Review Article

抗菌肽:两栖宿主防御肽

卷 26, 期 32, 2019

页: [5924 - 5946] 页: 23

弟呕挨: 10.2174/0929867325666180713125314

价格: $65

摘要

抗菌肽(AMPs)是先天免疫系统中最常见的成分之一,可保护多细胞生物免受微生物侵袭。绝大多数AMPs是从蛙皮中分离出来的。 Anuran(青蛙和蟾蜍)皮肤含有丰富的AMP,可以通过治疗来开发。这样的肽是独特但多样的分子组。通常,超过50%的氨基酸残基形成分子的疏水部分。通常,没有保守的结构基序负责活性,尽管由于存在多个赖氨酸残基,绝大多数AMPs是阳离子的。这种阳离子性与抗菌活性密切相关。值得注意的是,最近的证据表明,在蛙皮中合成AMPs可以赋予特定物种以优势,尽管它们对生存并不是必需的。青蛙皮肤的AMP通过渗透和破坏质膜并使细胞内靶失活,从而对抗生素抗性细菌,原生动物,酵母和真菌发挥有效作用。重要的是,由于它们不与特异性受体结合,因此AMPs不太可能诱导耐药机制。当前,最著名的两栖动物AMP是七叶草素,brevinins,ranacyclins,ranatuerins,nigrocin-2,magainins,dermaseptins,bombinins,temporins和japonicins-1和-2以及palustrin-2。这篇综述着重于这些青蛙皮肤的AMP及其抗菌活性的潜在机制。我们希望这次审查将提供进一步的信息,以促进对AMPs的进一步研究,并为新型和更安全的杀菌剂提供新的思路。

关键词: 抗菌肽(AMPs),抗菌,两栖防御肽,七叶草素,短纤维蛋白,雷纳环素,拉那豆素。

[1]
König, E.; Bininda-Emonds, O.R.; Shaw, C. The diversity and evolution of anuran skin peptides. Peptides, 2015, 63, 96-117.
[http://dx.doi.org/10.1016/j.peptides.2014.11.003] [PMID: 25464160]
[2]
Xu, X.; Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev., 2015, 115(4), 1760-1846.
[http://dx.doi.org/10.1021/cr4006704] [PMID: 25594509]
[3]
Ladram, A.; Nicolas, P. Antimicrobial peptides from frog skin: biodiversity and therapeutic promises. Front. Biosci., 2016, 21, 1341-1371.
[http://dx.doi.org/10.2741/4461] [PMID: 27100511]
[4]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from the skins of North American frogs. Biochim. Biophys. Acta, 2009, 1788(8), 1556-1563.
[http://dx.doi.org/10.1016/j.bbamem.2008.09.018] [PMID: 18983817]
[5]
Conlon, J.M. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell. Mol. Life Sci., 2011, 68(13), 2303-2315.
[http://dx.doi.org/10.1007/s00018-011-0720-8] [PMID: 21560068]
[6]
Conlon, J.M.; Mechkarska, M. Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae. Pharmaceuticals (Basel), 2014, 7(1), 58-77.
[http://dx.doi.org/10.3390/ph7010058] [PMID: 24434793]
[7]
Mergaert, P.; Kikuchi, Y.; Shigenobu, S.; Nowack, E.C.M. Metabolic integration of bacterial endosymbionts through antimicrobial peptides. Trends Microbiol., 2017, 25(9), 703-712.
[http://dx.doi.org/10.1016/j.tim.2017.04.007] [PMID: 28549825]
[8]
Boland, M.P.; Separovic, F. Membrane interactions of antimicrobial peptides from Australian tree frogs. Biochim. Biophys. Acta, 2006, 1758(9), 1178-1183.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.010] [PMID: 16580625]
[9]
Amiche, M.; Galanth, C. Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr. Pharm. Biotechnol., 2011, 12(8), 1184-1193.
[http://dx.doi.org/10.2174/138920111796117319] [PMID: 21470155]
[10]
Kang, S.J.; Kim, D.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: their physicochemical properties and therapeutic application. Arch. Pharm. Res., 2012, 35(3), 409-413.
[http://dx.doi.org/10.1007/s12272-012-0302-9] [PMID: 22477186]
[11]
Casciaro, B.; Cappiello, F.; Cacciafesta, M.; Mangoni, M.L. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: amino acids substitution and conjugation to nanoparticles. Front Chem., 2017, 5, 26.
[http://dx.doi.org/10.3389/fchem.2017.00026] [PMID: 28487853]
[12]
Thomas, P.; Kumar, T.V.; Reshmy, V.; Kumar, K.S.; George, S. A mini review on the antimicrobial peptides isolated from the genus Hylarana (Amphibia: Anura) with a proposed nomenclature for amphibian skin peptides. Mol. Biol. Rep., 2012, 39(6), 6943-6947.
[http://dx.doi.org/10.1007/s11033-012-1521-3] [PMID: 22307792]
[13]
Wang, H.; Yu, Z.; Hu, Y.; Yu, H.; Ran, R.; Xia, J.; Wang, D.; Yang, S.; Yang, X.; Liu, J. Molecular cloning and characterization of antimicrobial peptides from skin of the broad-folded frog, Hylarana latouchii. Biochimie, 2012, 94(6), 1317-1326.
[http://dx.doi.org/10.1016/j.biochi.2012.02.032] [PMID: 22426384]
[14]
Conlon, J.M.; Musale, V.; Attoub, S.; Mangoni, M.L.; Leprince, J.; Coquet, L.; Jouenne, T.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Rinaldi, A.C. Cytotoxic peptides with insulin-releasing activities from skin secretions of the Italian stream frog Rana italica (Ranidae). J. Pept. Sci., 2017, 23(10), 769-776.
[http://dx.doi.org/10.1002/psc.3025] [PMID: 28699258]
[15]
Pantic, J.M.; Jovanovic, I.P.; Radosavljevic, G.D.; Gajovic, N.M.; Arsenijevic, N.N.; Conlon, J.M.; Lukic, M.L. The frog skin host-defense peptide frenatin 2.1S enhances recruitment, activation and tumoricidal capacity of NK cells. Peptides, 2017, 93, 44-50.
[http://dx.doi.org/10.1016/j.peptides.2017.05.006] [PMID: 28526557]
[16]
Wiesner, J.; Vilcinskas, A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 2010, 1(5), 440-464.
[http://dx.doi.org/10.4161/viru.1.5.12983] [PMID: 21178486]
[17]
Mangoni, M.L.; Grazia, A.D.; Cappiello, F.; Casciaro, B.; Luca, V. Naturally occurring peptides from Rana temporaria: antimicrobial properties and more. Curr. Top. Med. Chem., 2016, 16(1), 54-64.
[http://dx.doi.org/10.2174/1568026615666150703121403] [PMID: 26139114]
[18]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[19]
Felgueiras, H.P.; Amorim, M.T.P. Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf. B Biointerfaces, 2017, 156, 133-148.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.001] [PMID: 28527357]
[20]
Uccelletti, D.; Zanni, E.; Marcellini, L.; Palleschi, C.; Barra, D.; Mangoni, M.L. Anti-Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: a plausible mode of action in vitro and in vivo. Antimicrob. Agents Chemother., 2010, 54(9), 3853-3860.
[http://dx.doi.org/10.1128/AAC.00154-10] [PMID: 20606068]
[21]
Zairi, A.; Tangy, F.; Bouassida, K.; Hani, K. Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review. J. Biomed. Biotechnol., 2009, 2009(3)452567
[http://dx.doi.org/10.1155/2009/452567] [PMID: 19893636]
[22]
Cantillo, J.H.; García, F.N. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells Investig. Discapac., 2016, 5(2), 96. e115
[23]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta, 2004, 1696(1), 1-14.
[http://dx.doi.org/10.1016/j.bbapap.2003.09.004] [PMID: 14726199]
[24]
Huang, Y.; Huang, J.; Chen, Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell, 2010, 1(2), 143-152.
[http://dx.doi.org/10.1007/s13238-010-0004-3] [PMID: 21203984]
[25]
Holthausen, D.J.; Lee, S.H.; Kumar, V.T.; Bouvier, N.M.; Krammer, F.; Ellebedy, A.H.; Wrammert, J.; Lowen, A.C.; George, S.; Pillai, M.R.; Jacob, J. An amphibian host defense peptide is virucidal for human H1 hemagglutinin-bearing influenza viruses. Immunity, 2017, 46(4), 587-595.
[http://dx.doi.org/10.1016/j.immuni.2017.03.018] [PMID: 28423338]
[26]
Vineeth Kumar, T.V.; Sanil, G. A review of the mechanism of action of amphibian antimicrobial peptides focusing on peptide-membrane interaction and membrane curvature. Curr. Protein Pept. Sci., 2017, 18(12), 1263-1272.
[http://dx.doi.org/10.2174/1389203718666170710114932] [PMID: 28699512]
[27]
Gehman, J.D.; Luc, F.; Hall, K.; Lee, T.H.; Boland, M.P.; Pukala, T.L.; Bowie, J.H.; Aguilar, M.I.; Separovic, F. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Biochemistry, 2008, 47(33), 8557-8565.
[http://dx.doi.org/10.1021/bi800320v] [PMID: 18652483]
[28]
Hale, J.D.; Hancock, R.E. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959.
[http://dx.doi.org/10.1586/14787210.5.6.951] [PMID: 18039080]
[29]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[30]
Ghosh, A.; Kar, R.K.; Jana, J.; Saha, A.; Jana, B.; Krishnamoorthy, J.; Kumar, D.; Ghosh, S.; Chatterjee, S.; Bhunia, A. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem, 2014, 9(9), 2052-2058.
[http://dx.doi.org/10.1002/cmdc.201402215] [PMID: 25044630]
[31]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[32]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[33]
Wu, Q.; Patocka, J.; Kuca, K. Insect antimicrobial peptides, a mini review. Toxins , 2018, 10(11), 461.
[http://dx.doi.org/10.3390/toxins10110461] [PMID: 30413046]
[34]
Mookherjee, N.; Hancock, R.E. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci., 2007, 64(7-8), 922-933.
[http://dx.doi.org/10.1007/s00018-007-6475-6] [PMID: 17310278]
[35]
Mansour, S.C.; Pena, O.M.; Hancock, R.E. Host defense peptides: front-line immunomodulators. Trends Immunol., 2014, 35(9), 443-450.
[http://dx.doi.org/10.1016/j.it.2014.07.004] [PMID: 25113635]
[36]
Conlon, J.M. Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides, 2008, 29(10), 1815-1819.
[http://dx.doi.org/10.1016/j.peptides.2008.05.029] [PMID: 18585417]
[37]
Haney, E.F.; Hunter, H.N.; Matsuzaki, K.; Vogel, H.J. Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim. Biophys. Acta, 2009, 1788(8), 1639-1655.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.002] [PMID: 19272309]
[38]
Yan, X.; Liu, H.; Yang, X.; Che, Q.; Liu, R.; Yang, H.; Liu, X.; You, D.; Wang, A.; Li, J.; Lai, R. Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins. Amino Acids, 2012, 43(1), 309-316.
[http://dx.doi.org/10.1007/s00726-011-1079-8] [PMID: 21927839]
[39]
Kang, S.J.; Son, W.S.; Han, K.D.; Mishig-Ochir, T.; Kim, D.W.; Kim, J.I.; Lee, B.J. Solution structure of antimicrobial peptide esculentin-1c from skin secretion of Rana esculenta. Mol. Cells, 2010, 30(5), 435-441.
[http://dx.doi.org/10.1007/s10059-010-0135-7] [PMID: 20848230]
[40]
Won, H.S.; Kim, S.S.; Jung, S.J.; Son, W.S.; Lee, B.; Lee, B.J. Structure-activity relationships of antimicrobial peptides from the skin of Rana esculenta inhabiting in Korea. Mol. Cells, 2004, 17(3), 469-476.
[PMID: 15232222]
[41]
Mangoni, M.L.; Fiocco, D.; Mignogna, G.; Barra, D.; Simmaco, M. Functional characterisation of the 1-18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides, 2003, 24(11), 1771-1777.
[http://dx.doi.org/10.1016/j.peptides.2003.07.029] [PMID: 15019209]
[42]
Marenah, L.; Flatt, P.R.; Orr, D.F.; Shaw, C.; Abdel-Wahab, Y.H. Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity. J. Endocrinol., 2006, 188(1), 1-9.
[http://dx.doi.org/10.1677/joe.1.06293] [PMID: 16394170]
[43]
Islas-Rodrìguez, A.E.; Marcellini, L.; Orioni, B.; Barra, D.; Stella, L.; Mangoni, M.L. Esculentin 1-21: a linear antimicrobial peptide from frog skin with inhibitory effect on bovine mastitis-causing bacteria. J. Pept. Sci., 2009, 15(9), 607-614.
[http://dx.doi.org/10.1002/psc.1148] [PMID: 19507197]
[44]
Graham, C.; Richter, S.C.; McClean, S.; O’Kane, E.; Flatt, P.R.; Shaw, C. Histamine-releasing and antimicrobial peptides from the skin secretions of the dusky gopher frog, Rana sevosa. Peptides, 2006, 27(6), 1313-1319.
[http://dx.doi.org/10.1016/j.peptides.2005.11.021] [PMID: 16386333]
[45]
Simmaco, M.; Mignogna, G.; Barra, D.; Bossa, F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J. Biol. Chem., 1994, 269(16), 11956-11961.
[PMID: 8163497]
[46]
Roice, M.; Suma, G.; Kumar, K.S.; Pillai, V.N. Synthesis of esculentin-1 antibacterial peptide fragments on 1,4-butanediol dimethacrylate cross-linked polystyrene support. J. Protein Chem., 2001, 20(1), 25-32.
[http://dx.doi.org/10.1023/A:1011048919748] [PMID: 11330345]
[47]
Kolar, S.S.N.; Luca, V.; Baidouri, H.; Mannino, G.; McDermott, A.M.; Mangoni, M.L. Esculentin-1a(1-21)NH2: a frog skin-derived peptide for microbial keratitis. Cell. Mol. Life Sci., 2015, 72(3), 617-627.
[http://dx.doi.org/10.1007/s00018-014-1694-0] [PMID: 25086859]
[48]
Morikawa, N.; Hagiwara, K.; Nakajima, T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem. Biophys. Res. Commun., 1992, 189(1), 184-190.
[http://dx.doi.org/10.1016/0006-291X(92)91542-X] [PMID: 1449472]
[49]
Goraya, J.; Wang, Y.; Li, Z.; O’Flaherty, M.; Knoop, F.C.; Platz, J.E.; Conlon, J.M. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur. J. Biochem., 2000, 267(3), 894-900.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01074.x] [PMID: 10651828]
[50]
Basir, Y.J.; Knoop, F.C.; Dulka, J.; Conlon, J.M. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim. Biophys. Acta, 2000, 1543(1), 95-105.
[http://dx.doi.org/10.1016/S0167-4838(00)00191-6] [PMID: 11087945]
[51]
Ali, M.F.; Lips, K.R.; Knoop, F.C.; Fritzsch, B.; Miller, C.; Conlon, J.M. Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog, Rana areolata. Biochim. Biophys. Acta, 2002, 1601(1), 55-63.
[http://dx.doi.org/10.1016/S1570-9639(02)00432-6] [PMID: 12429503]
[52]
Ali, M.F.; Knoop, F.C.; Vaudry, H.; Conlon, J.M. Characterization of novel antimicrobial peptides from the skins of frogs of the Rana esculenta complex. Peptides, 2003, 24(7), 955-961.
[http://dx.doi.org/10.1016/S0196-9781(03)00193-1] [PMID: 14499272]
[53]
Conlon, J.M.; Sonnevend, A.; Jouenne, T.; Coquet, L.; Cosquer, D.; Vaudry, H.; Iwamuro, S. A family of acyclic brevinin-1 peptides from the skin of the Ryukyu brown frog Rana okinavana. Peptides, 2005, 26(2), 185-190.
[http://dx.doi.org/10.1016/j.peptides.2004.08.008] [PMID: 15629529]
[54]
Chen, Q.; Wade, D.; Kurosaka, K.; Wang, Z.Y.; Oppenheim, J.J.; Yang, D. Temporin A and related frog antimicrobial peptides use formyl peptide receptor-like 1 as a receptor to chemoattract phagocytes. J. Immunol., 2004, 173(4), 2652-2659.
[http://dx.doi.org/10.4049/jimmunol.173.4.2652] [PMID: 15294982]
[55]
Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Sonnevend, A.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; Iwamuro, S. Antimicrobial peptides from the skin of the Tsushima brown frog Rana tsushimensis. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2006, 143(1), 42-49.
[http://dx.doi.org/10.1016/j.cbpc.2005.11.022] [PMID: 16413829]
[56]
Matutte, B.; Storey, K.B.; Knoop, F.C.; Conlon, J.M. Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli. FEBS Lett., 2000, 483(2-3), 135-138.
[http://dx.doi.org/10.1016/S0014-5793(00)02102-5] [PMID: 11042268]
[57]
Conlon, J.M.; Sonnevend, A.; Patel, M.; Al-Dhaheri, K.; Nielsen, P.F.; Kolodziejek, J.; Nowotny, N.; Iwamuro, S.; Pál, T. A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the Hokkaido frog, Rana pirica. Regul. Pept., 2004, 118(3), 135-141.
[http://dx.doi.org/10.1016/j.regpep.2003.12.003] [PMID: 15003829]
[58]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N.; Leprince, J.; Vaudry, H.; Coquet, L.; Jouenne, T.; Iwamuro, S. Cytolytic peptides belonging to the brevinin-1 and brevinin-2 families isolated from the skin of the Japanese brown frog, Rana dybowskii. Toxicon, 2007, 50(6), 746-756.
[http://dx.doi.org/10.1016/j.toxicon.2007.06.023] [PMID: 17688900]
[59]
Ma, Y.; Liu, C.; Liu, X.; Wu, J.; Yang, H.; Wang, Y.; Li, J.; Yu, H.; Lai, R. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics, 2010, 95(1), 66-71.
[http://dx.doi.org/10.1016/j.ygeno.2009.09.004] [PMID: 19778602]
[60]
Pál, T.; Abraham, B.; Sonnevend, A.; Jumaa, P.; Conlon, J.M. Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Int. J. Antimicrob. Agents, 2006, 27(6), 525-529.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.01.010] [PMID: 16713189]
[61]
Marenah, L.; Flatt, P.R.; Orr, D.F.; McClean, S.; Shaw, C.; Abdel-Wahab, Y.H. Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris. J. Endocrinol., 2004, 181(2), 347-354.
[http://dx.doi.org/10.1677/joe.0.1810347] [PMID: 15128283]
[62]
Yasin, B.; Pang, M.; Turner, J.S.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I.; Wagar, E.A. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19(3), 187-194.
[http://dx.doi.org/10.1007/s100960050457] [PMID: 10795591]
[63]
Dong, Z.; Luo, W.; Zhong, H.; Wang, M.; Song, Y.; Deng, S.; Zhang, Y. Molecular cloning and characterization of antimicrobial peptides from skin of Hylarana guentheri. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(5), 450-457.
[http://dx.doi.org/10.1093/abbs/gmx023] [PMID: 28338958]
[64]
Vasu, S.; McGahon, M.K.; Moffett, R.C.; Curtis, T.M.; Conlon, J.M.; Abdel-Wahab, Y.H.; Flatt, P.R. Esculentin-2CHa(1-30) and its analogues: stability and mechanisms of insulinotropic action. J. Endocrinol., 2017, 232(3), 423-435.
[http://dx.doi.org/10.1530/JOE-16-0453] [PMID: 28115493]
[65]
Tv, V. R, A.; G, S.; George, S. Post-translationally modified frog skin-derived antimicrobial peptides are effective against Aeromonas sobria. Microb. Pathog., 2017, 104, 287-288.
[http://dx.doi.org/10.1016/j.micpath.2017.01.052] [PMID: 28153544]
[66]
Mangoni, M.L.; Papo, N.; Mignogna, G.; Andreu, D.; Shai, Y.; Barra, D.; Simmaco, M. Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity. Biochemistry, 2003, 42(47), 14023-14035.
[http://dx.doi.org/10.1021/bi034521l] [PMID: 14636071]
[67]
Salmon, A.L.; Cross, L.J.M.; Irvine, A.E.; Lappin, T.R.J.; Dathe, M.; Krause, G.; Canning, P.; Thim, L.; Beyermann, M.; Rothemund, S.; Bienert, M.; Shaw, C. Peptide leucine arginine, a potent immunomodulatory peptide isolated and structurally characterized from the skin of the Northern Leopard frog, Rana pipiens. J. Biol. Chem., 2001, 276(13), 10145-10152.
[http://dx.doi.org/10.1074/jbc.M009680200] [PMID: 11099505]
[68]
Goraya, J.; Knoop, F.C.; Conlon, J.M. Ranatuerins: antimicrobial peptides isolated from the skin of the American bullfrog, Rana catesbeiana. Biochem. Biophys. Res. Commun., 1998, 250(3), 589-592.
[http://dx.doi.org/10.1006/bbrc.1998.9362] [PMID: 9784389]
[69]
Antimicrobial Peptide Database (ADP). Available at:. http://aps.unmc.edu/AP/database/mysql.php [Accessed: September, 2017]
[70]
Sonnevend, A.; Knoop, F.C.; Patel, M.; Pál, T.; Soto, A.M.; Conlon, J.M. Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog. Peptides, 2004, 25(1), 29-36.
[http://dx.doi.org/10.1016/j.peptides.2003.11.011] [PMID: 15003353]
[71]
Halverson, T.; Basir, Y.J.; Knoop, F.C.; Conlon, J.M. Purification and characterization of antimicrobial peptides from the skin of the North American green frog Rana clamitans. Peptides, 2000, 21(4), 469-476.
[http://dx.doi.org/10.1016/S0196-9781(00)00178-9] [PMID: 10822101]
[72]
Zhou, M.; Liu, Y.; Chen, T.; Fang, X.; Walker, B.; Shaw, C. Components of the peptidome and transcriptome persist in lin wa pi: the dried skin of the Heilongjiang brown frog (Rana amurensis) as used in traditional Chinese medicine. Peptides, 2006, 27(11), 2688-2694.
[http://dx.doi.org/10.1016/j.peptides.2006.05.009] [PMID: 16790295]
[73]
Conlon, J.M.; Sonnevend, A.; Davidson, C.; Demandt, A.; Jouenne, T. Host-defense peptides isolated from the skin secretions of the Northern red-legged frog Rana aurora aurora. Dev. Comp. Immunol., 2005, 29(1), 83-90.
[http://dx.doi.org/10.1016/j.dci.2004.05.003] [PMID: 15325526]
[74]
Chinchar, V.G.; Wang, J.; Murti, G.; Carey, C.; Rollins-Smith, L. Inactivation of frog virus 3 and channel catfish virus by esculentin-2P and ranatuerin-2P, two antimicrobial peptides isolated from frog skin. Virology, 2001, 288(2), 351-357.
[http://dx.doi.org/10.1006/viro.2001.1080] [PMID: 11601906]
[75]
Rollins-Smith, L.A.; Carey, C.; Conlon, J.M.; Reinert, L.K.; Doersam, J.K.; Bergman, T.; Silberring, J.; Lankinen, H.; Wade, D. Activities of temporin family peptides against the chytrid fungus (Batrachochytrium dendrobatidis) associated with global amphibian declines. Antimicrob. Agents Chemother., 2003, 47(3), 1157-1160.
[http://dx.doi.org/10.1128/AAC.47.3.1157-1160.2003] [PMID: 12604562]
[76]
Subasinghage, A.P.; Conlon, J.M.; Hewage, C.M. Conformational analysis of the broad-spectrum antibacterial peptide, ranatuerin-2CSa: identification of a full length helix-turn-helix motif. Biochim. Biophys. Acta, 2008, 1784(6), 924-929.
[http://dx.doi.org/10.1016/j.bbapap.2008.02.019] [PMID: 18387372]
[77]
Park, S.; Park, S.H.; Ahn, H.C.; Kim, S.; Kim, S.S.; Lee, B.J.; Lee, B.J. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. FEBS Lett., 2001, 507(1), 95-100.
[http://dx.doi.org/10.1016/S0014-5793(01)02956-8] [PMID: 11682065]
[78]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[http://dx.doi.org/10.1073/pnas.84.15.5449] [PMID: 3299384]
[79]
Lamba, P.; Kar, M.; Sengupta, J.; Ghosh, D. Effect of (Ala8,13,18)-magainin II amide on human trophoblast cells in vitro. Indian J. Physiol. Pharmacol., 2005, 49(1), 27-38.
