[1]
Organization, W.H. World malaria report 2015.2016;
[2]
Parija, S.; Praharaj, I. Drug resistance in malaria. Indian J. Med. Microbiol., 2011, 29(3), 243.
[3]
Mukherjee, A.; Sadhukhan, G.C. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives. J. Pharm. , 2016, 19(1), 7.
[4]
Imwong, M. Novel point mutations in the dihydrofolate reductase gene of Plasmodium vivax: Evidence for sequential selection by drug pressure. Antimicrob. Agents Chemother., 2003, 47(5), 1514-1521.
[5]
Alam, A. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev. Clin. Pharmacol., 2009, 2(5), 469-489.
[6]
Dua, V.K.; Dev, V.; Phookan, S.; Gupta, N.C.; Sharma, V.P.; Subbarao, S.K. Multi-drug resistant Plasmodium falciparum malaria in Assam, India: Timing of recurrence and anti-malarial drug concentrations in whole blood. Am. J. Trop. Med. Hyg., 2003, 69(5), 555-557.
[7]
Nosten, F.; White, N.J. Artemisinin-based combination treatment
of falciparum malaria. Am. J. Tropic. Med. Hygiene., 2007,
77(6_Suppl), 181-192.
[8]
Hayton, K.; Su, X-Z. Drug resistance and genetic mapping in Plasmodium falciparum. Curr. Genet., 2008, 54(5), 223-239.
[9]
Botté, C.Y. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc. Natl. Acad. Sci. USA, 2013, 110(18), 7506-7511.
[10]
MacRae, J.; Maréchal, E.; Biot, C.; Botté, C.Y. The apicoplast: a key target to cure malaria. Curr. Pharm. Des., 2012, 18(24), 3490-3504.
[11]
Collins, C.R.; Hackett, F.; Strath, M.; Penzo, M.; Withers-Martinez, C.; Baker, D.A.; Blackman, M.J. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS Pathog., 2013, 9(5), e1003344.
[12]
Wilkes, J.M.; Doerig, C. The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics, 2008, 9(1), 412.
[13]
Pandey, R. Genome wide in silico analysis of Plasmodium falciparum phosphatome. BMC Genomics, 2014, 15(1), 1024.
[14]
Bajsa, J.; Duke, S.O.; Tekwani, B.L. Plasmodium falciparum serine/threonine phoshoprotein phosphatases (PPP): From housekeeper to the ‘holy grail’. Curr. Drug Targets, 2008, 9(11), 997-1012.
[15]
Moorhead, G.B.; Trinkle-Mulcahy, L.; Ulke-Lemée, A. Emerging roles of nuclear protein phosphatases. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 234-244.
[16]
Andreeva, A.V. Kutuzov, M.A. PPP family of protein Ser/Thr phosphatases: two distinct branches? Mol. Biol. Evol., 2001, 18(3), 448-452.
[17]
Shi, Y. Serine/threonine phosphatases: Mechanism through structure. Cell, 2009, 139(3), 468-484.
[18]
Patzewitz, E-M.; Guttery, D.S.; Poulin, B.; Ramakrishnan, C.; Ferguson, D.J.; Wall, R.J.; Brady, D.; Holder, A.A.; Szöőr, B.; Tewari, R. An ancient protein phosphatase, SHLP1, is critical to microneme development in Plasmodium ookinetes and parasite transmission. Cell Reports, 2013, 3(3), 622-629.
[19]
Tsuruta, H.; Mikami, B.; Aizono, Y. Crystal structure of cold-active protein-tyrosine phosphatase from a psychrophile. Shewanella sp. J. Biochem., 2005, 137(1), 69-77.
[20]
Kuntal, B.K.; Aparoy, P.; Reddanna, P. EasyModeller: A graphical interface to MODELLER. BMC Res. Notes, 2010, 3, 226.
[21]
Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol., 1963, 7, 95-99.
[22]
Zhang, Z.; Li, Y.; Lin, B.; Schroeder, M.; Huang, B. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics, 2011, 27(15), 2083-2088.
[23]
Morris, G.M. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[24]
Bag, S.S.; Jana, S.; Pradhan, M.K. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA. Bioorg. Med. Chem., 2016, 24(16), 3579-3595.
[25]
Trivedi, V. Purification and biochemical characterization of a heme containing peroxidase from the human parasite. P. falciparum. Protein Expr. Purif., 2005, 41(1), 154-161.
[26]
Trivedi, V.; Chand, P.; Srivastava, K.; Puri, S.K.; Maulik, P.R.; Bandyopadhyay, U. Clotrimazole inhibits hemoperoxidase of Plasmodium falciparum and induces oxidative stress. Proposed antimalarial mechanism of clotrimazole. J. Biol. Chem., 2005, 280(50), 41129-41136.
[27]
Johnson, J.D.; Richard, A.D.; Lucia, G.; Miriam, L-S.; Norma, E.R.; Norman, C.W. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob. Agents Chemother., 2007, 51(6), 1926-1933.
[28]
Voegtli, W.C.; White, D.J.; Reiter, N.J.; Rusnak, F.; Rosenzweig, A.C. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes. Biochemistry, 2000, 39(50), 15365-15374.
[29]
Rusnak, F.; Mertz, P. Calcineurin: Form and function. Physiol. Rev., 2000, 80(4), 1483-1521.
[30]
Rusnak, F. Manganese-activated phosphatases. Met. Ions Biol. Syst., 2000, 37, 305-343.
[31]
Klabunde, T. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J. Mol. Biol., 1996, 259(4), 737-748.
[32]
Gibbons, J.A.; Weiser, D.C.; Shenolikar, S. Importance of a surface hydrophobic pocket on protein phosphatase-1 catalytic subunit in recognizing cellular regulators. J. Biol. Chem., 2005, 280(16), 15903-15911.
[33]
Gunjan, S.; Singh, S.K.; Sharma, T.; Dwivedi, H.; Chauhan, B.S.; Imran, S.M.; Tripathi, R. Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium. Apoptosis, 2016, 21(9), 955-964.
[34]
Becker, K.; Tilley, L.; Vennerstrom, J.L.; Roberts, D.; Rogerson, S.; Ginsburg, H. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int. J. Parasitol., 2004, 34(2), 163-189.
[35]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.