[1]
J.A. Farrell, Aided navigation: GPS with high rate sensors., McGraw-Hill, Inc., 2008.
[2]
C. Fritsche, A. Klein, and D. Wurtz, "Hybrid GPS/GSM localization of mobile terminals using the extended Kalman filter, In:", 6th Work. Positioning, Navig. Commun. Hannover, Germany, 2009, pp. 189–194.
[3]
B. Barshan, and H.F. Durrant-Whyte, "Inertial navigation systems for mobile robots", IEEE Trans. Robot. Autom.. vol. 11, pp. 328-
342, 1995.
[4]
J.A.F. Cheng, Y. Lu, and E.R. Thomas, "Data fusion via Kalman
filter: GPS and INS autonomous mobile robots", Taylor & Francis
Group. LLC, 2006.
[5]
P.A. Miller, J.A. Farrell, Y. Zhao, and V. Djapic, "Autonomous underwater vehicle navigation", IEEE J. Oceanic Eng.. vol. 35, pp.
663-678, 2010.
[6]
Y. Bar-Shalom, and L. Campo, "The effect of the common process noise on the two-sensor fused-track covariance", IEEE Trans. Aerosp. Electron. Syst.. vol. AES-22, pp. 803-805, 1986.
[7]
J.A. Roecker, and C.D. McGillem, "Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion", IEEE Trans. Aerosp. Electron. Syst.. vol. 24, pp. 447-449,
1988.
[8]
R.K. Saha, "Track-to-track fusion with dissimilar sensors", IEEE Trans. Aerosp. Electron. Syst.. vol. 32, pp. 1021-1029, 1996.
[9]
K.C. Chang, R.K. Saha, and Y. Bar-Shalom, "On optimal track-to-track fusion", IEEE Trans. Aerosp. Electron. Syst.. vol. 33, pp.
1271–1276, 1997.
[10]
J.B. Gao, and C.J. Harris, "Some remarks on Kalman filters for the multisensor fusion", Inf. Fusion. vol. 3, pp. 191-201, 2002.
[11]
L. Zhang, Q. Cheng, Y. Wang, and S. Zeadally, "Landscape: A
high performance distributed positioning scheme for outdoor
sensor networks, In:", Wireless And Mobile Computing, Networking
And Communications, 2005.(WiMob’2005), IEEE International
Conference on. Montreal, Que., Canada, 2005, pp. 430-437.
[12]
L. Zhang, X. Zhou, and Q. Cheng, "Landscape-3D: A robust
localization scheme for sensor networks over complex 3D
terrains, In:", Local Computer Networks, Proceedings 2006 31st
IEEE Conference on. Tampa, FL, USA, 2006, pp. 239-246.
[13]
L. Zhang, Q. Cheng, Y. Wang, and S. Zeadally, "A novel distributed sensor positioning system using the dual of target tracking", IEEE Trans. Comput.. vol. 57, pp. 246-260, 2008.
[14]
L. Zhang, and Q. Cheng, "Landscape (T): A robust and low-cost
sensor positioning system using the dual of target tracking, In:", Poster Proc. IEEE/ACM Int’l Conf. Distributed Computing in
Sensor Systems (DCOSS’06), June. 2006.
[15]
V.P.S. Naidu, "Fusion rrchitectures for 3D target tracking using Irst and radar measurements", J. Aerosp. Sci. Technol., vol. 62, no. 3, pp. 184-195, 2010.
[16]
D. Nada, M.B. Salah, M. Bousbia-Salah, and M. Bettayeb, "Fusion
architectures with extended KALMAN filter for locate wheelchair
position using sensors measurements, In", Proceedings of the
IEEE. 2014 International Conference on Electrical Sciences and
Technologies in Maghreb (CISTEM). Tunis, Tunisia, 2014, pp. 1–
7.
[17]
E.A. Wan, and R. Van Der Merwe, "The unscented Kalman filter
for nonlinear estimation,” In", Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373). Lake Louise, Alberta,
Canada, 2000, pp. 153–158.
[18]
I. Arasaratnam, and S. Haykin, "Square-root quadrature kalman
filtering", IEEE Trans. Signal Process.. vol. 56, pp. 2589-2593,
2008.
[19]
I. Arasaratnam, S. Haykin, and R.J. Elliott, "Discrete-time nonlinear filtering algorithms Using Gauss-Hermite Quadrature", Proc. IEEE. vol. 95, pp. 953-977, 2007.
[20]
I. Arasaratnam, S. Haykin, and T.R. Hurd, "Cubature kalman filtering for continuous-discrete systems: Theory and simulations", IEEE Trans. Signal Process., vol. 58, no. 10, pp. 4977-4993, 2010.
[21]
B.D.O. Anderson, J.B. Moore, and M. Eslami, "Optimal Filtering", IEEE Trans. Syst. Man Cybern.. vol. 12, pp. 235-236, 1982.
[22]
V. Awasthi, and K. Raj, "“A survey on the algorithms of kalman filter,” VSRD Int. J. Tech", Non-Technical Res.. vol. 2, pp. 73-88,
2011.
[23]
D.L. Hall, and S.A.H. McMullen, Mathematical Techniques in Multisensor Data Fusion. Artech House, 2004.
[24]
J.R. Raol, Multi-Sensor Data Fusion with MATLAB. 1st ed. Boca
Raton, FL, USA: CRC Press, 2009.