[PMID: 15881856]
[80]
Park, Y.; Lee, D.G.; Hahm, K.S. HP(2-9)-magainin 2(1-12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membrane. J. Pept. Sci., 2004, 10(4), 204-209.
[http://dx.doi.org/10.1002/psc.489] [PMID: 15119592]
[81]
Clara, A.; Manjramkar, D.D.; Reddy, V.K. Preclinical evaluation of magainin-A as a contraceptive antimicrobial agent. Fertil. Steril., 2004, 81(5), 1357-1365.
[http://dx.doi.org/10.1016/j.fertnstert.2003.09.073] [PMID: 15136102]
[82]
Juretić, D.; Chen, H.C.; Brown, J.H.; Morell, J.L.; Hendler, R.W.; Westerhoff, H.V. Magainin 2 amide and analogues. Antimicrobial activity, membrane depolarization and susceptibility to proteolysis. FEBS Lett., 1989, 249(2), 219-223.
[http://dx.doi.org/10.1016/0014-5793(89)80627-1] [PMID: 2544449]
[83]
Zairi, A.; Tangy, F.; Ducos-Galand, M.; Alonso, J.M.; Hani, K. Susceptibility of Neisseria gonorrhoeae to antimicrobial peptides from amphibian skin, dermaseptin, and derivatives. Diagn. Microbiol. Infect. Dis., 2007, 57(3), 319-324.
[http://dx.doi.org/10.1016/j.diagmicrobio.2006.11.006] [PMID: 17254733]
[84]
Ohsaki, Y.; Gazdar, A.F.; Chen, H.C.; Johnson, B.E. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res., 1992, 52(13), 3534-3538.
[PMID: 1319823]
[85]
Edelstein, M.C.; Gretz, J.E.; Bauer, T.J.; Fulgham, D.L.; Alexander, N.J.; Archer, D.F. Studies on the in vitro spermicidal activity of synthetic magainins. Fertil. Steril., 1991, 55(3), 647-649.
[http://dx.doi.org/10.1016/S0015-0282(16)54205-8] [PMID: 2001767]
[86]
Reddy, K.V.; Shahani, S.K.; Meherji, P.K. Spermicidal activity of Magainins: in vitro and in vivo studies. Contraception, 1996, 53(4), 205-210.
[http://dx.doi.org/10.1016/0010-7824(96)00038-8] [PMID: 8706437]
[87]
Reddy, V.R.; Manjramkar, D.D. Evaluation of the antifertility effect of magainin-A in rabbits: in vitro and in vivo studies. Fertil. Steril., 2000, 73(2), 353-358.
[http://dx.doi.org/10.1016/S0015-0282(99)00499-9] [PMID: 10685543]
[88]
Reddy, K.V.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[89]
Fleury, Y.; Vouille, V.; Beven, L.; Amiche, M.; Wróblewski, H.; Delfour, A.; Nicolas, P. Synthesis, antimicrobial activity and gene structure of a novel member of the dermaseptin B family. Biochim. Biophys. Acta, 1998, 1396(2), 228-236.
[http://dx.doi.org/10.1016/S0167-4781(97)00194-2] [PMID: 9540838]
[90]
Pouny, Y.; Rapaport, D.; Mor, A.; Nicolas, P.; Shai, Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry, 1992, 31(49), 12416-12423.
[http://dx.doi.org/10.1021/bi00164a017] [PMID: 1463728]
[91]
La Rocca, P.; Shai, Y.; Sansom, M.S. Peptide-bilayer interactions: simulations of dermaseptin B, an antimicrobial peptide. Biophys. Chem., 1999, 76(2), 145-159.
[http://dx.doi.org/10.1016/S0301-4622(98)00232-4] [PMID: 10063609]
[92]
Mor, A.; Nguyen, V.H.; Delfour, A.; Migliore-Samour, D.; Nicolas, P. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry, 1991, 30(36), 8824-8830.
[http://dx.doi.org/10.1021/bi00100a014] [PMID: 1909573]
[93]
Mor, A.; Nicolas, P. The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity. J. Biol. Chem., 1994, 269(3), 1934-1939.
[PMID: 8294443]
[94]
Savoia, D.; Donalisio, M.; Civra, A.; Salvadori, S.; Guerrini, R. In vitro activity of dermaseptin S1 derivatives against genital pathogens. APMIS, 2010, 118(9), 674-680.
[http://dx.doi.org/10.1111/j.1600-0463.2010.02637.x] [PMID: 20718719]
[95]
Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry, 2006, 45(2), 468-480.
[http://dx.doi.org/10.1021/bi051711i] [PMID: 16401077]
[96]
Ghosh, J.K.; Shaool, D.; Guillaud, P.; Cicéron, L.; Mazier, D.; Kustanovich, I.; Shai, Y.; Mor, A. Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J. Biol. Chem., 1997, 272(50), 31609-31616.
[http://dx.doi.org/10.1074/jbc.272.50.31609] [PMID: 9395500]
[97]
Mor, A.; Amiche, M.; Nicolas, P. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry, 1994, 33(21), 6642-6650.
[http://dx.doi.org/10.1021/bi00187a034] [PMID: 8204601]
[98]
Strahilevitz, J.; Mor, A.; Nicolas, P.; Shai, Y. Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Biochemistry, 1994, 33(36), 10951-10960.
[http://dx.doi.org/10.1021/bi00202a014] [PMID: 8086412]
[99]
Amiche, M.; Ducancel, F.; Mor, A.; Boulain, J.C.; Menez, A.; Nicolas, P. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins. J. Biol. Chem., 1994, 269(27), 17847-17852.
[PMID: 8074751]
[100]
Mangoni, M.L.; Grovale, N.; Giorgi, A.; Mignogna, G.; Simmaco, M.; Barra, D. Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides, 2000, 21(11), 1673-1679.
[http://dx.doi.org/10.1016/S0196-9781(00)00316-8] [PMID: 11090921]
[101]
Simmaco, M.; Kreil, G.; Barra, D. Bombinins, antimicrobial peptides from Bombina species. Biochim. Biophys. Acta, 2009, 1788(8), 1551-1555.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.004] [PMID: 19366600]
[102]
Simmaco, M.; Barra, D.; Chiarini, F.; Noviello, L.; Melchiorri, P.; Kreil, G.; Richter, K. A family of bombinin-related peptides from the skin of Bombina variegata. Eur. J. Biochem., 1991, 199(1), 217-222.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb16112.x] [PMID: 1712299]
[103]
Gibson, B.W.; Tang, D.Z.; Mandrell, R.; Kelly, M.; Spindel, E.R. Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J. Biol. Chem., 1991, 266(34), 23103-23111.
[PMID: 1744108]
[104]
Miele, R.; Ponti, D.; Boman, H.G.; Barra, D.; Simmaco, M. Molecular cloning of a bombinin gene from Bombina orientalis: detection of NF-kappaB and NF-IL6 binding sites in its promoter. FEBS Lett., 1998, 431(1), 23-28.
[http://dx.doi.org/10.1016/S0014-5793(98)00718-2] [PMID: 9684858]
[105]
Mignogna, G.; Simmaco, M.; Kreil, G.; Barra, D. Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. EMBO J., 1993, 12(12), 4829-4832.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06172.x] [PMID: 8223491]
[106]
Mangoni, M.L.; Papo, N.; Saugar, J.M.; Barra, D.; Shai, Y.; Simmaco, M.; Rivas, L. Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry, 2006, 45(13), 4266-4276.
[http://dx.doi.org/10.1021/bi052150y] [PMID: 16566601]
[107]
Mangoni, M.L. A lesson from Bombinins H, mildly cationic diastereomeric antimicrobial peptides from Bombina skin. Curr. Protein Pept. Sci., 2013, 14(8), 734-743.
[http://dx.doi.org/10.2174/138920371408131227171817] [PMID: 24384035]
[108]
Simmaco, M.; Mignogna, G.; Canofeni, S.; Miele, R.; Mangoni, M.L.; Barra, D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J. Biochem., 1996, 242(3), 788-792.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0788r.x] [PMID: 9022710]
[109]
Wade, D.; Silberring, J.; Soliymani, R.; Heikkinen, S.; Kilpeläinen, I.; Lankinen, H.; Kuusela, P. Antibacterial activities of temporin A analogs. FEBS Lett., 2000, 479(1-2), 6-9.
[http://dx.doi.org/10.1016/S0014-5793(00)01754-3] [PMID: 10940378]
[110]
Urbán, E.; Nagy, E.; Pál, T.; Sonnevend, A.; Conlon, J.M. Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int. J. Antimicrob. Agents, 2007, 29(3), 317-321.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.09.007] [PMID: 17196372]
[111]
Mangoni, M.L.; Saugar, J.M.; Dellisanti, M.; Barra, D.; Simmaco, M.; Rivas, L. Temporins, small antimicrobial peptides with leishmanicidal activity. J. Biol. Chem., 2005, 280(2), 984-990.
[http://dx.doi.org/10.1074/jbc.M410795200] [PMID: 15513914]
[112]
Mahalka, A.K.; Kinnunen, P.K. Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L. Biochim. Biophys. Acta, 2009, 1788(8), 1600-1609.
[http://dx.doi.org/10.1016/j.bbamem.2009.04.012] [PMID: 19394305]
[113]
Bevier, C.R.; Sonnevend, A.; Kolodziejek, J.; Nowotny, N.; Nielsen, P.F.; Conlon, J.M. Purification and characterization of antimicrobial peptides from the skin secretions of the mink frog (Rana septentrionalis). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2004, 139(1-3), 31-38.
[http://dx.doi.org/10.1016/j.cca.2004.08.019] [PMID: 15556063]
[114]
Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Jiansheng, H.; Cosette, P.; Leprince, J.; Jouenne, T.; Vaudry, H. Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptides, 2006, 27(9), 2111-2117.
[http://dx.doi.org/10.1016/j.peptides.2006.03.002] [PMID: 16621155]
[115]
Wade, D.; Flock, J.I.; Edlund, C.; Löfving-Arvholm, I.; Sällberg, M.; Bergman, T.; Silveira, A.; Unson, C.; Rollins-Smith, L.; Silberring, J.; Richardson, M.; Kuusela, P.; Lankinen, H. Antibiotic properties of novel synthetic temporin A analogs and a cecropin A-temporin A hybrid peptide. Protein Pept. Lett., 2002, 9(6), 533-543.
[http://dx.doi.org/10.2174/0929866023408409] [PMID: 12553862]
[116]
Giacometti, A.; Cirioni, O.; Kamysz, W.; Silvestri, C.; Licci, A.; Riva, A.; Łukasiak, J.; Scalise, G. In vitro activity of amphibian peptides alone and in combination with antimicrobial agents against multidrug-resistant pathogens isolated from surgical wound infection. Peptides, 2005, 26(11), 2111-2116.
[http://dx.doi.org/10.1016/j.peptides.2005.03.009] [PMID: 16269345]
[117]
Wade, D.; Silveira, A.; Rollins-Smith, L.; Bergman, T.; Silberring, J.; Lankinen, H. Hematological and antifungal properties of temporin A and a cecropin A-temporin A hybrid. Acta Biochim. Pol., 2001, 48(4), 1185-1189.
[PMID: 11995990]
[118]
Montville, T.J.; De Siano, T.; Nock, A.; Padhi, S.; Wade, D. Inhibition of Bacillus anthracis and potential surrogate bacilli growth from spore inocula by nisin and other antimicrobial peptides. J. Food Prot., 2006, 69(10), 2529-2533.
[http://dx.doi.org/10.4315/0362-028X-69.10.2529] [PMID: 17066940]
[119]
Chinchar, V.G.; Bryan, L.; Silphadaung, U.; Noga, E.; Wade, D.; Rollins-Smith, L. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology, 2004, 323(2), 268-275.
[http://dx.doi.org/10.1016/j.virol.2004.02.029] [PMID: 15193922]
[120]
Cirioni, O.; Giacometti, A.; Ghiselli, R.; Kamysz, W.; Orlando, F.; Mocchegiani, F.; Silvestri, C.; Licci, A.; Łukasiak, J.; Saba, V.; Scalise, G. Temporin A alone and in combination with imipenem reduces lethality in a mouse model of staphylococcal sepsis. J. Infect. Dis., 2005, 192(9), 1613-1620.
[http://dx.doi.org/10.1086/496888] [PMID: 16206076]
[121]
Lu, Y.; Li, J.; Yu, H.; Xu, X.; Liang, J.; Tian, Y.; Ma, D.; Lin, G.; Huang, G.; Lai, R. Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides, 2006, 27(12), 3085-3091.
[http://dx.doi.org/10.1016/j.peptides.2006.08.017] [PMID: 17000029]
[122]
Mangoni, M.L.; Rinaldi, A.C.; Di Giulio, A.; Mignogna, G.; Bozzi, A.; Barra, D.; Simmaco, M. Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur. J. Biochem., 2000, 267(5), 1447-1454.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01143.x] [PMID: 10691983]
[123]
Zhao, H.; Rinaldi, A.C.; Di Giulio, A.; Simmaco, M.; Kinnunen, P.K. Interactions of the antimicrobial peptides temporins with model biomembranes. Comparison of temporins B and L. Biochemistry, 2002, 41(13), 4425-4436.
[http://dx.doi.org/10.1021/bi011929e] [PMID: 11914090]
[124]
Rosenfeld, Y.; Barra, D.; Simmaco, M.; Shai, Y.; Mangoni, M.L. A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J. Biol. Chem., 2006, 281(39), 28565-28574.
[http://dx.doi.org/10.1074/jbc.M606031200] [PMID: 16867990]
[125]
Rinaldi, A.C.; Mangoni, M.L.; Rufo, A.; Luzi, C.; Barra, D.; Zhao, H.; Kinnunen, P.K.; Bozzi, A.; Di Giulio, A.; Simmaco, M. Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem. J., 2002, 368(Pt 1), 91-100.
[http://dx.doi.org/10.1042/bj20020806] [PMID: 12133008]
[126]
Giacometti, A.; Cirioni, O.; Ghiselli, R.; Mocchegiani, F.; Orlando, F.; Silvestri, C.; Bozzi, A.; Di Giulio, A.; Luzi, C.; Mangoni, M.L.; Barra, D.; Saba, V.; Scalise, G.; Rinaldi, A.C. Interaction of antimicrobial peptide temporin L with lipopolysaccharide in vitro and in experimental rat models of septic shock caused by gram-negative bacteria. Antimicrob. Agents Chemother., 2006, 50(7), 2478-2486.
[http://dx.doi.org/10.1128/AAC.01553-05] [PMID: 16801429]
[127]
Wang, H.; Yan, X.; Yu, H.; Hu, Y.; Yu, Z.; Zheng, H.; Chen, Z.; Zhang, Z.; Liu, J. Isolation, characterization and molecular cloning of new antimicrobial peptides belonging to the brevinin-1 and temporin families from the skin of Hylarana latouchii (Anura: Ranidae). Biochimie, 2009, 91(4), 540-547.
[http://dx.doi.org/10.1016/j.biochi.2009.01.007] [PMID: 19340924]
[128]
Conlon, J.M.; Sonnevend, A.; Patel, M.; Davidson, C.; Nielsen, P.F.; Pál, T.; Rollins-Smith, L.A. Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J. Pept. Res., 2003, 62(5), 207-213.
[http://dx.doi.org/10.1034/j.1399-3011.2003.00090.x] [PMID: 14531844]
[129]
Wang, C.; Li, H.B.; Li, S.; Tian, L.L.; Shang, D.J. Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie, 2012, 94(2), 434-441.
[http://dx.doi.org/10.1016/j.biochi.2011.08.011] [PMID: 21871946]
[130]
Kim, J.B.; Halverson, T.; Basir, Y.J.; Dulka, J.; Knoop, F.C.; Abel, P.W.; Conlon, J.M. Purification and characterization of antimicrobial and vasorelaxant peptides from skin extracts and skin secretions of the North American pig frog Rana grylio. Regul. Pept., 2000, 90(1-3), 53-60.
[http://dx.doi.org/10.1016/S0167-0115(00)00107-5] [PMID: 10828493]
[131]
Kim, J.B.; Iwamuro, S.; Knoop, F.C.; Conlon, J.M. Antimicrobial peptides from the skin of the Japanese mountain brown frog, Rana ornativentris. J. Pept. Res., 2001, 58(5), 349-356.
[http://dx.doi.org/10.1034/j.1399-3011.2001.00947.x] [PMID: 11892844]
[132]
Isaacson, T.; Soto, A.; Iwamuro, S.; Knoop, F.C.; Conlon, J.M. Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica. Peptides, 2002, 23(3), 419-425.
[http://dx.doi.org/10.1016/S0196-9781(01)00634-9] [PMID: 11835990]
[133]
Abbassi, F.; Raja, Z.; Oury, B.; Gazanion, E.; Piesse, C.; Sereno, D.; Nicolas, P.; Foulon, T.; Ladram, A. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide. Biochimie, 2013, 95(2), 388-399.
[http://dx.doi.org/10.1016/j.biochi.2012.10.015] [PMID: 23116712]
[134]
Ohnuma, A.; Conlon, J.M.; Kawasaki, H.; Iwamuro, S. Developmental and triiodothyronine-induced expression of genes encoding preprotemporins in the skin of Tago’s brown frog Rana tagoi. Gen. Comp. Endocrinol., 2006, 146(3), 242-250.
[http://dx.doi.org/10.1016/j.ygcen.2005.11.015] [PMID: 16403501]
[135]
Iwamuro, S.; Nakamura, M.; Ohnuma, A.; Conlon, J.M. Molecular cloning and sequence analyses of preprotemporin mRNAs containing premature stop codons from extradermal tissues of Rana tagoi. Peptides, 2006, 27(9), 2124-2128.
[http://dx.doi.org/10.1016/j.peptides.2006.03.023] [PMID: 16675060]
[136]
Abbassi, F.; Lequin, O.; Piesse, C.; Goasdoué, N.; Foulon, T.; Nicolas, P.; Ladram, A. Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J. Biol. Chem., 2010, 285(22), 16880-16892.
[http://dx.doi.org/10.1074/jbc.M109.097204] [PMID: 20308076]
[137]
Koyama, T.; Conlon, J.M.; Iwamuro, S. Molecular cloning and characterization of cDNAs encoding biosynthetic precursors for the antimicrobial peptides japonicin-1Ja, japonicin-2Ja, and temporin-1Ja in the Japanese brown frog, Rana japonica. Zool. Sci., 2011, 28(5), 339-347.
[http://dx.doi.org/10.2108/zsj.28.339] [PMID: 21557657]
[138]
Lu, Z.; Zhai, L.; Wang, H.; Che, Q.; Wang, D.; Feng, F.; Zhao, Z.; Yu, H. Novel families of antimicrobial peptides with multiple functions from skin of Xizang plateau frog, Nanorana parkeri. Biochimie, 2010, 92(5), 475-481.
[http://dx.doi.org/10.1016/j.biochi.2010.01.025] [PMID: 20153801]
[139]
Conlon, J.M.; Leprince, J.; Vaudry, H.; Jiansheng, H.; Nielsen, P.F. A family of antimicrobial peptides related to japonicin-2 isolated from the skin of the chaochiao brown frog Rana chaochiaoensis. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2006, 144(1), 101-105.
[http://dx.doi.org/10.1016/j.cbpc.2006.07.007] [PMID: 16928470]
[140]
Basir, Y.J.; Knoop, F.C.; Dulka, J.; Conlon, J.M. Multiple antimicrobial peptides andpeptides related to bradykinin and neuromedin N isolated from skin sec-retions of the pickerel frog, Rana palustris. BBA-Protein Struct. Mol. Struct., 2000, 1543, 95-105.
[PMID: 11087945]
[141]
Iwakoshi-Ukena, E.; Okada, G.; Okimoto, A.; Fujii, T.; Sumida, M.; Ukena, K. Identification and structure-activity relationship of an antimicrobial peptide of the palustrin-2 family isolated from the skin of the endangered frog Odorrana ishikawae. Peptides, 2011, 32(10), 2052-2057.
[http://dx.doi.org/10.1016/j.peptides.2011.08.024] [PMID: 21911019]
[142]
Che, Q.; Zhou, Y.; Yang, H.; Li, J.; Xu, X.; Lai, R. A novel antimicrobial peptide from amphibian skin secretions of Odorrana grahami. Peptides, 2008, 29(4), 529-535.
[http://dx.doi.org/10.1016/j.peptides.2008.01.004] [PMID: 18282640]
[143]
Yu, H.; Qiao, X.; Gao, J.; Wang, C.; Cai, S.; Feng, L.; Wang, H.; Wang, Y.P. Identification and characterization of novel antioxidant peptides involved in redox homeostasis of frog, Limnonectes fragilis. Protein Pept. Lett., 2015, 22(9), 776-784.
[http://dx.doi.org/10.2174/0929866522666150630104815] [PMID: 26122987]
[144]
Chen, H.; Wang, L.; Zeller, M.; Hornshaw, M.; Wu, Y.; Zhou, M.; Li, J.; Hang, X.; Cai, J.; Chen, T.; Shaw, C. Kassorins: novel innate immune system peptides from skin secretions of the African hyperoliid frogs, Kassina maculata and Kassina senegalensis. Mol. Immunol., 2011, 48(4), 442-451.
[http://dx.doi.org/10.1016/j.molimm.2010.09.018] [PMID: 21040978]
[145]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[146]
Azevedo Calderon, Ld. Silva, Ade.A.; Ciancaglini, P.; Stábeli, R.G. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids, 2011, 40(1), 29-49.
[http://dx.doi.org/10.1007/s00726-010-0622-3] [PMID: 20526637]
[147]
Simmaco, M.; Mignogna, G.; Barra, D.; Bossa, F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. FEBS Lett., 1993, 324, 159-161.
[http://dx.doi.org/10.1016/0014-5793(93)81384-C] [PMID: 8508915]
[148]
Marcellini, L.; Borro, M.; Gentile, G.; Rinaldi, A.C.; Stella, L.; Aimola, P.; Barra, D.; Mangoni, M.L. Esculentin-1b(1-18)--a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in Escherichia coli. FEBS J., 2009, 276(19), 5647-5664.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07257.x] [PMID: 19725877]
[149]
Wang, M.; Wang, Y.; Wang, A.; Song, Y.; Ma, D.; Yang, H.; Ma, Y.; Lai, R. Five novel antimicrobial peptides from skin secretions of the frog, Amolops loloensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2010, 155(1), 72-76.
[http://dx.doi.org/10.1016/j.cbpb.2009.10.003] [PMID: 19843479]
[150]
Conlon, J.M.; Halverson, T.; Dulka, J.; Platz, J.E.; Knoop, F.C. Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the southern leopard frog, Rana sphenocephala. J. Pept. Res., 1999, 54(6), 522-527.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00123.x] [PMID: 10604597]
[151]
Wang, L.; Evaristo, G.; Zhou, M.; Pinkse, M.; Wang, M.; Xu, Y.; Jiang, X.; Chen, T.; Rao, P.; Verhaert, P.; Shaw, C. Nigrocin-2 peptides from Chinese Odorrana frogs--integration of UPLC/MS/MS with molecular cloning in amphibian skin peptidome analysis. FEBS J., 2010, 277(6), 1519-1531.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07580.x] [PMID: 20158520]
[152]
Liu, C.; Hong, J.; Yang, H.; Wu, J.; Ma, D.; Li, D.; Lin, D.; Lai, R. Frog skins keep redox homeostasis by antioxidant peptides with rapid radical scavenging ability. Free Radic. Biol. Med., 2010, 48(9), 1173-1181.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.036] [PMID: 20138142]
[153]
Yang, X.; Xia, J.; Yu, Z.; Hu, Y.; Li, F.; Meng, H.; Yang, S.; Liu, J.; Wang, H. Characterization of diverse antimicrobial peptides in skin secretions of Chungan torrent frog Amolops chunganensis. Peptides, 2012, 38(1), 41-53.
[http://dx.doi.org/10.1016/j.peptides.2012.08.008] [PMID: 22951323]
[154]
Chen, Z.; Yang, X.; Liu, Z.; Zeng, L.; Lee, W.; Zhang, Y. Two novel families of antimicrobial peptides from skin secretions of the Chinese torrent frog, Amolops jingdongensis. Biochimie, 2012, 94(2), 328-334.
[http://dx.doi.org/10.1016/j.biochi.2011.07.021] [PMID: 21816202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy