Review Article

人类病理生理学中干扰素-λ区域和干扰素-λ3内的遗传多态性:他们对结果,治疗和预防肝炎病毒的贡献。

卷 26, 期 25, 2019

页: [4832 - 4851] 页: 20

弟呕挨: 10.2174/0929867325666180719121142

价格: $65

摘要

干扰素λ(IFN-λ)染色体区域内的遗传多态性(主要是IFN-λ4基因(IFNL4)的rs12979860)被称为与自发性丙型肝炎病毒(HCV)的分解以及对聚乙二醇化干扰素α和 利巴韦林。 IFNL4 rs12979860与IFNL4 rs368234815的强烈连锁不平衡,随即与HCV自发和治疗的根除相关,至少部分解释了rs12979860主要纯合子对HCV有利的结果。 基于IFN的抗病毒治疗的效果与IFN-λ1受体的预处理表达,肝IFN刺激基因的表达,IFN-λ4的产生以及JAK-STAT信号的预激活有关。 如今,直接作用抗病毒药(DAA)已成为治疗丙型肝炎的有效工具,但仍在研究IFN-λs作为潜在的抗病毒药,并且可能是HCV感染的一种选择(DAA耐药性,复发性病毒血症,不良反应)。 免疫能力改变的患者特别容易感染。 在尿毒症患者中,与非尿毒症人群类似,IFN-λ染色体区域内的多态性与自发HCV清除率相关。 循环中的IFN-λ3与针对乙型肝炎病毒(anti-HBs)的表面抗原的抗体的血浆滴度呈正相关,这对于预防乙型肝炎病毒至关重要。 由于IFN-λ3诱导的吲哚胺2,3-二加氧酶(IDO)表达的调节,在更高的IFN-λ3水平下可能会产生更有效的抗HBs。 IFN刺激的应答元件是IDO基因启动子的一部分。 值得进一步研究IDO基因,循环IDO,IFN-λ区域内的遗传多态性和循环IFN-λ3是否在对肝病毒的免疫应答中起协调作用。

关键词: 抗病毒药,乙型肝炎病毒,丙型肝炎病毒,IFNL3,IFNL4,免疫能力,干扰素-λ3,疫苗接种

[1]
Schweitzer, A.; Horn, J.; Mikolajczyk, R.T.; Krause, G.; Ott, J.J. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet, 2015, 386(10003), 1546-1555.
[http://dx.doi.org/10.1016/S0140-6736(15)61412-X] [PMID: 26231459]
[2]
Mohd Hanafiah, K.; Groeger, J.; Flaxman, A.D.; Wiersma, S.T. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology, 2013, 57(4), 1333-1342.
[http://dx.doi.org/10.1002/hep.26141] [PMID: 23172780]
[3]
Rutkowski, B.; Lichodziejewska-Niemierko, M.; Grenda, R.; Czekalski, S.; Durlik, M.; Bautembach, S. Report on renal replacement therapy in Poland -2010; Drukonsul: Gdańsk, 2013.
[4]
Rosińska, M.; Parda, N.; Stępień, M. Hepatitis C in Poland in 2014. Przegl. Epidemiol., 2016, 70(3), 386-394.
[PMID: 27870539]
[5]
WHO More than 2 million people coinfected with HIV and hepatitis C., Available at:. http://www.who.int/hiv/mediacentre/news/hep-hiv-coinfected/en/ [Accessed July 6, 2017].
[6]
Grzegorzewska, A.E. Hepatitis B vaccination in chronic kidney disease patients: a call for novel vaccines. Expert Rev. Vaccines, 2014, 13(11), 1317-1326.
[http://dx.doi.org/10.1586/14760584.2014.944508] [PMID: 25148051]
[7]
Grzegorzewska, A.E. Prophylactic vaccinations in chronic kidney disease: current status. Hum. Vaccin. Immunother., 2015, 11(11), 2599-2605.
[http://dx.doi.org/10.1080/21645515.2015.1034915] [PMID: 25911956]
[8]
Harnett, J.D.; Parfrey, P.S.; Kennedy, M.; Zeldis, J.B.; Steinman, T.I.; Guttmann, R.D. The long-term outcome of hepatitis B infection in hemodialysis patients. Am. J. Kidney Dis., 1988, 11(3), 210-213.
[http://dx.doi.org/10.1016/S0272-6386(88)80151-3] [PMID: 3344743]
[9]
Okuda, K.; Hayashi, H.; Yokozeki, K.; Kobayashi, S.; Kashima, T.; Irie, Y. Acute hepatitis C among renal failure patients on chronic haemodialysis. J. Gastroenterol. Hepatol., 1998, 13(1), 62-67.
[http://dx.doi.org/10.1111/j.1440-1746.1998.tb00547.x] [PMID: 9737574]
[10]
Schvarcz, R.; Yun, Z.B.; Sönnerborg, A.; Weiland, O. Combined treatment with interferon alpha-2b and ribavirin for chronic hepatitis C in patients with a previous non-response or non-sustained response to interferon alone. J. Med. Virol., 1995, 46(1), 43-47.
[http://dx.doi.org/10.1002/jmv.1890460110] [PMID: 7623006]
[11]
Shepherd, J.; Brodin, H.; Cave, C.; Waugh, N.; Price, A.; Gabbay, J. Pegylated interferon alpha-2a and -2b in combination with ribavirin in the treatment of chronic hepatitis C: a systematic review and economic evaluation. Health Technol. Assess., 2004, 8(39), iii-iv, 1-125.
[http://dx.doi.org/10.3310/hta8390] [PMID: 15461877]
[12]
Kotenko, S.V.; Gallagher, G.; Baurin, V.V.; Lewis-Antes, A.; Shen, M.; Shah, N.K.; Langer, J.A.; Sheikh, F.; Dickensheets, H.; Donnelly, R.P. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol., 2003, 4(1), 69-77.
[http://dx.doi.org/10.1038/ni875] [PMID: 12483210]
[13]
Sheppard, P.; Kindsvogel, W.; Xu, W.; Henderson, K.; Schlutsmeyer, S.; Whitmore, T.E.; Kuestner, R.; Garrigues, U.; Birks, C.; Roraback, J.; Ostrander, C.; Dong, D.; Shin, J.; Presnell, S.; Fox, B.; Haldeman, B.; Cooper, E.; Taft, D.; Gilbert, T.; Grant, F.J.; Tackett, M.; Krivan, W.; McKnight, G.; Clegg, C.; Foster, D.; Klucher, K.M. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol., 2003, 4(1), 63-68.
[http://dx.doi.org/10.1038/ni873] [PMID: 12469119]
[14]
Donnelly, R.P.; Kotenko, S.V. Interferon-lambda: a new addition to an old family. J. Interferon Cytokine Res., 2010, 30(8), 555-564.
[http://dx.doi.org/10.1089/jir.2010.0078] [PMID: 20712453]
[15]
Donnelly, R.P.; Dickensheets, H.; O’Brien, T.R. Interferon-lambda and therapy for chronic hepatitis C virus infection. Trends Immunol., 2011, 32(9), 443-450.
[http://dx.doi.org/10.1016/j.it.2011.07.002] [PMID: 21820962]
[16]
Ank, N.; West, H.; Bartholdy, C.; Eriksson, K.; Thomsen, A.R.; Paludan, S.R. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J. Virol., 2006, 80(9), 4501-4509.
[http://dx.doi.org/10.1128/JVI.80.9.4501-4509.2006] [PMID: 16611910]
[17]
Kotenko, S.V. IFN-λs. Curr. Opin. Immunol., 2011, 23(5), 583-590.
[http://dx.doi.org/10.1016/j.coi.2011.07.007] [PMID: 21840693]
[18]
Marcello, T.; Grakoui, A.; Barba-Spaeth, G.; Machlin, E.S.; Kotenko, S.V.; MacDonald, M.R.; Rice, C.M. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology, 2006, 131(6), 1887-1898.
