endoglin with metastasis in patients with colorectal, breast, and other solid tumors, and suppressive effect of chemotherapy on the serum endoglin. Clin. Cancer Res., 2001, 7(3), 524-532.
[PMID: 11297243]
[82]
Calabrò, L.; Fonsatti, E.; Bellomo, G.; Alonci, A.; Colizzi, F.; Sigalotti, L.; Altomonte, M.; Musolino, C.; Maio, M. Differential levels of soluble endoglin (CD105) in myeloid malignancies. J. Cell. Physiol., 2003, 194(2), 171-175.
[http://dx.doi.org/10.1002/jcp.10200] [PMID: 12494455]
[83]
Glade Bender, J.L.; Lee, A.; Reid, J.M.; Baruchel, S.; Roberts, T.; Voss, S.D.; Wu, B.; Ahern, C.H.; Ingle, A.M.; Harris, P.; Weigel, B.J.; Blaney, S.M. Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a children’s oncology group phase I consortium report. J. Clin. Oncol., 2013, 31(24), 3034-3043.
[http://dx.doi.org/10.1200/JCO.2012.47.0914] [PMID: 23857966]
[84]
Chen, N.; Wang, J.; Hu, Y.; Cui, B.; Li, W.; Xu, G.; Liu, L.; Liu, S. MicroRNA-410 reduces the expression of vascular endothelial growth factor and inhibits oxygen-induced retinal neovascularization. PLoS One, 2014, 9(4)e95665
[http://dx.doi.org/10.1371/journal.pone.0095665] [PMID: 24777200]
[85]
Wang, J.; Ye, H.; Zhang, D.; Cheng, K.; Hu, Y.; Yu, X.; Lu, L.; Hu, J.; Zuo, C.; Qian, B.; Yu, Y.; Liu, S.; Liu, G.; Mao, C.; Liu, S. Cancer-derived circulating microRNAs promote tumor angiogenesis by entering dendritic cells to degrade highly complementary microRNAs. Theranostics, 2017, 7(6), 1407-1421.
[http://dx.doi.org/10.7150/thno.18262] [PMID: 28529626]
[86]
Wang, J.; Ye, H.; Zhang, D.; Hu, Y.; Yu, X.; Wang, L.; Zuo, C.; Yu, Y.; Xu, G.; Liu, S. MicroRNA-410-5p as a potential serum biomarker for the diagnosis of prostate cancer. Cancer Cell Int., 2016, 16, 12.
[http://dx.doi.org/10.1186/s12935-016-0285-6] [PMID: 26900347]
[87]
Chou, Y.T.; Lin, H.H.; Lien, Y.C.; Wang, Y.H.; Hong, C.F.; Kao, Y.R.; Lin, S.C.; Chang, Y.C.; Lin, S.Y.; Chen, S.J.; Chen, H.C.; Yeh, S.D.; Wu, C.W. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res., 2010, 70(21), 8822-8831.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0638] [PMID: 20978205]
[88]
Stinson, S.; Lackner, M.R.; Adai, A.T.; Yu, N.; Kim, H.J.; O’Brien, C.; Spoerke, J.; Jhunjhunwala, S.; Boyd, Z.; Januario, T.; Newman, R.J.; Yue, P.; Bourgon, R.; Modrusan, Z.; Stern, H.M.; Warming, S.; de Sauvage, F.J.; Amler, L.; Yeh, R.F.; Dornan, D. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci. Signal., 2011, 4(177), ra41.
[http://dx.doi.org/10.1126/scisignal.2001538] [PMID: 21673316]
[89]
Teixeira, A.L.; Dias, F.; Ferreira, M.; Gomes, M.; Santos, J.I.; Lobo, F.; Maurício, J.; Machado, J.C.; Medeiros, R. Combined influence of EGF+61G>A and TGFB+869T>C functional polymorphisms in renal cell carcinoma progression and overall survival: the link to plasma circulating MiR-7 and MiR-221/222 expression. PLoS One, 2015, 10(4)e0103258
[http://dx.doi.org/10.1371/journal.pone.0103258] [PMID: 25909813]
[90]
Yang, F.; Wang, W.; Zhou, C.; Xi, W.; Yuan, L.; Chen, X.; Li, Y.; Yang, A.; Zhang, J.; Wang, T. MiR-221/222 promote human glioma cell invasion and angiogenesis by targeting TIMP2. Tumour Biol., 2015, 36(5), 3763-3773.
[http://dx.doi.org/10.1007/s13277-014-3017-3] [PMID: 25731730]
[91]
Liu, Q.; Liao, F.; Wu, H.; Cai, T.; Yang, L.; Fang, J. Different expression of miR-29b and VEGFA in glioma. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1927-1932.
[http://dx.doi.org/10.3109/21691401.2015.1111237] [PMID: 26620922]
[92]
Ulivi, P.; Canale, M.; Passardi, A.; Marisi, G.; Valgiusti, M.; Frassineti, G.L.; Calistri, D.; Amadori, D.; Scarpi, E. Circulating plasma levels of miR-20b, miR-29b and miR-155 as predictors of bevacizumab efficacy in patients with metastatic colorectal cancer. Int. J. Mol. Sci., 2018, 19(1)E307
[http://dx.doi.org/10.3390/ijms19010307] [PMID: 29361687]
[93]
Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell, 2008, 15(2), 272-284.
[http://dx.doi.org/10.1016/j.devcel.2008.07.008] [PMID: 18694566]
[94]
Hansen, T.F.; Carlsen, A.L.; Heegaard, N.H.; Sørensen, F.B.; Jakobsen, A. Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br. J. Cancer, 2015, 112(4), 624-629.
[http://dx.doi.org/10.1038/bjc.2014.652] [PMID: 25584492]
[95]
Triozzi, P.L.; Achberger, S.; Aldrich, W.; Singh, A.D.; Grane, R.; Borden, E.C. The association of blood angioregulatory microRNA levels with circulating endothelial cells and angiogenic proteins in patients receiving dacarbazine and interferon. J. Transl. Med., 2012, 10, 241.
[http://dx.doi.org/10.1186/1479-5876-10-241] [PMID: 23217102]
[96]
Davidoff, A.M.; Ng, C.Y.; Brown, P.; Leary, M.A.; Spurbeck, W.W.; Zhou, J.; Horwitz, E.; Vanin, E.F.; Nienhuis, A.W. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin. Cancer Res., 2001, 7(9), 2870-2879.
[PMID: 11555605]
[97]
Dome, B.; Timar, J.; Dobos, J.; Meszaros, L.; Raso, E.; Paku, S.; Kenessey, I.; Ostoros, G.; Magyar, M.; Ladanyi, A.; Bogos, K.; Tovari, J. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res., 2006, 66(14), 7341-7347.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4654] [PMID: 16849585]
[98]
Ziebart, T.; Blatt, S.; Günther, C.; Völxen, N.; Pabst, A.; Sagheb, K.; Kühl, S.; Lambrecht, T. Significance of endothelial progenitor cells (EPC) for tumorigenesis of head and neck squamous cell carcinoma (HNSCC): possible marker of tumor progression and neovascularization? Clin. Oral Investig., 2016, 20(8), 2293-2300.
[http://dx.doi.org/10.1007/s00784-016-1785-4] [PMID: 26993659]
[99]
Paprocka, M.; Kieda, C.; Kantor, A.; Bielawska-Pohl, A.; Dus, D.; Czekanski, A.; Heimrath, J. Increased endothelial progenitor cell number in early Stage of endometrial cancer. Int. J. Gynecol. Cancer, 2017, 27(5), 947-952.
[http://dx.doi.org/10.1097/IGC.0000000000000961] [PMID: 28498245]
[100]
Ha, X.; Zhao, M.; Zhao, H.; Peng, J.; Deng, Z.; Dong, J.; Yang, X.; Zhao, Y.; Ju, J. Identification and clinical significance of circulating endothelial progenitor cells in gastric cancer. Biomarkers, 2013, 18(6), 487-492.
[http://dx.doi.org/10.3109/1354750X.2013.810666] [PMID: 23837664]
[101]
Bhaskar, A.; Gupta, R.; Kumar, L.; Sharma, A.; Sharma, M.C.; Kalaivani, M.; Thakur, S.C. Circulating endothelial progenitor cells as potential prognostic biomarker in multiple myeloma. Leuk. Lymphoma, 2012, 53(4), 635-640.
[http://dx.doi.org/10.3109/10428194.2011.628880] [PMID: 21973309]
[102]
Nowak, K.; Rafat, N.; Belle, S.; Weiss, C.; Hanusch, C.; Hohenberger, P.; Beck, G.Ch. Circulating endothelial progenitor cells are increased in human lung cancer and correlate with stage of disease. Eur. J. Cardiothorac. Surg., 2010, 37(4), 758-763.
[http://dx.doi.org/10.1016/j.ejcts.2009.10.002] [PMID: 19896859]
[103]
Su, Y.; Zheng, L.; Wang, Q.; Li, W.; Cai, Z.; Xiong, S.; Bao, J. Quantity and clinical relevance of circulating endothelial progenitor cells in human ovarian cancer. J. Exp. Clin. Cancer Res., 2010, 29, 27.
[http://dx.doi.org/10.1186/1756-9966-29-27] [PMID: 20334653]
[104]
Gu, W.; Sun, W.; Guo, C.; Yan, Y.; Liu, M.; Yao, X.; Yang, B.; Zheng, J. Culture and characterization of circulating endothelial progenitor cells in patients with renal cell carcinoma. J. Urol., 2015, 194(1), 214-222.
[http://dx.doi.org/10.1016/j.juro.2015.01.100] [PMID: 25659661]
[105]
Yang, B.; Gu, W.; Peng, B.; Xu, Y.; Liu, M.; Che, J.; Geng, J.; Zheng, J. High level of circulating endothelial progenitor cells positively correlates with serum vascular endothelial growth factor in patients with renal cell carcinoma. J. Urol., 2012, 188(6), 2055-2061.
[http://dx.doi.org/10.1016/j.juro.2012.08.039] [PMID: 23088990]
[106]
Chou, C.P.; Jiang, S.S.; Pan, H.B.; Yen, Y.C.; Tseng, H.H.; Hung, Y.T.; Wang, S.H.; Chen, Y.L.; Chen, Y.W. Endothelial cell colony forming units derived from malignant breast diseases are resistant to tumor necrosis factor-α-induced apoptosis. Sci. Rep., 2016, 24(6), 37450.
[http://dx.doi.org/10.1038/srep37450]
[107]
Rhone, P.; Ruszkowska-Ciastek, B.; Celmer, M.; Brkic, A.; Bielawski, K.; Boinska, J.; Zarychta, E.; Rosc, D. Increased number of endothelial progenitors in peripheral blood as a possible early marker of tumour growth in post-menopausal breast cancer patients. J. Physiol. Pharmacol., 2017, 68(1), 139-148.
[PMID: 28456778]
[108]
Li, Y.; Liu, J.; Zhao, Z.; Wen, L.; Li, H.; Ren, J.; Liu, H. Correlation between circulating endothelial progenitor cells and serum carcinoembryonic antigen level in colorectal cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(3), 307-312.
[http://dx.doi.org/10.1093/abbs/gmx147] [PMID: 29377980]
[109]
Kuo, Y.H.; Lin, C.H.; Shau, W.Y.; Chen, T.J.; Yang, S.H.; Huang, S.M.; Hsu, C.; Lu, Y.S.; Cheng, A.L. Dynamics of circulating endothelial cells and endothelial progenitor cells in breast cancer patients receiving cytotoxic chemotherapy. BMC Cancer, 2012, 12, 620.
[http://dx.doi.org/10.1186/1471-2407-12-620] [PMID: 23268621]
[110]
Corsini, E.; Ciusani, E.; Gaviani, P.; Silvani, A.; Canazza, A.; Bernardi, G.; Calatozzolo, C.; DiMeco, F.; Salmaggi, A. Decrease in circulating endothelial progenitor cells in treated glioma patients. J. Neurooncol., 2012, 108(1), 123-129.
[http://dx.doi.org/10.1007/s11060-012-0805-8] [PMID: 22350374]
[111]
Gruenwald, V.; Beutel, G.; Schuch-Jantsch, S.; Reuter, C.; Ivanyi, P.; Ganser, A.; Haubitz, M. Circulating endothelial cells are an early predictor in renal cell carcinoma for tumor response to sunitinib. BMC Cancer, 2010, 31, 10-695.
[http://dx.doi.org/10.1186/1471-2407-10-695]
[112]
Sudo, K.; Sato, K.; Sakamoto, S.; Hasegawa, Y.; Asano, M.; Okuda, Y.; Takeda, M.; Sano, M.; Watanabe, H.; Shioya, T.; Ito, H. Association between endothelial progenitor cells and treatment response in non-squamous non-small cell lung cancer treated with bevacizumab. Anticancer Res., 2017, 37(10), 5565-5571.
[http://dx.doi.org/10.21873/anticanres.11989] [PMID: 28982871]
[113]
Kalathil, S.G.; Lugade, A.A.; Iyer, R.; Miller, A.; Thanavala, Y. Endothelial progenitor cell number and ERK phosphorylation serve as predictive and prognostic biomarkers in advanced hepatocellular carcinoma patients treated with sorafenib. OncoImmunology, 2016, 5(10)e1226718
[http://dx.doi.org/10.1080/2162402X.2016.1226718] [PMID: 27853648]
[114]
Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics, 2010, 73(10), 1907-1920.
[http://dx.doi.org/10.1016/j.jprot.2010.06.006] [PMID: 20601276]
[115]
Al-Nedawi, K.; Meehan, B.; Kerbel, R.S.; Allison, A.C.; Rak, J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3794-3799.
[http://dx.doi.org/10.1073/pnas.0804543106] [PMID: 19234131]
[116]
Ghayad, S.E.; Rammal, G.; Ghamloush, F.; Basma, H.; Nasr, R.; Diab-Assaf, M.; Chelala, C.; Saab, R. Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci. Rep., 2016, 6, 37088.
[http://dx.doi.org/10.1038/srep37088] [PMID: 27853183]
[117]
Li, X.J.; Ren, Z.J.; Tang, J.H.; Yu, Q. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer. Cell. Physiol. Biochem., 2017, 44(5), 1741-1748.
[http://dx.doi.org/10.1159/000485780] [PMID: 29216623]
[118]
Yamada, N.; Tsujimura, N.; Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Nakagawa, Y.; Naoe, T.; Akao, Y. Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim. Biophys. Acta, 2014, 1839(11), 1256-1272.
[http://dx.doi.org/10.1016/j.bbagrm.2014.09.002] [PMID: 25218966]
[119]
Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O’Connor, S.T.; Li, S.; Chin, A.R.; Somlo, G.; Palomares, M.; Li, Z.; Tremblay, J.R.; Tsuyada, A.; Sun, G.; Reid, M.A.; Wu, X.; Swiderski, P.; Ren, X.; Shi, Y.; Kong, M.; Zhong, W.; Chen, Y.; Wang, S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in Exosomal microRNAs in cancer metabolism premetastatic niche to promote metastasis. Nat. Cell Biol., 2015, 17, 183-194.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[120]
Liu, Y.; Luo, F.; Wang, B.; Li, H.; Xu, Y.; Liu, X.; Shi, L.; Lu, X.; Xu, W.; Lu, L.; Qin, Y.; Xiang, Q.; Liu, Q. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett., 2016, 370(1), 125-135.
[http://dx.doi.org/10.1016/j.canlet.2015.10.011] [PMID: 26525579]
[121]
Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[122]
Cui, H.; Seubert, B.; Stahl, E.; Dietz, H.; Reuning, U.; Moreno-Leon, L.; Ilie, M.; Hofman, P.; Nagase, H.; Mari, B.; Krüger, A. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene, 2015, 34(28), 3640-3650.
[http://dx.doi.org/10.1038/onc.2014.300] [PMID: 25263437]
[123]
Jung, K.O.; Youn, H.; Lee, C.H.; Kang, K.W.; Chung, J.K. Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells. Oncotarget, 2017, 8(6), 9899-9910.
[http://dx.doi.org/10.18632/oncotarget.14247] [PMID: 28038441]
[124]
Umezu, T.; Tadokoro, H.; Azuma, K.; Yoshizawa, S.; Ohyashiki, K.; Ohyashiki, J.H. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood, 2014, 124(25), 3748-3757.
[http://dx.doi.org/10.1182/blood-2014-05-576116] [PMID: 25320245]
[125]
Sruthi, T.V.; Edatt, L.; Raji, G.R.; Kunhiraman, H.; Shankar, S.S.; Shankar, V.; Ramachandran, V.; Poyyakkara, A.; Kumar, S.V.B. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J. Cell. Physiol., 2018, 233(4), 3498-3514.
[http://dx.doi.org/10.1002/jcp.26202] [PMID: 28929578]
[126]
Luan, Y.; Zuo, L.; Zhang, S.; Wang, G.; Peng, T. MicroRNA-126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS-1). Int. J. Clin. Exp. Pathol., 2015, 8(9), 10345-10354.
[PMID: 26617742]
[127]
Chen, H.; Li, L.; Wang, S.; Lei, Y.; Ge, Q.; Lv, N.; Zhou, X.; Chen, C. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget, 2014, 5(23), 11873-11885.
[http://dx.doi.org/10.18632/oncotarget.2662] [PMID: 25428912]
[128]
Grimolizzi, F.; Monaco, F.; Leoni, F.; Bracci, M.; Staffolani, S.; Bersaglieri, C.; Gaetani, S.; Valentino, M.; Amati, M.; Rubini, C.; Saccucci, F.; Neuzil, J.; Tomasetti, M.; Santarelli, L. Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci. Rep., 2017, 7(1), 15277.
[http://dx.doi.org/10.1038/s41598-017-15475-6] [PMID: 29127370]
[129]
van Dommelen, S.M.; Vader, P.; Lakhal, S.; Kooijmans, S.A.; van Solinge, W.W.; Wood, M.J.; Schiffelers, R.M. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J. Control. Release, 2012, 161(2), 635-644.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.021] [PMID: 22138068]
[130]
Wang, J.; De Veirman, K.; Faict, S.; Frassanito, M.A.; Ribatti, D.; Vacca, A.; Menu, E. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J. Pathol., 2016, 239(2), 162-173.
[http://dx.doi.org/10.1002/path.4712] [PMID: 26956697]
[131]
Taraboletti, G.; D’Ascenzo, S.; Borsotti, P.; Giavazzi, R.; Pavan, A.; Dolo, V. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am. J. Pathol., 2002, 160(2), 673-680.
[http://dx.doi.org/10.1016/S0002-9440(10)64887-0] [PMID: 11839588]
[132]
Ekström, E.J.; Bergenfelz, C.; von Bülow, V.; Serifler, F.; Carlemalm, E.; Jönsson, G.; Andersson, T.; Leandersson, K. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol. Cancer, 2014, 13, 88.
[http://dx.doi.org/10.1186/1476-4598-13-88] [PMID: 24766647]
[133]
Gangoda, L.; Liem, M.; Ang, C.S.; Keerthikumar, S.; Adda, C.G.; Parker, B.S.; Mathivanan, S. Proteomic profiling of exosomes secreted by breast cancer cells with varying metastatic potential. Proteomics, 2017, 17(23-24), 23-24.
[http://dx.doi.org/10.1002/pmic.201600370] [PMID: 29115712]
[134]
DeRita, R.M.; Zerlanko, B.; Singh, A.; Lu, H.; Iozzo, R.V.; Benovic, J.L.; Languino, L.R. c-Src, insulin-like growth factor I receptor, G-protein-coupled receptor kinases and focal adhesion kinase are enriched into prostate cancer cell exosomes. J. Cell. Biochem., 2017, 118(1), 66-73.
[http://dx.doi.org/10.1002/jcb.25611] [PMID: 27232975]
[135]
Tang, M.K.S.; Yue, P.Y.K.; Ip, P.P.; Huang, R.L.; Lai, H.C.; Cheung, A.N.Y.; Tse, K.Y.; Ngan, H.Y.S.; Wong, A.S.T. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat. Commun., 2018, 119(1), 2270.
[136]
Mahabeleshwar, G.H.; Chen, J.; Feng, W.; Somanath, P.R.; Razorenova, O.V.; Byzova, T.V. Integrin affinity modulation in angiogenesis. Cell Cycle, 2008, 7(3), 335-347.
[http://dx.doi.org/10.4161/cc.7.3.5234] [PMID: 18287811]
[137]
Kawakami, K.; Fujita, Y.; Kato, T.; Mizutani, K.; Kameyama, K.; Tsumoto, H.; Miura, Y.; Deguchi, T.; Ito, M. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int. J. Oncol., 2015, 47(1), 384-390.
[http://dx.doi.org/10.3892/ijo.2015.3011] [PMID: 25997717]
[138]
Fedele, C.; Singh, A.; Zerlanko, B.J.; Iozzo, R.V.; Languino, L.R. The αvβ6 integrin is transferred intercellularly via exosomes. J. Biol. Chem., 2015, 290(8), 4545-4551.
[http://dx.doi.org/10.1074/jbc.C114.617662] [PMID: 25568317]
[139]
Singh, A.; Fedele, C.; Lu, H.; Nevalainen, M.T.; Keen, J.H.; Languino, L.R. Exosome-mediated transfer of αvβ3 integrin from tumorigenic to nontumorigenic cells promotes a migratory phenotype. Mol. Cancer Res., 2016, 14(11), 1136-1146.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0058] [PMID: 27439335]
[140]
Gesierich, S.; Berezovskiy, I.; Ryschich, E.; Zöller, M. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res., 2006, 15. 66(14), 7083-7094.
[141]
Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 2012, 81, 145-166.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[142]
Sun, Z.; Yang, S.; Zhou, Q.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Xu, J.; Xia, K.; Chang, Y.; Liu, J.; Yuan, W. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol. Cancer, 2018, 17(1), 82.
[http://dx.doi.org/10.1186/s12943-018-0831-z] [PMID: 29678180]
[143]
Nakamura, K.; Martin, K.C.; Jackson, J.K.; Beppu, K.; Woo, C.W.; Thiele, C.J. Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res., 2006, 66(8), 4249-4255.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2789] [PMID: 16618748]
[144]
Conigliaro, A.; Costa, V.; Lo Dico, A.; Saieva, L.; Buccheri, S.; Dieli, F.; Manno, M.; Raccosta, S.; Mancone, C.; Tripodi, M.; De Leo, G.; Alessandro, R. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer, 2015, 14, 155.
[http://dx.doi.org/10.1186/s12943-015-0426-x] [PMID: 26272696]
[145]
Grange, C.; Tapparo, M.; Collino, F.; Vitillo, L.; Damasco, C.; Deregibus, M.C.; Tetta, C.; Bussolati, B.; Camussi, G. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res., 2011, 171(15), 5346-5356.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0241] [PMID: 21670082]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy