[1]
Fisher, J.F.; Meroueh, S.O.; Mobashery, S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev., 2005, 105, 395-424.
[2]
Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother., 2010, 54, 969-976.
[3]
Bush, K. The ABCD’s of β-lactamase nomenclature. J. Infect. Chemother., 2013, 19, 549-559.
[4]
Ehmann, D.E.; Jahic, H.; Ross, P.L.; Gu, R.F.; Hu, J.; Durand-Réville, T.F.; Lahiri, S.; Thresher, J.; Livchak, S.; Gao, N.; Palmer, T.; Walkup, G.K.; Fisher, S.L. Kinetics of avibactam inhibition against Class A, C, and D β-lactamases. J. Biol. Chem., 2013, 288, 27960-27971.
[5]
Klingler, F.M.; Wichelhaus, T.A.; Frank, D.; Cuesta-Bernal, J.; El-Delik, J.; Müller, H.F.; Sjuts, H.; Göttig, S.; Koenigs, A.; Pos, K.M.; Pogoryelov, D.; Proschak, E. Approved Drugs Containing Thiols as Inhibitors of Metallo-β-lactamases: Strategy To Combat Multidrug-Resistant Bacteria. J. Med. Chem., 2015, 58, 3626-3630.
[6]
Karsisiotis, A.I.; Damblon, C.F.; Roberts, G.C. A variety of roles for versatile zinc in metallo-β-lactamases. Metallomics, 2014, 6, 1181-1197.
[7]
Yang, Y.; Rasmussen, B.A.; Shlaes, D.M. Class A beta-lactamases--enzyme-inhibitor interactions and resistance. Pharmacol. Ther., 1999, 83, 141-151.
[8]
Zygmunt, D.J.; Stratton, C.W.; Kernodle, D.S. Characterization of four beta-lactamases produced by Staphylococcus aureus. Antimicrob. Agents Chemother., 1992, 36, 440-445.
[9]
Rossolini, G.M.; D’Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin. Microbiol. Infect., 2008, 14, 33-41.
[10]
Bonnet, R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother., 2004, 48, 1-14.
[11]
Chen, Y.; Shoichet, B.; Bonnet, R. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. J. Am. Chem. Soc., 2005, 127, 5423-5434.
[12]
Bush, K.; Fisher, J.F. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu. Rev. Microbiol., 2011, 65, 455-478.
[13]
Stewart, N.K.; Smith, C.A.; Frase, H.; Black, D.J.; Vakulenko, S.B. Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases. Biochemistry, 2015, 54, 588-597.
[14]
Bradford, P.A. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 2001, 14, 933-951.
[15]
Perez, F.; Endimiani, A.; Hujer, K.M.; Bonomo, R.A. The continuing challenge of ESBLs. Curr. Opin. Pharmacol., 2007, 7, 459-469.
[16]
Biondi, S.; Long, S.; Panunzio, M.; Qin, W.L. Current trends in β-lactam based β-lactamases inhibitors. Curr. Med. Chem., 2011, 18, 4223-4236.
[17]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23, 160-201.
[18]
Nichols, D.A.; Jaishankar, P.; Larson, W.; Smith, E.; Liu, G.; Beyrouthy, R.; Bonnet, R.; Renslo, A.R.; Chen, Y. Structure-based design of potent and ligand-efficient inhibitors of CTX-M class A β-lactamase. J. Med. Chem., 2012, 55, 2163-2172.
[19]
Nichols, D.A.; Renslo, A.R.; Chen, Y. Fragment-based inhibitor discovery against β-lactamase. Future Med. Chem., 2014, 6, 413-427.
[20]
Tondi, D.; Venturelli, A.; Bonnet, R.; Pozzi, C.; Shoichet, B.K.; Costi, M.P. Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative. J. Med. Chem., 2014, 57, 5449-5458.
[21]
Hanson, N.D.; Sanders, C.C. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr. Pharm. Des., 1999, 5, 881-894.
[22]
Hu, M.; Chen, J.; Tran, D.; Zhu, Y.; Leonardo, G. The caco-2 cell monolayers as an intestinal metabolism model: metabolism of dipeptide Phe-Pro. J. Drug Target., 1994, 2, 79-89.
[23]
Li, N.; Xu, Y.; Xia, Q.; Bai, C.; Wang, T.; Wang, L.; He, D.; Xie, N.; Li, L.; Wang, J.; Zhou, H.G.; Xu, F.; Yang, C.; Zhang, Q.; Yin, Z.; Guo, Y.; Chen, Y. Simplified captopril analogues as NDM-1 inhibitors. Bioorg. Med. Chem. Lett., 2014, 24, 386-389.
[24]
King, A.M.; Reid-Yu, S.A.; Wang, W.; King, D.T.; De Pascale, G.; Strynadka, N.C.; Walsh, T.R.; Coombes, B.K.; Wright, G.D. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014, 510, 503-506.
[25]
Zhang, J.; Wang, S.; Wei, Q.; Guo, Q.; Bai, Y.; Yang, S.; Song, F.; Zhang, L.; Lei, X. Synthesis and biological evaluation of Aspergillomarasmine A derivatives as novel NDM-1 inhibitor to overcome antibiotics resistance. Bioorg. Med. Chem., 2017, 25, 5133-5141.
[26]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267, 727-748.
[27]
Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des., 1997, 11, 425-445.
[28]
Jain, A.N. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J. Comput. Aided Mol. Des., 1996, 10, 427-440.
[29]
Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol., 1982, 161, 269-288.
[30]
Zhang, F.; Li, C.; Qi, C. Highly diastereo- and enantioselective direct aldol reaction under solvent-free conditions. Tetrahedron Asymmetry, 2013, 24, 380-388.
[31]
Anderson, W.K.; Corey, P.F. Synthesis and antileukemic activity of 5-substituted 2,3-dihydro-6,7-bis(hydroxymethyl)-1H-pyrroli-zine diesters. J. Med. Chem., 1977, 20, 812-818.
[32]
Sasikala, D.; Jeyakanthan, J.; Srinivasan, P. Structure-based virtual screening and biological evaluation of LuxT inhibitors for targeting quorum sensing through an in vitro biofilm formation. J. Mol. Struct., 2017, 1127, 322-336.
[33]
Haltiner, R.C.; Migneault, P.C.; Roberston, R.G. Incidence of thymidine-dependent enterococci detected on mueller-hinton agar with low thymidine content. Anti. Ag. Chem., 1980, 18, 365-368.
[34]
Adamski, C.J.; Cardenas, A.M.; Brown, N.G.; Horton, L.B.; Sankaran, B.; Prasad, B.V.; Gilbert, H.F.; Palzkill, T. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum β-lactamases. Biochemistry, 2015, 54, 447-457.