[http://dx.doi.org/10.1053/j.gastro.2006.09.052] [PMID: 17087946]
[19]
Robek, M.D.; Boyd, B.S.; Chisari, F.V. Lambda interferon inhibits hepatitis B and C virus replication. J. Virol., 2005, 79(6), 3851-3854.
[http://dx.doi.org/10.1128/JVI.79.6.3851-3854.2005] [PMID: 15731279]
[20]
Doyle, S.E.; Schreckhise, H.; Khuu-Duong, K.; Henderson, K.; Rosler, R.; Storey, H.; Yao, L.; Liu, H.; Barahmand-pour, F.; Sivakumar, P.; Chan, C.; Birks, C.; Foster, D.; Clegg, C.H.; Wietzke-Braun, P.; Mihm, S.; Klucher, K.M. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology, 2006, 44(4), 896-906.
[http://dx.doi.org/10.1002/hep.21312] [PMID: 17006906]
[21]
Kelly, C.; Klenerman, P.; Barnes, E. Interferon lambdas: the next cytokine storm. Gut, 2011, 60(9), 1284-1293.
[http://dx.doi.org/10.1136/gut.2010.222976] [PMID: 21303914]
[22]
Yu, D.; Zhao, M.; Dong, L.; Zhao, L.; Zou, M.; Sun, H.; Zhang, M.; Liu, H.; Zou, Z. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes. Drug Des. Devel. Ther., 2016, 10, 163-182.
[PMID: 26792983]
[23]
Miller, D.M.; Klucher, K.M.; Freeman, J.A.; Hausman, D.F.; Fontana, D.; Williams, D.E. Interferon lambda as a potential new therapeutic for hepatitis C. Ann. N. Y. Acad. Sci., 2009, 1182, 80-87.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05241.x] [PMID: 20074277]
[24]
Muir, A.J.; Shiffman, M.L.; Zaman, A.; Yoffe, B.; de la Torre, A.; Flamm, S.; Gordon, S.C.; Marotta, P.; Vierling, J.M.; Lopez-Talavera, J.C.; Byrnes-Blake, K.; Fontana, D.; Freeman, J.; Gray, T.; Hausman, D.; Hunder, N.N.; Lawitz, E. Phase 1b study of pegylated interferon lambda 1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infection. Hepatology, 2010, 52(3), 822-832.
[http://dx.doi.org/10.1002/hep.23743] [PMID: 20564352]
[25]
Zeuzem, S.; Asselah, T.; Angus, P.; Zarski, J.P.; Larrey, D.; Müllhaupt, B.; Gane, E.; Schuchmann, M.; Lohse, A.W.; Pol, S.; Bronowicki, J.P.; Roberts, S.; Arasteh, K.; Zoulim, F.; Heim, M.; Stern, J.O.; Nehmiz, G.; Kukolj, G.; Böcher, W.O.; Mensa, F.J. Faldaprevir (BI 201335), deleobuvir (BI 207127) and ribavirin oral therapy for treatment-naive HCV genotype 1: SOUND-C1 final results. Antivir. Ther. (Lond.), 2013, 18(8), 1015-1019.
[http://dx.doi.org/10.3851/IMP2567] [PMID: 23558093]
[26]
Gane, E.J.; Stedman, C.A.; Hyland, R.H.; Ding, X.; Svarovskaia, E.; Symonds, W.T.; Hindes, R.G.; Berrey, M.M. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med., 2013, 368(1), 34-44.
[http://dx.doi.org/10.1056/NEJMoa1208953] [PMID: 23281974]
[27]
Sulkowski, M.S.; Bourlière, M.; Bronowicki, J.P.; Asselah, T.; Pawlotsky, J.M.; Shafran, S.D.; Pol, S.; Mauss, S.; Larrey, D.; Datsenko, Y.; Stern, J.O.; Kukolj, G.; Scherer, J.; Nehmiz, G.; Steinmann, G.G.; Böcher, W.O. Faldaprevir combined with peginterferon alfa-2a and ribavirin in chronic hepatitis C virus genotype-1 patients with prior nonresponse: SILEN-C2 trial. Hepatology, 2013, 57(6), 2155-2163.
[http://dx.doi.org/10.1002/hep.26386] [PMID: 23504636]
[28]
European Association for Study of Liver.EASL Recommendations on treatment of hepatitis C 2015. J. Hepatol., 2015, 63(1), 199-236.
[http://dx.doi.org/10.1016/j.jhep.2015.03.025] [PMID: 25911336]
[29]
Myers, R.P.; Shah, H.; Burak, K.W.; Cooper, C.; Feld, J.J. An update on the management of chronic hepatitis C: 2015 Consensus guidelines from the Canadian Association for the Study of the Liver. Can. J. Gastroenterol. Hepatol., 2015, 29(1), 19-34.
[http://dx.doi.org/10.1155/2015/692408] [PMID: 25585348]
[30]
EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. European Association for the Study of the Liver. J. Hepatol., 2017, 76(2), 370-398.
[http://dx.doi.org/10.1016/j.jhep.2017.03.021]
[31]
Pagliaccetti, N.E.; Chu, E.N.; Bolen, C.R.; Kleinstein, S.H.; Robek, M.D. Lambda and alpha interferons inhibit hepatitis B virus replication through a common molecular mechanism but with different in vivo activities. Virology, 2010, 401(2), 197-206.
[http://dx.doi.org/10.1016/j.virol.2010.02.022] [PMID: 20303135]
[32]
Murata, K.; Asano, M.; Matsumoto, A.; Sugiyama, M.; Nishida, N.; Tanaka, E.; Inoue, T.; Sakamoto, M.; Enomoto, M.; Shirasaki, T.; Honda, M.; Kaneko, S.; Gatanaga, H.; Oka, S.; Kawamura, Y.I.; Dohi, T.; Shuno, Y.; Yano, H.; Mizokami, M. Induction of IFN-λ3 as an additional effect of nucleotide, not nucleoside, analogues: a new potential target for HBV infection. Gut, 2018, 67(2), 362-371.
[http://dx.doi.org/10.1136/gutjnl-2016-312653] [PMID: 27789659]
[33]
Prokunina-Olsson, L.; Muchmore, B.; Tang, W.; Pfeiffer, R.M.; Park, H.; Dickensheets, H.; Hergott, D.; Porter-Gill, P.; Mumy, A.; Kohaar, I.; Chen, S.; Brand, N.; Tarway, M.; Liu, L.; Sheikh, F.; Astemborski, J.; Bonkovsky, H.L.; Edlin, B.R.; Howell, C.D.; Morgan, T.R.; Thomas, D.L.; Rehermann, B.; Donnelly, R.P.; O’Brien, T.R. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet., 2013, 45(2), 164-171.
[http://dx.doi.org/10.1038/ng.2521] [PMID: 23291588]
[34]
Ferraris, P.; Chandra, P.K.; Panigrahi, R.; Aboulnasr, F.; Chava, S.; Kurt, R.; Pawlotsky, J.M.; Wilkens, L.; Osterlund, P.; Hartmann, R.; Balart, L.A.; Wu, T.; Dash, S. Cellular Mechanism for Impaired Hepatitis C Virus Clearance by Interferon Associated with IFNL3 Gene Polymorphisms Relates to Intrahepatic Interferon-λ Expression. Am. J. Pathol., 2016, 186(4), 938-951.
[http://dx.doi.org/10.1016/j.ajpath.2015.11.027] [PMID: 26896692]
[35]
Lu, Y.F.; Mauger, D.M.; Goldstein, D.B.; Urban, T.J.; Weeks, K.M.; Bradrick, S.S. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci. Rep., 2015, 5, 16037.
[http://dx.doi.org/10.1038/srep16037] [PMID: 26531896]
[36]
O’Brien, T.R.; Pfeiffer, R.M.; Paquin, A.; Lang Kuhs, K.A.; Chen, S.; Bonkovsky, H.L.; Edlin, B.R.; Howell, C.D.; Kirk, G.D.; Kuniholm, M.H.; Morgan, T.R.; Strickler, H.D.; Thomas, D.L.; Prokunina-Olsson, L. Comparison of functional variants in IFNL4 and IFNL3 for association with HCV clearance. J. Hepatol., 2015, 63(5), 1103-1110.
[http://dx.doi.org/10.1016/j.jhep.2015.06.035] [PMID: 26186989]
[37]
Raglow, Z.; Thoma-Perry, C.; Gilroy, R.; Wan, Y.J. IL28B genotype and the expression of ISGs in normal liver. Liver Int., 2013, 33(7), 991-998.
[http://dx.doi.org/10.1111/liv.12148] [PMID: 23522062]
[38]
McFarland, A.P.; Horner, S.M.; Jarret, A.; Joslyn, R.C.; Bindewald, E.; Shapiro, B.A.; Delker, D.A.; Hagedorn, C.H.; Carrington, M.; Gale, M., Jr; Savan, R. The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus-induced microRNAs. Nat. Immunol., 2014, 15(1), 72-79.
[http://dx.doi.org/10.1038/ni.2758] [PMID: 24241692]
[39]
Barreau, C.; Paillard, L.; Osborne, H.B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res., 2006, 33(22), 7138-7150.
[http://dx.doi.org/10.1093/nar/gki1012] [PMID: 16391004]
[40]
UniProtKB - Q8IZI9 (IFNL3_HUMAN). Available at: http://www.uniprot.org/uniprot/Q8IZI9[Accessed March 11, 2018].
[41]
Dumoutier, L.; Tounsi, A.; Michiels, T.; Sommereyns, C.; Kotenko, S.V.; Renauld, J.C. Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling. J. Biol. Chem., 2004, 279(31), 32269-32274.
[http://dx.doi.org/10.1074/jbc.M404789200] [PMID: 15166220]
[42]
Dumoutier, L.; Lejeune, D.; Hor, S.; Fickenscher, H.; Renauld, J.C. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem. J., 2003, 370(Pt 2), 391-396.
[http://dx.doi.org/10.1042/bj20021935] [PMID: 12521379]
[43]
Popov, A.; Abdullah, Z.; Wickenhauser, C.; Saric, T.; Driesen, J.; Hanisch, F.G.; Domann, E.; Raven, E.L.; Dehus, O.; Hermann, C.; Eggle, D.; Debey, S.; Chakraborty, T.; Krönke, M.; Utermöhlen, O.; Schultze, J.L. Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J. Clin. Invest., 2006, 116(12), 3160-3170.
[http://dx.doi.org/10.1172/JCI28996] [PMID: 17111046]
[44]
Bianchi, M.; Bertini, R.; Ghezzi, P. Induction of indoleamine dioxygenase by interferon in mice: a study with different recombinant interferons and various cytokines. Biochem. Biophys. Res. Commun., 1988, 152(1), 237-242.
[http://dx.doi.org/10.1016/S0006-291X(88)80705-8] [PMID: 3128977]
[45]
Fox, J.M.; Crabtree, J.M.; Sage, L.K.; Tompkins, S.M.; Tripp, R.A. Interferon lambda upregulates IDO1 expression in respiratory epithelial cells after influenza virus infection. J. Interferon Cytokine Res., 2015, 35(7), 554-562.
[http://dx.doi.org/10.1089/jir.2014.0052] [PMID: 25756191]
[46]
Xu, H.; Oriss, T.B.; Fei, M.; Henry, A.C.; Melgert, B.N.; Chen, L.; Mellor, A.L.; Munn, D.H.; Irvin, C.G.; Ray, P.; Ray, A. Indoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Proc. Natl. Acad. Sci. USA, 2008, 105(18), 6690-6695.
[http://dx.doi.org/10.1073/pnas.0708809105] [PMID: 18436652]
[47]
Xu, H.; Zhang, G.X.; Ciric, B.; Rostami, A. IDO: a double-edged sword for T(H)1/T(H)2 regulation. Immunol. Lett., 2008, 121(1), 1-6.
[http://dx.doi.org/10.1016/j.imlet.2008.08.008] [PMID: 18824197]
[48]
Murakawa, M.; Asahina, Y.; Nakagawa, M.; Sakamoto, N.; Nitta, S.; Kusano-Kitazume, A.; Watanabe, T.; Kawai-Kitahata, F.; Otani, S.; Taniguchi, M.; Goto, F.; Nishimura-Sakurai, Y.; Itsui, Y.; Azuma, S.; Kakinuma, S.; Watanabe, M. Impaired induction of interleukin 28B and expression of interferon λ 4 associated with nonresponse to interferon-based therapy in chronic hepatitis C. J. Gastroenterol. Hepatol., 2015, 30(6), 1075-1084.
[http://dx.doi.org/10.1111/jgh.12902] [PMID: 25611696]
[49]
Morrow, M.P.; Yan, J.; Pankhong, P.; Ferraro, B.; Lewis, M.G.; Khan, A.S.; Sardesai, N.Y.; Weiner, D.B. Unique Th1/Th2 phenotypes induced during priming and memory phases by use of interleukin-12 (IL-12) or IL-28B vaccine adjuvants in rhesus macaques. Clin. Vaccine Immunol., 2010, 17(10), 1493-1499.
[http://dx.doi.org/10.1128/CVI.00181-10] [PMID: 20685940]
[50]
Morrow, M.P.; Pankhong, P.; Laddy, D.J.; Schoenly, K.A.; Yan, J.; Cisper, N.; Weiner, D.B. Comparative ability of IL-12 and IL-28B to regulate Treg populations and enhance adaptive cellular immunity. Blood, 2009, 113(23), 5868-5877.
[http://dx.doi.org/10.1182/blood-2008-11-190520] [PMID: 19304955]
[51]
de Groen, R.A.; Mcphee, F.; Friborg, J.; Janssen, H.L.; Boonstra, A. Endogenous IFNλ in viral hepatitis patients. J. Interferon Cytokine Res., 2014, 34(7), 552-556.
[http://dx.doi.org/10.1089/jir.2013.0068] [PMID: 24433037]
[52]
Diegelmann, J.; Beigel, F.; Zitzmann, K.; Kaul, A.; Göke, B.; Auernhammer, C.J.; Bartenschlager, R.; Diepolder, H.M.; Brand, S. Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus. PLoS One, 2010, 5(12)e15200
[http://dx.doi.org/10.1371/journal.pone.0015200] [PMID: 21170333]
[53]
Dellgren, C.; Gad, H.H.; Hamming, O.J.; Melchjorsen, J.; Hartmann, R. Human interferon-lambda3 is a potent member of the type III interferon family. Genes Immun., 2009, 10(2), 125-131.
[http://dx.doi.org/10.1038/gene.2008.87] [PMID: 18987645]
[54]
Shi, X.; Pan, Y.; Wang, M.; Wang, D. Li. W.; Jiang, T.; Zhang, P.; Chi, X.; Jiang, Y.; Gao, Y.; Zhong, J.; Sun, B.; Xu, D.; Jiang, J.; Niu, J. IL28B genetic variation is associat-ed with spontaneous clearance of hepatitis C virus, treatment response, serum IL-28B levels in Chinese population. PLoS One, 2012, 7e37054
[http://dx.doi.org/10.1371/journal.pone.0037054] [PMID: 22649509]
[55]
Grzegorzewska, A.E.; Świderska, M.K.; Mostowska, A.; Warchoł, W.; Jagodziński, P.P. Antibodies to HBV surface antigen in relation to interferon-λ3 in hemodialysis patients. Vaccine, 2016, 34(41), 4866-4874.
[http://dx.doi.org/10.1016/j.vaccine.2016.08.073] [PMID: 27595449]
[56]
Li, W.; Jiang, Y.; Jin, Q.; Shi, X.; Jin, J.; Gao, Y.; Pan, Y.; Zhang, H.; Jiang, J.; Niu, J. Expression and gene polymorphisms of interleukin 28B and hepatitis B virus infection in a Chinese Han population. Liver Int., 2011, 31(8), 1118-1126.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02507.x] [PMID: 21745278]
[57]
Aoki, Y.; Sugiyama, M.; Murata, K.; Yoshio, S.; Kurosaki, M.; Hashimoto, S.; Yatsuhashi, H.; Nomura, H.; Kang, J.H.; Takeda, T.; Naito, S.; Kimura, T.; Yamagiwa, Y.; Korenaga, M.; Imamura, M.; Masaki, N.; Izumi, N.; Kage, M.; Mizokami, M.; Kanto, T. Association of serum IFN-λ3 with inflammatory and fibrosis markers in patients with chronic hepatitis C virus infection. J. Gastroenterol., 2015, 50(8), 894-902.
[http://dx.doi.org/10.1007/s00535-014-1023-2] [PMID: 25501286]
[58]
Ank, N.; West, H.; Bartholdy, C.; Eriksson, K.; Thomsen, A.R.; Paludan, S.R. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J. Virol., 2006, 80(9), 4501-4509.
[http://dx.doi.org/10.1128/JVI.80.9.4501-4509.2006] [PMID: 16611910]
[59]
Sirén, J.; Pirhonen, J.; Julkunen, I.; Matikainen, S. IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J. Immunol., 2005, 174(4), 1932-1937.
[http://dx.doi.org/10.4049/jimmunol.174.4.1932] [PMID: 15699120]
[60]
Spann, K.M.; Tran, K.C.; Chi, B.; Rabin, R.L.; Collins, P.L. Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages [corrected]. J. Virol. , 2004, 78(8), 4363-4369.
[http://dx.doi.org/10.1128/JVI.78.8.4363-4369.2004] [PMID: 15047850]
[61]
Brand, S.; Beigel, F.; Olszak, T.; Zitzmann, K.; Eichhorst, S.T.; Otte, J.M.; Diebold, J.; Diepolder, H.; Adler, B.; Auernhammer, C.J.; Göke, B.; Dambacher, J. IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(5), G960-G968.
[http://dx.doi.org/10.1152/ajpgi.00126.2005] [PMID: 16051921]
[62]
Coccia, E.M.; Severa, M.; Giacomini, E.; Monneron, D.; Remoli, M.E.; Julkunen, I.; Cella, M.; Lande, R.; Uzé, G. Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur. J. Immunol., 2004, 34(3), 796-805.
[http://dx.doi.org/10.1002/eji.200324610] [PMID: 14991609]
[63]
Osterlund, P.; Veckman, V.; Sirén, J.; Klucher, K.M.; Hiscott, J.; Matikainen, S.; Julkunen, I. Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J. Virol., 2005, 79(15), 9608-9617.
[http://dx.doi.org/10.1128/JVI.79.15.9608-9617.2005] [PMID: 16014923]
[64]
Tanaka, Y.; Nishida, N.; Sugiyama, M.; Kurosaki, M.; Matsuura, K.; Sakamoto, N.; Nakagawa, M.; Korenaga, M.; Hino, K.; Hige, S.; Ito, Y.; Mita, E.; Tanaka, E.; Mochida, S.; Murawaki, Y.; Honda, M.; Sakai, A.; Hiasa, Y.; Nishiguchi, S.; Koike, A.; Sakaida, I.; Imamura, M.; Ito, K.; Yano, K.; Masaki, N.; Sugauchi, F.; Izumi, N.; Tokunaga, K.; Mizokami, M. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet., 2009, 41(10), 1105-1109.
[http://dx.doi.org/10.1038/ng.449] [PMID: 19749757]
[65]
Fukuhara, T.; Taketomi, A.; Motomura, T.; Okano, S.; Ninomiya, A.; Abe, T.; Uchiyama, H.; Soejima, Y.; Shirabe, K.; Matsuura, Y.; Maehara, Y. Variants in IL28B in liver recipients and donors correlate with response to peginterferon and ribavirin therapy for recurrent hepatitis C. Gastroenterology, 2010, 139, 1577-1585.
[66]
Tissari, J.; Sirén, J.; Meri, S.; Julkunen, I.; Matikainen, S. IFN-alpha enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expression. J. Immunol., 2005, 174(7), 4289-4294.
[http://dx.doi.org/10.4049/jimmunol.174.7.4289] [PMID: 15778392]
[67]
Wieland, S.; Makowska, Z.; Campana, B.; Calabrese, D.; Dill, M.T.; Chung, J.; Chisari, F.V.; Heim, M.H. Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology, 2014, 59(6), 2121-2130.
[http://dx.doi.org/10.1002/hep.26770] [PMID: 24122862]
[68]
Abe, H.; Hayes, C.N.; Ochi, H.; Maekawa, T.; Tsuge, M.; Miki, D.; Mitsui, F.; Hiraga, N.; Imamura, M.; Takahashi, S.; Kubo, M.; Nakamura, Y.; Chayama, K. IL28 variation affects expression of interferon stimulated genes and peg-interferon and ribavirin therapy. J. Hepatol., 2011, 54(6), 1094-1101.
[http://dx.doi.org/10.1016/j.jhep.2010.09.019] [PMID: 21145800]
[69]
Larrea, E.; Riezu-Boj, J.I.; Gil-Guerrero, L.; Casares, N.; Aldabe, R.; Sarobe, P.; Civeira, M.P.; Heeney, J.L.; Rollier, C.; Verstrepen, B.; Wakita, T.; Borrás-Cuesta, F.; Lasarte, J.J.; Prieto, J. Upregulation of indoleamine 2,3-dioxygenase in hepatitis C virus infection. J. Virol., 2007, 81(7), 3662-3666.
[http://dx.doi.org/10.1128/JVI.02248-06] [PMID: 17229698]
[70]
Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308), 835-840.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[71]
O’Neill, L.A.; Sheedy, F.J.; McCoy, C.E. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol., 2011, 11(3), 163-175.
[http://dx.doi.org/10.1038/nri2957] [PMID: 21331081]
[72]
Al-Qahtani, A.; Al-Anazi, M.; Abdo, A.A.; Sanai, F.M.; Al-Hamoudi, W.; Alswat, K.A.; Al-Ashgar, H.I.; Khan, M.Q.; Albenmousa, A.; Khalaf, N.; Viswan, N.; Al-Ahdal, M.N. Correlation between genetic variations and serum level of interleukin 28B with virus genotypes and disease progression in chronic hepatitis C virus infection. J. Immunol. Res., 2015, •••2015768470
[http://dx.doi.org/10.1155/2015/768470] [PMID: 25811035]
[73]
Neumann, A.U.; Lam, N.P.; Dahari, H.; Gretch, D.R.; Wiley, T.E.; Layden, T.J.; Perelson, A.S. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science, 1998, 282(5386), 103-107.
[http://dx.doi.org/10.1126/science.282.5386.103] [PMID: 9756471]
[74]
Villano, S.A.; Vlahov, D.; Nelson, K.E.; Cohn, S.; Thomas, D.L. Persistence of viremia and the importance of long-term follow-up after acute hepatitis C infection. Hepatology, 1999, 29(3), 908-914.
[http://dx.doi.org/10.1002/hep.510290311] [PMID: 10051497]
[75]
Thomas, D.L.; Thio, C.L.; Martin, M.P.; Qi, Y.; Ge, D.; O’Huigin, C.; Kidd, J.; Kidd, K.; Khakoo, S.I.; Alexander, G.; Goedert, J.J.; Kirk, G.D.; Donfield, S.M.; Rosen, H.R.; Tobler, L.H.; Busch, M.P.; McHutchison, J.G.; Goldstein, D.B.; Carrington, M. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature, 2009, 461(7265), 798-801.
[http://dx.doi.org/10.1038/nature08463] [PMID: 19759533]
[76]
Fabris, C.; Falleti, E.; Cussigh, A.; Bitetto, D.; Fontanini, E.; Bignulin, S.; Cmet, S.; Fornasiere, E.; Fumolo, E.; Fangazio, S.; Cerutti, A.; Minisini, R.; Pirisi, M.; Toniutto, P. IL-28B rs12979860 C/T allele distribution in patients with liver cirrhosis: role in the course of chronic viral hepatitis and the development of HCC. J. Hepatol., 2011, 54(4), 716-722.
[http://dx.doi.org/10.1016/j.jhep.2010.07.019] [PMID: 21146242]
[77]
Eurich, D.; Boas-Knoop, S.; Bahra, M.; Neuhaus, R.; Somasundaram, R.; Neuhaus, P.; Neumann, U.; Seehofer, D. Role of IL28B polymorphism in the development of hepatitis C virus-induced hepatocellular carcinoma, graft fibrosis, and posttransplant antiviral therapy. Transplantation, 2012, 93(6), 644-649.
[http://dx.doi.org/10.1097/TP.0b013e318244f774] [PMID: 22411462]
[78]
Bochud, P.Y.; Bibert, S.; Kutalik, Z.; Patin, E.; Guergnon, J.; Nalpas, B.; Goossens, N.; Kuske, L.; Müllhaupt, B.; Gerlach, T.; Heim, M.H.; Moradpour, D.; Cerny, A.; Malinverni, R.; Regenass, S.; Dollenmaier, G.; Hirsch, H.; Martinetti, G.; Gorgiewski, M.; Bourlière, M.; Poynard, T.; Theodorou, I.; Abel, L.; Pol, S.; Dufour, J.F.; Negro, F. Swiss Hepatitis C Cohort Study Group. ANRS HC EP 26 Genoscan Study Group. IL28B alleles associated with poor hepatitis C virus (HCV) clearance protect against inflammation and fibrosis in patients infected with non-1 HCV genotypes. Hepatology, 2012, 55(2), 384-394.
[http://dx.doi.org/10.1002/hep.24678] [PMID: 22180014]
[79]
Rauch, A.; Kutalik, Z.; Descombes, P.; Cai, T.; Di Iulio, J.; Mueller, T.; Bochud, M.; Battegay, M.; Bernasconi, E.; Bo-rovicka, J.; Colombo, S.; Cerny, A.; Dufour, J.F.; Furrer, H.; Günthard, H.F.; Heim, M.; Hirschel, B.; Malinverni, R.; Mo-radpour, D.; Müllhaupt, B.; Witteck, A.; Beckmann, J.S.; Berg, T.; Bergmann, S.; Negro, F.; Telenti, A.; Bochud, P.Y. Swiss Hepatitis C Cohort Study; Swiss HIV Cohort Study. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology, 2010, 54(6), 1094-1101.
[http://dx.doi.org/10.1053/j.gastro.2009.12.056] [PMID: 20060832]
[80]
Grzegorzewska, A.E.; Jodłowska, E.; Mostowska, A.; Jagodziński, P. Effect of interferon λ3 gene polymorphisms, rs8099917 and rs12979860, on response to hepatitis B virus vaccination and hepatitis B or C virus infections among hemodialysis patients. Pol. Arch. Med. Wewn., 2015, 125(12), 894-902.
[http://dx.doi.org/10.20452/pamw.3205] [PMID: 26658164]
[81]
Ge, D.; Fellay, J.; Thompson, A.J.; Simon, J.S.; Shianna, K.V.; Urban, T.J.; Heinzen, E.L.; Qiu, P.; Bertelsen, A.H.; Muir, A.J.; Sulkowski, M.; McHutchison, J.G.; Goldstein, D.B. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature, 2009, 461(7262), 399-401.
[http://dx.doi.org/10.1038/nature08309] [PMID: 19684573]
[82]
Suppiah, V.; Moldovan, M.; Ahlenstiel, G.; Berg, T.; Weltman, M.; Abate, M.L.; Bassendine, M.; Spengler, U.; Dore, G.J.; Powell, E.; Riordan, S.; Sheridan, D.; Smedile, A.; Fragomeli, V.; Müller, T.; Bahlo, M.; Stewart, G.J.; Booth, D.R.; George, J. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat. Genet., 2009, 41(10), 1100-1104.
[http://dx.doi.org/10.1038/ng.447] [PMID: 19749758]
[83]
Chu, T.W.; Kulkarni, R.; Gane, E.J.; Roberts, S.K.; Stedman, C.; Angus, P.W.; Ritchie, B.; Lu, X.Y.; Ipe, D.; Lopatin, U.; Germer, S.; Iglesias, V.A.; Elston, R.; Smith, P.F.; Shulman, N.S. Effect of IL28B genotype on early viral kinetics during interferon-free treatment of patients with chronic hepatitis C. Gastroenterology, 2012, 142(4), 790-795.
[http://dx.doi.org/10.1053/j.gastro.2011.12.057] [PMID: 22248659]
[84]
Ito, K.; Higami, K.; Masaki, N.; Sugiyama, M.; Mukaide, M.; Saito, H.; Aoki, Y.; Sato, Y.; Imamura, M.; Murata, K.; Nomura, H.; Hige, S.; Adachi, H.; Hino, K.; Yatsuhashi, H.; Orito, E.; Kani, S.; Tanaka, Y.; Mizokami, M. The rs8099917 polymorphism, when determined by a suitable genotyping method, is a better predictor for response to pegylated alpha interferon/ribavirin therapy in Japanese patients than other single nucleotide polymorphisms associated with interleukin-28B. J. Clin. Microbiol., 2011, 49(5), 1853-1860.
[http://dx.doi.org/10.1128/JCM.02139-10] [PMID: 21389156]
[85]
Bibert, S.; Roger, T.; Calandra, T.; Bochud, M.; Cerny, A.; Semmo, N.; Duong, F.H.; Gerlach, T.; Malinverni, R.; Moradpour, D.; Negro, F.; Müllhaupt, B.; Bochud, P.Y. Swiss Hepatitis C Cohort Study. IL28B expression depends on a novel TT/-G polymorphism which improves HCV clearance prediction. J. Exp. Med., 2013, 210(6), 1109-1116.
[http://dx.doi.org/10.1084/jem.20130012] [PMID: 23712427]
[86]
Franco, S.; Aparicio, E.; Parera, M.; Clotet, B.; Tural, C.; Martinez, M.A. IFNL4 ss469415590 variant is a better predictor than rs12979860 of pegylated interferon-alpha/ribavirin therapy failure in hepatitis C virus/HIV-1 coinfected patients. AIDS, 2014, 28(1), 133-136.
[http://dx.doi.org/10.1097/QAD.0000000000000052] [PMID: 24072198]
[87]
Meissner, E.G.; Bon, D.; Prokunina-Olsson, L.; Tang, W.; Masur, H.; O’Brien, T.R.; Herrmann, E.; Kottilil, S.; Osinusi, A. IFNL4-ΔG genotype is associated with slower viral clearance in hepatitis C, genotype-1 patients treated with sofosbuvir and ribavirin. J. Infect. Dis., 2014, 209(11), 1700-1704.
[http://dx.doi.org/10.1093/infdis/jit827] [PMID: 24367041]
[88]
Urban, T.J.; Thompson, A.J.; Bradrick, S.S.; Fellay, J.; Schuppan, D.; Cronin, K.D.; Hong, L.; McKenzie, A.; Patel, K.; Shianna, K.V.; McHutchison, J.G.; Goldstein, D.B.; Afdhal, N. IL28B genotype is associated with differential expression of intrahepatic interferon-stimulated genes in patients with chronic hepatitis C. Hepatology, 2010, 52(6), 1888-1896.
[http://dx.doi.org/10.1002/hep.23912] [PMID: 20931559]
[89]
Honda, M.; Shirasaki, T.; Shimakami, T.; Sakai, A.; Horii, R.; Arai, K.; Yamashita, T.; Sakai, Y.; Yamashita, T.; Okada, H.; Murai, K.; Nakamura, M.; Mizukoshi, E.; Kaneko, S. Hepatic interferon-stimulated genes are differentially regulated in the liver of chronic hepatitis C patients with different interleukin-28B genotypes. Hepatology, 2014, 59(3), 828-838.
[http://dx.doi.org/10.1002/hep.26788] [PMID: 24311440]
[90]
Dill, M.T.; Duong, F.H.; Vogt, J.E.; Bibert, S.; Bochud, P.Y.; Terracciano, L.; Papassotiropoulos, A.; Roth, V.; Heim, M.H. Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterology, 2011, 140(3), 1021-1031.
[http://dx.doi.org/10.1053/j.gastro.2010.11.039] [PMID: 21111740]
[91]
Asselah, T.; Bieche, I.; Narguet, S.; Sabbagh, A.; Laurendeau, I.; Ripault, M.P.; Boyer, N.; Martinot-Peignoux, M.; Valla, D.; Vidaud, M.; Marcellin, P. Liver gene expression signature to predict response to pegylated interferon plus ribavirin combination therapy in patients with chronic hepatitis C. Gut, 2008, 57(4), 516-524.
[http://dx.doi.org/10.1136/gut.2007.128611] [PMID: 17895355]
[92]
Chen, L.; Borozan, I.; Feld, J.; Sun, J.; Tannis, L.L.; Coltescu, C.; Heathcote, J.; Edwards, A.M.; McGilvray, I.D. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology, 2005, 128(5), 1437-1444.
[http://dx.doi.org/10.1053/j.gastro.2005.01.059] [PMID: 15887125]
[93]
Honda, M.; Sakai, A.; Yamashita, T.; Nakamoto, Y.; Mizukoshi, E.; Sakai, Y.; Yamashita, T.; Nakamura, M.; Shirasaki, T.; Horimoto, K.; Tanaka, Y.; Tokunaga, K.; Mizokami, M.; Kaneko, S. Hokuriku Liver Study Group.Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. Gastroenterology, 2010, 139(2), 499-509.
[http://dx.doi.org/10.1053/j.gastro.2010.04.049] [PMID: 20434452]
[94]
Friborg, J.; Levine, S.; Chen, C.; Sheaffer, A.K.; Chaniewski, S.; Voss, S.; Lemm, J.A.; McPhee, F. Combinations of lambda interferon with direct-acting antiviral agents are highly efficient in suppressing hepatitis C virus replication. Antimicrob. Agents Chemother., 2013, 57(3), 1312-1322.
[http://dx.doi.org/10.1128/AAC.02239-12] [PMID: 23274666]
[95]
Duong, F.H.; Trincucci, G.; Boldanova, T.; Calabrese, D.; Campana, B.; Krol, I.; Durand, S.C.; Heydmann, L.; Zeisel, M.B.; Baumert, T.F.; Heim, M.H. IFN-λ receptor 1 expression is induced in chronic hepatitis C and correlates with the IFN-λ3 genotype and with nonresponsiveness to IFN-α therapies. J. Exp. Med., 2014, 211(5), 857-868.
[http://dx.doi.org/10.1084/jem.20131557] [PMID: 24752298]
[96]
Chinnaswamy, S.; Chatterjee, S.; Boopathi, R.; Mukherjee, S.; Bhattacharjee, S.; Kundu, T.K. A single nucleotide polymorphism associated with hepatitis C virus infections located in the distal region of the IL28B promoter influences NF-κB-mediated gene transcription. PLoS One, 2013, 8(10)e75495
[http://dx.doi.org/10.1371/journal.pone.0075495] [PMID: 24116050]
[97]
de Castellarnau, M.; Aparicio, E.; Parera, M.; Franco, S.; Tural, C.; Clotet, B.; Martínez, M.A. Deciphering the interleukin 28B variants that better predict response to pegylated interferon-α and ribavirin therapy in HCV/HIV-1 coinfected patients. PLoS One, 2012, 7(2)e31016
[http://dx.doi.org/10.1371/journal.pone.0031016] [PMID: 22328925]
[98]
Golden-Mason, L.; Bambha, K.M.; Cheng, L.; Howell, C.D.; Taylor, M.W.; Clark, P.J.; Afdhal, N.; Rosen, H.R. Virahep-C Study Group.Natural killer inhibitory receptor expression associated with treatment failure and interleukin-28B genotype in patients with chronic hepatitis C. Hepatology, 2011, 54(5), 1559-1569.
[http://dx.doi.org/10.1002/hep.24556] [PMID: 21983945]
[99]
Dumaidi, K.; Al-Jawabreh, A. Persistence of anti-HBs among Palestinian medical students after 18 - 22 years of vaccination: a cross-sectional study. Hepat. Mon., 2015, 15(11)e29325
[http://dx.doi.org/10.5812/hepatmon.29325] [PMID: 26834785]
[100]
Arias-Moliz, M.T.; Rojas, L.; Liébana-Cabanillas, F.; Bernal, C.; Castillo, F.; Rodríguez-Archilla, A.; Castillo, A.; Liébana, J. Serologic control against hepatitis B virus among dental students of the University of Granada, Spain. Med. Oral Patol. Oral Cir. Bucal, 2015, 20(5), e566-e571.
[http://dx.doi.org/10.4317/medoral.20579] [PMID: 26241457]
[101]
Al Ghamdi, S.S.; Fallatah, H.I.; Fetyani, D.M.; Al-Mughales, J.A.; Gelaidan, A.T. Long-term efficacy of the hepatitis B vaccine in a high-risk group. J. Med. Virol., 2013, 85(9), 1518-1522.
[http://dx.doi.org/10.1002/jmv.23658] [PMID: 23852676]
[102]
Momeni, N.; Ahmad Akhoundi, M.S.; Alavian, S.M.; Shamshiri, A.R.; Norouzi, M.; Mahboobi, N.; Moosavi, N.; Jazayeri, S.M. HBV vaccination status and response to hepatitis B vaccine among Iranian dentists, correlation with risk factors and preventive measures. Hepat. Mon., 2014, 15(1)e20014
[http://dx.doi.org/10.5812/hepatmon.20014] [PMID: 25741367]
[103]
Morrow, M.P.; Yan, J.; Pankhong, P.; Shedlock, D.J.; Lewis, M.G.; Talbott, K.; Toporovski, R.; Khan, A.S.; Sardesai, N.Y.; Weiner, D.B. IL-28B/IFN-lambda 3 drives granzyme B loading and significantly increases CTL killing activity in macaques. Mol. Ther., 2010, 18(9), 1714-1723.
[http://dx.doi.org/10.1038/mt.2010.118] [PMID: 20571540]
[104]
Lonnemann, G.; Novick, D.; Rubinstein, M.; Dinarello, C.A. Interleukin-18, interleukin-18 binding protein and impaired production of interferon-gamma in chronic renal failure. Clin. Nephrol., 2003, 60(5), 327-334.
[http://dx.doi.org/10.5414/CNP60327] [PMID: 14640238]
[105]
Pawlak, K.; Myśliwiec, M.; Pawlak, D. Effect of diabetes and oxidative stress on plasma CCL23 levels in patients with severe chronic kidney disease. Pol. Arch. Med. Wewn., 2014, 124(9), 459-466.
[http://dx.doi.org/10.20452/pamw.2405] [PMID: 24995525]
[106]
Grzegorzewska, A.E.; Wobszal, P.; Jagodziński, P.P. Interleukin-18 promoter polymorphism and development of antibodies to surface antigen of hepatitis B virus in hemodialysis patients. Kidney Blood Press. Res., 2012, 35(1), 1-8.
[http://dx.doi.org/10.1159/000329932] [PMID: 21832842]
[107]
Jodłowska-Siewert, E.; Jagodziński, P.P.; Grzegorzewska, A.E. The titers of antibodies to the surface antigen of hepatitis B virus after vaccination in relation to polymorphisms in the immunity-related genes – a prospective study among hemodialysis patients. Pol. Arch. Int. Med., 2017, 127, 481-489.
[PMID: 28817541]
[108]
Grzegorzewska, A.E.; Wobszal, P.M.; Sowińska, A.; Mostowska, A.; Jagodziński, P.P. Association of the interleukin-12 polymorphic variants with the development of antibodies to surface antigen of hepatitis B virus in hemodialysis patients in response to vaccination or infection. Mol. Biol. Rep., 2013, 40(12), 6899-6911.
[http://dx.doi.org/10.1007/s11033-013-2809-7] [PMID: 24158609]
[109]
Grzegorzewska, A.E.; Pajzderski, D.; Sowińska, A.; Jagodziński, P.P. Polymporphism of monocyte chemoattractant protein 1 (MCP1 -2518 A/G) and responsiveness to hepatitis B vaccination in hemodialysis patients. Pol. Arch. Med. Wewn., 2014, 124(1-2), 10-18.
[PMID: 24382482]
[110]
Gu, L.; Tseng, S.; Horner, R.M.; Tam, C.; Loda, M.; Rollins, B.J. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature, 2000, 404(6776), 407-411.
[http://dx.doi.org/10.1038/35006097] [PMID: 10746730]
[111]
Eleftheriadis, T.; Sparopoulou, T.; Antoniadi, G.; Liakopoulos, V.; Stefanidis, I.; Galaktidou, G. Suppression of humoral immune response to hepatitis B surface antigen vaccine in BALB/c mice by 1-methyl-tryptophan co-administration. Daru, 2011, 19(3), 236-239.
[PMID: 22615663]
[112]
Mao, R.; Zhang, J.; Jiang, D.; Cai, D.; Levy, J.M.; Cuconati, A.; Block, T.M.; Guo, J.T.; Guo, H. Indoleamine 2,3-dioxygenase mediates the antiviral effect of gamma interferon against hepatitis B virus in human hepatocyte-derived cells. J. Virol., 2011, 85(2), 1048-1057.
[http://dx.doi.org/10.1128/JVI.01998-10] [PMID: 21084489]
[113]
Schmidt, S.V.; Schultze, J.L. New insights into IDO biology in bacterial and viral infections. Front. Immunol., 2014, 5, 384.
[http://dx.doi.org/10.3389/fimmu.2014.00384] [PMID: 25157255]
[114]
Lampertico, P.; Viganò, M.; Cheroni, C.; Facchetti, F.; Invernizzi, F.; Valveri, V.; Soffredini, R.; Abrignani, S.; De Francesco, R.; Colombo, M. IL28B polymorphisms predict interferon-related hepatitis B surface antigen seroclearance in genotype D hepatitis B e antigen-negative patients with chronic hepatitis B. Hepatology, 2013, 57(3), 890-896.
[http://dx.doi.org/10.1002/hep.25749] [PMID: 22473858]
[115]
Tang, S.; Yue, M.; Wang, J.; Zhang, Y.; Yu, R.; Su, J.; Peng, Z.; Wang, J. Associations of IFN-γ rs2430561 T/A, IL28B rs12979860 C/T and ERα rs2077647 T/C polymorphisms with outcomes of hepatitis B virus infection: a meta-analysis. J. Biomed. Res., 2014, 28(6), 484-493.
[PMID: 25469118]
[116]
Trépo, C.; Chan, H.L.; Lok, A. Hepatitis B virus infection. Lancet, 2014, 384(9959), 2053-2063.
[http://dx.doi.org/10.1016/S0140-6736(14)60220-8] [PMID: 24954675]
[117]
Rukov, J.L.; Gravesen, E.; Mace, M.L.; Hofman-Bang, J.; Vinther, J.; Andersen, C.B.; Lewin, E.; Olgaard, K. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing. Am. J. Physiol. Renal Physiol., 2016, 310(6), F477-F491.
[http://dx.doi.org/10.1152/ajprenal.00472.2015] [PMID: 26739890]
[118]
Vaziri, N.D.; Pahl, M.V.; Crum, A.; Norris, K. Effect of uremia on structure and function of immune system. J. Ren. Nutr., 2012, 22(1), 149-156.
[http://dx.doi.org/10.1053/j.jrn.2011.10.020] [PMID: 22200433]
[119]
Pertosa, G.; Grandaliano, G.; Gesualdo, L.; Schena, F.P. Clinical relevance of cytokine production in hemodialysis. Kidney Int. Suppl., 2000, 76, S104-S111.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07613.x] [PMID: 10936806]
[120]
Teta, D. Adipokines as uremic toxins. J. Ren. Nutr., 2012, 22(1), 81-85.
[http://dx.doi.org/10.1053/j.jrn.2011.10.029] [PMID: 22200420]
[121]
Mabuchi, H.; Nakahashi, H. Analysis of small peptide in uremic serum by high-performance liquid chromatography. J. Chromatogr. A, 1982, 228, 292-297.
[http://dx.doi.org/10.1016/S0378-4347(00)80443-0] [PMID: 7076752]
[122]
Laveborn, E.; Lindmark, K.; Skagerlind, M.; Stegmayr, B. NT-proBNP and troponin T levels differ after haemodialysis with a low versus high flux membrane. Int. J. Artif. Organs, 2015, 38(2), 69-75.
[http://dx.doi.org/10.5301/ijao.5000387] [PMID: 25744196]
[123]
Susantitaphong, P.; Siribamrungwong, M.; Jaber, B.L. Convective therapies versus low-flux hemodialysis for chronic kidney failure: a meta-analysis of randomized controlled trials. Nephrol. Dial. Transplant., 2013, 28(11), 2859-2874.
[http://dx.doi.org/10.1093/ndt/gft396] [PMID: 24081858]
[124]
Witte, K.; Witte, E.; Sabat, R.; Wolk, K. IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev., 2010, 21(4), 237-251.
[http://dx.doi.org/10.1016/j.cytogfr.2010.04.002] [PMID: 20655797]
[125]
Yu, M.L.; Dai, C.Y.; Huang, C.F.; Lee, J.J.; Yeh, M.L.; Yeh, S.M.; Kuo, H.T.; Huang, J.F.; Chang, J.M.; Chen, H.C.; Juo, S.H.; Hwang, S.J.; Chuang, W.L. FORMOSA-LIKE group.High hepatitis B virus surface antigen levels and favorable interleukin 28B genotype predict spontaneous hepatitis C virus clearance in uremic patients. J. Hepatol., 2014, 60(2), 253-259.
[http://dx.doi.org/10.1016/j.jhep.2013.09.023] [PMID: 24096049]
[126]
Duggal, P.; Thio, C.L.; Wojcik, G.L.; Goedert, J.J.; Mangia, A.; Latanich, R.; Kim, A.Y.; Lauer, G.M.; Chung, R.T.; Peters, M.G.; Kirk, G.D.; Mehta, S.H.; Cox, A.L.; Khakoo, S.I.; Alric, L.; Cramp, M.E.; Donfield, S.M.; Edlin, B.R.; Tobler, L.H.; Busch, M.P.; Alexander, G.; Rosen, H.R.; Gao, X.; Abdel-Hamid, M.; Apps, R.; Carrington, M.; Thomas, D.L. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann. Intern. Med., 2013, 158(4), 235-245.
[http://dx.doi.org/10.7326/0003-4819-158-4-201302190-00003] [PMID: 23420232]
[127]
Meng, Z.F.; Wang, H.J.; Yao, X.; Wang, X.Y.; Wen, Y.M.; Dai, J.X.; Xie, Y.H.; Xu, J.Q. Immunization with HBsAg-Fc fusion protein induces a predominant production of Th1 cytokines and reduces HBsAg level in transgenic mice. Chin. Med. J. (Engl.), 2012, 125(18), 3266-3272.
[PMID: 22964321]
[128]
Grzegorzewska, A.E.; Świderska, M.K.; Mostowska, A.; Jagodziński, P.P. Circulating interferon-λ3, responsiveness to HBV vaccination, and HBV/HCV infections in haemodialysis patients. BioMed Res. Int., 2017, •••20173713025
[http://dx.doi.org/10.1155/2017/3713025] [PMID: 29226133]
[129]
Liang, T.J.; Ghany, M.G. Current and future therapies for hepatitis C virus infection. N. Engl. J. Med., 2013, 368(20), 1907-1917.
[http://dx.doi.org/10.1056/NEJMra1213651] [PMID: 23675659]
[130]
Cartwright, E.J.; Miller, L. Novel drugs in the management of difficult-to-treat hepatitis C genotypes. Hepat. Med., 2013, 5, 53-61.
[PMID: 24696624]
[131]
Boglione, L.; Cardellino, C.S.; Cusato, J.; De Nicolò, A.; Cariti, G.; Di Perri, G.; D’Avolio, A. Treatment with PEG-IFN and ribavirin in patients with chronic hepatitis C, low grade of hepatic fibrosis, genotype 1 and 4 and favorable IFNL3 genotype: a pharmacogenetic prospective study. Infect. Genet. Evol., 2017, 51, 167-172.
[http://dx.doi.org/10.1016/j.meegid.2017.03.014] [PMID: 28315743]
[132]
Ferreira, C. S.; Abreu, R.M.; da Silva, M.C.; Ferreira, A.S.; Nasser, P.D.; Carrilho, F.J.; Ono, S.K. A fast and cost-effective method for identifying a polymorphism of interleukin 28B related to hepatitis C. PLoS One, 2013, 8(10)e78142
[http://dx.doi.org/10.1371/journal.pone.0078142] [PMID: 24167602]
[133]
Meissner, E.G.; Wu, D.; Osinusi, A.; Bon, D.; Virtaneva, K.; Sturdevant, D.; Porcella, S.; Wang, H.; Herrmann, E.; McHutchison, J.; Suffredini, A.F.; Polis, M.; Hewitt, S.; Prokunina-Olsson, L.; Masur, H.; Fauci, A.S.; Kottilil, S. Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome. J. Clin. Invest., 2014, 124(8), 3352-3363.
[http://dx.doi.org/10.1172/JCI75938] [PMID: 24983321]
[134]
Andersen, H.; Meyer, J.; Freeman, J.; Doyle, S.E.; Klucher, K.; Miller, D.M.; Hausman, D.; Hillson, J.L. Peginterferon lambda-1a, a new therapeutic for hepatitis C infection, from bench to clinic. J. Clin. Transl. Hepatol., 2013, 1(2), 116-124.
[PMID: 26357610]
[135]
Muir, A.J.; Arora, S.; Everson, G.; Flisiak, R.; George, J.; Ghalib, R.; Gordon, S.C.; Gray, T.; Greenbloom, S.; Hassanein, T.; Hillson, J.; Horga, M.A.; Jacobson, I.M.; Jeffers, L.; Kowdley, K.V.; Lawitz, E.; Lueth, S.; Rodriguez-Torres, M.; Rustgi, V.; Shemanski, L.; Shiffman, M.L.; Srinivasan, S.; Vargas, H.E.; Vierling, J.M.; Xu, D.; Lopez-Talavera, J.C.; Zeuzem, S. EMERGE study group.A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection. J. Hepatol., 2014, 61(6), 1238-1246.
[http://dx.doi.org/10.1016/j.jhep.2014.07.022] [PMID: 25064437]
[136]
Nelson, M.; Rubio, R.; Lazzarin, A.; Romanova, S.; Luetkemeyer, A.; Conway, B.; Molina, J.M.; Xu, D.; Srinivasan, S.; Portsmouth, S. Safety and efficacy of pegylated interferon lambda, ribavirin, and daclatasvir in HCV and HIV-coinfected patients. J. Interferon Cytokine Res., 2017, 37(3), 103-111.
[http://dx.doi.org/10.1089/jir.2016.0082] [PMID: 28282271]
[137]
Chan, H.L.Y.; Ahn, S.H.; Chang, T.T.; Peng, C.Y.; Wong, D.; Coffin, C.S.; Lim, S.G.; Chen, P.J.; Janssen, H.L.A.; Marcellin, P.; Serfaty, L.; Zeuzem, S.; Cohen, D.; Critelli, L.; Xu, D.; Wind-Rotolo, M.; Cooney, E. LIRA-B Study Team. Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: a randomized phase 2b study (LIRA-B). J. Hepatol., 2016, 64(5), 1011-1019.
[http://dx.doi.org/10.1016/j.jhep.2015.12.018] [PMID: 26739688]
[138]
Attia, D.; El Saeed, K.; Elakel, W.; El Baz, T.; Omar, A.; Yosry, A.; Elsayed, M.H.; Said, M.; El Raziky, M.; Anees, M.; Doss, W.; El Shazly, Y.; Wedemeyer, H.; Esmat, G. The adverse effects of interferon-free regimens in 149 816 chronic hepatitis C treated Egyptian patients. Aliment. Pharmacol. Ther., 2018, 47(9), 1296-1305.
[http://dx.doi.org/10.1111/apt.14538] [PMID: 29504152]
[139]
Renzulli, M.; Buonfiglioli, F.; Conti, F.; Brocchi, S.; Serio, I.; Foschi, F.G.; Caraceni, P.; Mazzella, G.; Verucchi, G.; Golfieri, R.; Andreone, P.; Brillanti, S. Imaging features of microvascular invasion in hepatocellular carcinoma developed after direct-acting antiviral therapy in HCV-related cirrhosis. Eur. Radiol., 2018, 28(2), 506-513.
[http://dx.doi.org/10.1007/s00330-017-5033-3] [PMID: 28894901]
[140]
Vijgen, L.; Thys, K.; Vandebosch, A.; Van Remoortere, P.; Verloes, R.; De Meyer, S. Virology analysis in HCV genotype 1-infected patients treated with the combination of simeprevir and TMC647055/ritonavir, with and without ribavirin, and JNJ-56914845. Virol. J., 2017, 14(1), 101.
[http://dx.doi.org/10.1186/s12985-017-0760-2] [PMID: 28569206]
[141]
Şanlıdağ, T.; Sayan, M.; Akçalı, S.; Kasap, E.; Buran, T.; Arıkan, A. [Determination of drug resistance mutations of NS3 inhibitors in chronic hepatitis C patients infected with genotype 1 [Article in Turkish Mikrobiyol. Bul., 2017, 51(2), 145-155.
[PMID: 28566078]
[142]
Li, Z.; Zhang, Y.; Liu, Y.; Shao, X.; Luo, Q.; Cai, Q.; Zhao, Z. Naturally occurring drug resistance associated variants to hepatitis C virus direct-acting antiviral agents in treatmentnaive HCV genotype 1b-infected patients in China. Medicine (Baltimore),, 2017, 96(19), e6830.
[http://dx.doi.org/10.1097/MD.0000000000006830] [PMID: 28489763]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy