Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

A Comparative Phytochemical and Biological Study between Different Solvent Extracts of Leaves and Stems Extracts of Erica arborea L. and Viburnum tinus L. Plants Growing in Tunisia

Author(s): Meriem Elaloui, Amel Ennajah, Hanene Ghazghazi, Wiem Issami, Abir Mekni, Hela B. Ahmed and Abdelwahed Laamouri*

Volume 15, Issue 6, 2019

Page: [686 - 691] Pages: 6

DOI: 10.2174/1573407214666180730110232

Price: $65

Abstract

Background: Many Tunisian medicinal plants are widespread and are used in modern ethnomedecin due to their interesting biological activities. Considering natural products of plant origin, this study was conceived to evaluate the allelopathic effect of leaf and stem extracts of Erica arborea and Viburnum tinus on the seed germination and seedling development of Avena sativa. We identified the secondary metabolites that were responsible.

Methods: Total phenols, flavonoids, tannins contents and antioxidant activity were evaluated using the Folin ciocalteux, Aluminum trichloride, vanillin and scavenging activity on 2, 2-diphenyl- 1picrylhydrazyl (DPPH) radicals methods, respectively. Leaf powders (5, 20, 40, 60 and 100 g) were macerated each with 1000 ml of distilled water for 24 h. The extracts were filtered through Whatman N°1 filter paper, pooled and concentrated under vacuum. Allelopathic bioassays were conducted using the obtained supernatant.

Results: The obtained results indicated that acetonic extracts of the Viburnum leaves had the highest levels of total phenols (36.82 mg / g), flavonoïds (11.99 mg / g) and tannins (7.93 mg / g) and recorded a high antioxidant activity (0.054 mg / ml). Both test species showed that all organs had significant inhibitory effect on the development of Avena sativa. The leaves of Viburnum are best from the point of view inhibition of root length (-85.45%) and height of the aerial part (-78.95%).

Conclusion: The inhibitory effects of these extracts were manifested much more on the development of seedlings. Extracts from Viburnum tinus leaves were the best inhibitors and could be regarded as promising candidates for natural plant source of antioxidant and herbicide agents.

Keywords: Erica arborea, Viburnum tinus, Avena sativa, allelopathy, secondary metabolites, hepatoprotective.

Graphical Abstract

[1]
Adeyemi, M.M.H. A review of secondary metabolites from plant materials for postharvest storage. Inter. J. Pure. Appl. Sci. Technol., 2011, 6(2), 94-102.http://www.ijopaasat.in/
[2]
Oliver, E.G.H. Systematics of Ericeae (Ericaceae: Ericoideae): Species with indehiscent and partially dehiscent fruits; Bolus Herbarium: Michigan, 2000.
[3]
Saltan, G.; Süntar, I.; Ozbilgin, S.; Ilhan, M.; Demirel, M.A.; Oz, B.E.; Keleş, H.; Akkol, E.K. Viburnum opulus L.: A remedy for the treatment of endometriosis demonstrated by rat model of surgically-induced endometriosis. J. Ethnopharmacol., 2016, 193, 450-455.
[http://dx.doi.org/10.1016/j.jep.2016.09.029] [PMID: 27647013]
[4]
Yılmaz, B.S.; Altun, M.L.; Orhan, I.E.; Ergene, B.; Citoglu, G.S. Enzyme inhibitory and antioxidant activities of Viburnum tinus L. relevant to its neuroprotective potential. Food Chem., 2013, 141(1), 582-588.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.020] [PMID: 23768397]
[5]
Gómez-Bellot, M.J.; Ortuño, M.F.; Nortes, P.A.; Vicente-Sánchez, J.; Martín, F.F.; Bañón, S.; Sánchez-Blanco, M.J. Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. Mycorrhiza, 2015, 25(5), 399-409.
[http://dx.doi.org/10.1007/s00572-014-0621-4] [PMID: 25492808]
[6]
Gao, X.; Shao, L.D.; Dong, L.B.; Cheng, X.; Wu, X.D.; Liu, F.; Jiang, W.W.; Peng, L.Y.; He, J.; Zhao, Q.S. Vibsatins A and B, two new tetranorvibsane-type diterpenoids from Viburnum tinus cv. variegatus. Org. Lett., 2014, 16(3), 980-983.
[http://dx.doi.org/10.1021/ol403707a] [PMID: 24450956]
[7]
Abaza, K.; Mokhtar, A.; Ghrabi-Gammar, Z. Une nouvelle espèce pour la flore vasculaire spontanée de la Tunisie: Rhus Coriaria L. Rev. Ecol., 2010, 65, 179-184.
[8]
Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolibdic-280 phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[9]
Earp, C.F.; Akingbala, J.O.; Ring, S.H.; Rooney, L.W. Evaluation of several methods to determine tannins in sorghums with varying kernel characteristics. Cereal Chem., 1981, 58, 234-283.
[10]
Sun, B.; Richardo-da-Silvia, J.M.; Spranger, I. Critical factors of vanillin assay for catechin and proanthocyanidins. J. Agric. Food Chem., 1998, 46, 4267-4274.
[http://dx.doi.org/10.1021/jf980366j]
[11]
Basuny, A.M.; Arafat, M.S.; Soliman, H.M. Chemical analysis of olive and palm pollen: Antioxidant and antimicrobial activation properties. Wudpecker. J. Food Technol., 2013, 1, 14-21.
[12]
Pavlović, R.D.; Lakusić, B.; Doslov-Kokorus, Z.; Kovacević, N. Arbutin content and antioxidant activity of some Ericaceae species. Pharmazie, 2009, 64(10), 656-659.
[PMID: 19947168]
[13]
Adebayo, A.H.; Aristotle, B.A.; Omolara, F.Y. Chromatography-mass spectrometry analysis of Viburnum opulus (L.) extract and its toxicity studies in rats Asian. J Pharm Clin Res, 2017, 10, 383-388.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i6.17350]
[14]
Konarska, A.; Domaciuk, M. Differences in the fruit structure and the location and content of bioactive substances in Viburnum opulus and Viburnum lantana fruits. Protoplasma, 2018, 255(1), 25-41.
[http://dx.doi.org/10.1007/s00709-017-1130-z] [PMID: 28602011]
[15]
Bata, M.; Rahayu, S. Evaluation of bioactive substances in Hibiscus tiliaceus and its potential as a ruminant feed additive. Curr. Bioact. Compd., 2017, 13, 157-164.
[http://dx.doi.org/10.2174/1573407213666170109151904]
[16]
Jokić, S.; Velić, D.; Bilić, M.; Bucić-Kojić, A.; Plan Inić, M.; Tomas, S. Modélisation du processus d’extraction solide-liquide du total Polyphénols de soja. J. Food Sci., 2010, 28, 206-212.
[17]
Elaloui, M.; Ghazghazi, H.; Ennajah, A.; Manaa, S.; Guezmir, W.; Karray, N.B.; Laamouri, A. Phenolic profile, antioxidant capacity of five Ziziphus spina-christi (L.) Willd provenances and their allelopathic effects on Trigonella foenum-graecum L. and Lens culinaris L. seeds. Nat. Prod. Res., 2017, 31(10), 1209-1213.
[http://dx.doi.org/10.1080/14786419.2016.1226830] [PMID: 27618365]
[18]
Ghazghazi, H.; Aouadhi, Ch.; Weslati, M.; Trakhna, F.; Maaroufi, A.; Hasnaoui, B. Chemical composition of Ruta chalepensis leaves essential oil and variation in biological activities between leaves, stems and roots methanolic extracts J. Essent. Oil. Bear. Pl., 2015, 18(3), 570-581.
[http://dx.doi.org/10.1080/0972060X.2014.905757]
[19]
Santos, C.C.; Salvadori, M.S.; Mota, V.G.; Costa, L.M.; de Almeida, A.A.; de Oliveira, G.A.; Costa, J.P.; de Sousa, D.P.; de Freitas, R.M.; de Almeida, R.N. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci. J., 2013, 2013, 949452
[http://dx.doi.org/10.1155/2013/949452] [PMID: 26317107]
[20]
Sroynak, R.; Srikalong, P.; Raviyan, P. Radical scavenging capacity and antioxidant activity of the vitamin E extracted from palm fatty acid distillate by sequential cooling hexane. J. Agric. Res. (Lahore), 2013, 5(4), 224-237.
[http://dx.doi.org/10.5539/jas.v5n4p224]
[21]
Chen, H.; Chen, J.; Yang, H.; Chen, W.; Gao, H.; Lu, W. Variation in total anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among different mulberry (Morus sp.) cultivars in China. Sci. Hortic. (Amsterdam), 2016, 213, 186-192.
[http://dx.doi.org/10.1016/j.scienta.2016.10.036]
[22]
Nageeb, A.; Al-Tawashi, A.; Emwas, M. A.H.; Abdel-Halim Al-Talla, Z.; Al-Rifai, N. Comparison of Artemisia annua Bioactivities between Traditional Medicine and Chemical Extracts. Curr. Bioact. Compd., 2013, 9(4), 324-332.
[http://dx.doi.org/10.2174/157340720904140404151439] [PMID: 24761137]
[23]
Omezzine, F.; Haouala, R. Effet du niveau de ploïdie de Trigonella foenum-graecum sur son potentiel allélopathique. Tunis. J. Med. Plants Nat. Prod., 2017, 12, 11-18.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy