Review Article

Lipid-based Nanocarriers for siRNA Delivery: Challenges, Strategies and the Lessons Learned from the DODAX: MO Liposomal System

Author(s): Ana C.N. Oliveira, Joana Fernandes, Anabela Gonçalves, Andreia C. Gomes* and M.E.C.D. Real Oliveira*

Volume 20, Issue 1, 2019

Page: [29 - 50] Pages: 22

DOI: 10.2174/1389450119666180703145410

Price: $65

Abstract

The possibility of using the RNA interference (RNAi) mechanisms in gene therapy was one of the scientific breakthroughs of the last century. Despite the extraordinary therapeutic potential of this approach, the need for an efficient gene carrier is hampering the translation of the RNAi technology to the clinical setting. Although a diversity of nanocarriers has been described, liposomes continue to be one of the most attractive siRNA vehicles due to their relatively low toxicity, facilitated siRNA complexation, high transfection efficiency and enhanced pharmacokinetic properties.

This review focuses on RNAi as a therapeutic approach, the challenges to its application, namely the nucleic acids’ delivery process, and current strategies to improve therapeutic efficacy. Additionally, lipid-based nanocarriers are described, and lessons learned from the relation between biophysical properties and biological performance of the dioctadecyldimethylammonium:monoolein (DODAX: MO) system are explored.

Liposomes show great potential as siRNA delivery systems, being safe nanocarriers to protect nucleic acids in circulation, extend their half-life time, target specific cells and reduce off-target effects. Nevertheless, several issues related to delivery must be overcome before RNAi therapies reach their full potential, namely target-cell specificity and endosomal escape. Understanding the relationship between biophysical properties and biological performance is an essential step in the gene therapy field.

Keywords: Cationic liposomes, monoolein, siRNA delivery, DODAB, DODAC, PEGylation.

Graphical Abstract

[1]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(2)
[2]
Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990; 2(4): 279-89.
[3]
Romano N, Macino G. Quelling: Transient inactivation of gene expression in neurospora crassa by transformation with homologous sequences. Mol Microbiol 1992; 6(22): 3343-53.
[4]
Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in c. Elegans embryos, encodes a putative ser/thr kinase that is asymmetrically distributed. Cell 1995; 81(4): 611-20.
[5]
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded rna in caenorhabditis elegans. Nature 1998; 391(6669): 806-11.
[6]
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide rnas mediate rna interference in cultured mammalian cells. Nature 2001; 411(6836): 494-8.
[7]
McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA. Rna interference in adult mice. Nature 2002; 418(6893): 38-9.
[8]
Wu SY, Lopez-Berestein G, Calin GA, Sood AK. Targeting the undruggable: Advances and obstacles in current rnai therapy. Sci Transl Med 2014; 6(240): 1-15.
[9]
Carroll JB, Warby SC, Southwell AL, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the huntington disease gene / allele-specific silencing of mutant huntingtin. Mol Ther 2011; 19(12): 2178-85.
[10]
Wooddell CI, Rozema DB, Hossbach M, et al. Hepatocyte-targeted rnai therapeutics for the treatment of chronic hepatitis b virus infection. Mol Ther 2013; 21(5): 973-85.
[11]
Oh YK, Park TG. Sirna delivery systems for cancer treatment. Adv Drug Deliv Rev 2009; 61(10): 850-62.
[12]
Resnier P, Montier T, Mathieu V, Benoit JP, Passirani C. A review of the current status of sirna nanomedicines in the treatment of cancer. Biomaterials 2013; 34(27): 6429-43.
[13]
Mendonca LS, Firmino F, Moreira JN, Pedroso de Lima MC, Simoes S. Transferrin receptor-targeted liposomes encapsulating anti-bcr-abl sirna or asodn for chronic myeloid leukemia treatment. Bioconjug Chem 2010; 21(1): 157-68.
[14]
Crombez L, Morris MC, Dufort S, et al. Targeting cyclin b1 through peptide-based delivery of sirna prevents tumour growth. Nucleic Acids Res 2009; 37(14): 4559-69.
[15]
Sun TM, Du JZ, Yao YD, et al. Simultaneous delivery of sirna and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano 2011; 5(2): 1483-94.
[16]
Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J. Systemic delivery of sirna with cationic lipid assisted peg-pla nanoparticles for cancer therapy. J Control Release 2011; 156(2): 203-11.
[17]
Kaestner P, Aigner A, Bastians H. Therapeutic targeting of the mitotic spindle checkpoint through nanoparticle-mediated sirna delivery inhibits tumor growth in vivo. Cancer Lett 2011; 304(2): 128-36.
[18]
Tanaka T, Mangala LS, Vivas-Mejia PE, et al. Sustained small interfering rna delivery by mesoporous silicon particles. Cancer Res 2010; 70(9): 3687-96.
[19]
Sasaki T, Nakashiro K, Tanaka H, et al. Knockdown of akt isoforms by rna silencing suppresses the growth of human prostate cancer cells in vitro and in vivo. Biochem Biophys Res Commun 2010; 399(1): 79-83.
[20]
Han HD, Mangala LS, Lee JW, et al. Targeted gene silencing using rgd-labeled chitosan nanoparticles. Clin Cancer Res 2010; 16(15): 3910-22.
[21]
Sonoke S, Ueda T, Fujiwara K, et al. Tumor regression in mice by delivery of bcl-2 small interfering rna with pegylated cationic liposomes. Cancer Res 2008; 68(21): 8843-51.
[22]
Mu P, Nagahara S, Makita N, Tarumi Y, Kadomatsu K, Takei Y. Systemic delivery of sirna specific to tumor mediated by atelocollagen: Combined therapy using sirna targeting bcl-xl and cisplatin against prostate cancer. Int J Cancer 2009; 125(12): 2978-90.
[23]
Shim G, Han SE, Yu YH, et al. Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of sirna and an anticancer drug. J Control Release 2011; 155(1): 60-6.
[24]
Xue HY, Wong HL. Solid lipid-pei hybrid nanocarrier: An integrated approach to provide extended, targeted, and safer sirna therapy of prostate cancer in an all-in-one manner. ACS Nano 2011; 5(9): 7034-47.
[25]
Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. Local and systemic delivery of vegf sirna using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release 2008; 129(2): 107-16.
[26]
Guo J, Cheng WP, Gu J, et al. Systemic delivery of therapeutic small interfering rna using a ph-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci 2012; 45(5): 521-32.
[27]
Villares GJ, Zigler M, Blehm K, et al. Targeting egfr in bladder cancer. World J Urol 2007; 25(6): 573-9.
[28]
Aleku M, Schulz P, Keil O, et al. Atu027, a liposomal small interfering rna formulation targeting protein kinase n3, inhibits cancer progression. Cancer Res 2008; 68(23): 9788-98.
[29]
Yagi N, Manabe I, Tottori T, et al. A nanoparticle system specifically designed to deliver short interfering rna inhibits tumor growth in vivo. Cancer Res 2009; 69(16): 6531-8.
[30]
Panneer Selvam S, De Palma RM, Oaks JJ, et al. Binding of the sphingolipid s1p to htert stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation. Sci Signal 2015; 8(381): ra58.
[31]
Wu SY, Singhania A, Burgess M, et al. Systemic delivery of e6/7 sirna using novel lipidic particles and its application with cisplatin in cervical cancer mouse models. Gene Ther 2011; 18(1): 14-22.
[32]
Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of ews-fli1 by targeted, nonviral delivery of small interfering rna inhibits tumor growth in a murine model of metastatic ewing’s sarcoma. Cancer Res 2005; 65(19): 8984-92.
[33]
Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against c-raf kinase. Nat Med 1996; 2(6): 668-75.
[34]
Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of sirna. Mol Ther 2008; 16(5): 942-6.
[35]
Zaree Mahmodabady A, Javadi HR, Kamali M, Najafi A, Hojati Z. Bcr-abl silencing by specific small-interference rna expression vector as a potential treatment for chronic myeloid leukemia. Iran Biomed J 2010; 14(1-2): 1-8.
[36]
Wu H, Hait WN, Yang JM. Small interfering rna-induced suppression of mdr1 (p-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 2003; 63(7): 1515-9.
[37]
Wilson RC, Doudna JA. Molecular mechanisms of rna interference. Annu Rev Biophys 2013; 42: 217-39.
[38]
Sioud M. Rna interference: Mechanisms, technical challenges, and therapeutic opportunities. Methods Mol Biol 2015; 1218: 1-15.
[39]
Zeng Y. Principles of micro-rna production and maturation. Oncogene 2006; 25(46): 6156-62.
[40]
Macrae IJ, Zhou K, Li F, et al. Structural basis for double-stranded rna processing by dicer. Science 2006; 311(5758): 195-8.
[41]
Carthew RW, Sontheimer EJ. Origins and mechanisms of mirnas and sirnas. Cell 2009; 136(4): 642-55.
[42]
Ipsaro JJ, Joshua-Tor L. From guide to target: Molecular insights into eukaryotic rna-interference machinery. Nat Struct Mol Biol 2015; 22(1): 20-8.
[43]
Tomari Y, Zamore PD. Perspective: Machines for rnai. Genes Dev 2005; 19(5): 517-29.
[44]
Castanotto D, Sakurai K, Lingeman R, et al. Combinatorial delivery of small interfering rnas reduces rnai efficacy by selective incorporation into risc. Nucleic Acids Res 2007; 35(15): 5154-64.
[45]
Behlke MA. Chemical modification of sirnas for in vivo use. Oligonucleotides 2008; 18(4): 305-19.
[46]
Jackson AL, Linsley PS. Recognizing and avoiding sirna off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 2010; 9(1): 57-67.
[47]
Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B. Hiv-1 can escape from rna interference by evolving an alternative structure in its rna genome. Nucleic Acids Res 2005; 33(2): 796-804.
[48]
Gao K, Huang L. Achieving efficient rnai therapy: Progress and challenges. Acta Pharm Sin B 2013; 3(4): 213-25.
[49]
Bennett CF, Swayze EE. Rna targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 2010; 50: 259-93.
[50]
Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA. In vivo activity of nuclease-resistant sirnas. RNA 2004; 10(5): 766-71.
[51]
Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of sirna-based therapeutics. Adv Drug Deliv Rev 2015; 87: 108-19.
[52]
Kim TK, Eberwine JH. Mammalian cell transfection: The present and the future. Anal Bioanal Chem 2010; 397(8): 3173-8.
[53]
Gojo S, Yamamoto S, Patience C, LeGuern C, Cooper DK. Gene therapy--its potential in surgery. Ann R Coll Surg Engl 2002; 84(5): 297-301.
[54]
Burnett JC, Rossi JJ, Tiemann K. Current progress of sirna/shrna therapeutics in clinical trials. Biotechnol J 2011; 6(9): 1130-46.
[55]
Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: A look back and ahead on gene transfer technology. New Microbiol 2013; 36(1): 1-22.
[56]
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm 2014; 459(1-2): 70-83.
[57]
Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified sirnas. Nature 2004; 432(7014): 173-8.
[58]
Nishina K, Unno T, Uno Y, et al. Efficient in vivo delivery of sirna to the liver by conjugation of alpha-tocopherol. Mol Ther 2008; 16(4): 734-40.
[59]
Moschos SA, Jones SW, Perry MM, et al. Lung delivery studies using sirna conjugated to tat(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 2007; 18(5): 1450-9.
[60]
Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. Peg conjugated vegf sirna for anti-angiogenic gene therapy. J Control Release 2006; 116(2): 123-9.
[61]
Chu TC, Twu KY, Ellington AD, Levy M. Aptamer mediated sirna delivery. Nucleic Acids Res 2006; 34(10): e73.
[62]
Zhao E, Zhao Z, Wang J, et al. Surface engineering of gold nanoparticles for in vitro sirna delivery. Nanoscale 2012; 4(16): 5102-9.
[63]
Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG. Lipidoid-coated iron oxide nanoparticles for efficient DNA and sirna delivery. Nano Lett 2013; 13(3): 1059-64.
[64]
Zhang Z, Yang X, Zhang Y, et al. Delivery of telomerase reverse transcriptase small interfering rna in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 2006; 12(16): 4933-9.
[65]
Liu P, Yu H, Sun Y, Zhu M, Duan Y. A mpeg-plga-b-pll copolymer carrier for adriamycin and sirna delivery. Biomaterials 2012; 33(17): 4403-12.
[66]
Howard KA, Rahbek UL, Liu X, et al. Rna interference in vitro and in vivo using a novel chitosan/sirna nanoparticle system. Mol Ther 2006; 14(4): 476-84.
[67]
Patil ML, Zhang M, Taratula O, Garbuzenko OB, He H, Minko T. Internally cationic polyamidoamine pamam-oh dendrimers for sirna delivery: Effect of the degree of quaternization and cancer targeting. Biomacromolecules 2009; 10(2): 258-66.
[68]
Giner-Casares JJ, Henriksen-Lacey M, Coronado-Puchau M, Liz-Marzán LM. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater Today 2016; 19(1): 19-28.
[69]
Tatiparti K, Sau S, Kashaw S. KIyer AK. Sirna delivery strategies: A comprehensive review of recent developments. Nanomaterials (Basel) 2017; 7(4): E77.
[70]
Ojea-Jimenez I, Comenge J, Garcia-Fernandez L, Megson ZA, Casals E, Puntes VF. Engineered inorganic nanoparticles for drug delivery applications. Curr Drug Metab 2013; 14(5): 518-30.
[71]
Kim T, Hyeon T. Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 2014; 25(1): 012001.
[72]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[73]
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 2015; 16(2): 023501.
[74]
Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res 2009; 2(2): 85-120.
[75]
Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. NannoToday 2011; 6(5): 446-65.
[76]
Wang Y, Ding L, Yao C, et al. Toxic effects of metal oxide nanoparticles and their underlying mechanisms. Science China Materials 2017; 60(2): 93-108.
[77]
Saraswathy M, Gong S. Recent developments in the co-delivery of sirna and small molecule anticancer drugs for cancer treatment. Biochem Pharmacol Material Study 2014; 17(6): 298-306.
[78]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[79]
Gregoriadis G. Drug entrapment in liposomes. FEBS Lett 1973; 36(3): 292-6.
[80]
Jin S, Ye K. Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 2007; 23(1): 32-41.
[81]
Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci Biotechnol 2012; 1(2): 147-68.
[82]
Felgner PL, Gadek TR, Holm M, et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84(21): 7413-7.
[83]
Sun H, Yarovoy I, Capeling M, Cheng C. Polymers in the co-delivery of sirna and anticancer drugs for the treatment of drug-resistant cancers. Top Curr Chem (Cham) 2017; 375(2): 24.
[84]
Koynova R, Tenchov B. Cationic lipids: Molecular structure/ transfection activity relationships and interactions with biomembranes. Top Curr Chem 2010; 296: 51-93.
[85]
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006; 114(1): 100-9.
[86]
Karmali PP, Chaudhuri A. Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Med Res Rev 2007; 27(5): 696-722.
[87]
Koltover I, Salditt T, Radler JO, Safinya CR. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 1998; 281(5373): 78-81.
[88]
Zuhorn IS, Bakowsky U, Polushkin E, et al. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 2005; 11(5): 801-10.
[89]
Zuidam NJ, Barenholz Y. Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta 1998; 1368(1): 115-28.
[90]
Balazs DA, Godbey W. Liposomes for use in gene delivery. J Drug Deliv 2011; 2011: 326497.
[91]
Oliveira AC, Sárria MP, Moreira P, et al. Counter ions and constituents combination affect dodax: Mo nanocarriers toxicity in vitro and in vivo. Toxicol Res 2016; 5(4): 1244-55.
[92]
Hungerford G, Castanheira EM, Baptista AL, Coutinho PJ, Oliveira ME. Domain formation in dodab-cholesterol mixed systems monitored via nile red anisotropy. J Fluoresc 2005; 15(6): 835-40.
[93]
Misra SK, Biswas J, Kondaiah P, Bhattacharya S. Gene transfection in high serum levels: Case studies with new cholesterol based cationic gemini lipids. PLoS One 2013; 8(7): e68305.
[94]
Nguyen VH, Lee BJ. Protein corona: A new approach for nanomedicine design. Int J Nanomedicine 2017; 12: 3137-51.
[95]
Betker JL, Gomez J, Anchordoquy TJ. The effects of lipoplex formulation variables on the protein corona and comparisons with in vitro transfection efficiency. J Control Release 2013; 171(3): 261-8.
[96]
Sternberg B, Hong K, Zheng W, Papahadjopoulos D. Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim Biophys Acta 1998; 1375(1-2): 23-35.
[97]
Faneca H, Simoes S, de Lima MC. Evaluation of lipid-based reagents to mediate intracellular gene delivery. Biochim Biophys Acta 2002; 1567(1-2): 23-33.
[98]
Silva JP, Oliveira AC, Casal MP, et al. Dodab:Monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells. Biochim Biophys Acta 2011; 1808(10): 2440-9.
[99]
Silva JP, Oliveira ACN, Gomes AC, et al. (2012). Development of Dioctadecyldimethylammonium Bromide/Monoolein Liposomes for Gene Delivery, Cell Interaction, Sivakumar Gowder (Ed.), ISBN: 978-953-51-0792-7.
[100]
Oliveira AC, Martens TF, Raemdonck K, et al. Dioctadecyldimethylammonium:Monoolein nanocarriers for efficient in vitro gene silencing. ACS Appl Mater Interfaces 2014; 6(9): 6977-89.
[101]
Luzzati V. Biological significance of lipid polymorphism: The cubic phases. Curr Opin Struct Biol 1997; 7(5): 661-8.
[102]
Desigaux L, Sainlos M, Lambert O, et al. Self-assembled lamellar complexes of sirna with lipidic aminoglycoside derivatives promote efficient sirna delivery and interference. Proc Natl Acad Sci US 2007; 104(42): 16534-9.
[103]
Weisman S, Hirsch-Lerner D, Barenholz Y, Talmon Y. Nanostructure of cationic lipid-oligonucleotide complexes. Biophys 2004; 87(1): 609-14.
[104]
Huebner S, Battersby BJ, Grimm R, Cevc G. Lipid-DNA complex formation: Reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. Biophys J 1999; 76(6): 3158-66.
[105]
Ciani L, Ristori S, Bonechi C, Rossi C, Martini G. Effect of the preparation procedure on the structural properties of oligonucleotide/cationic liposome complexes (lipoplexes) studied by electron spin resonance and zeta potential. Biophys Chem 2007; 131(1-3): 80-7.
[106]
Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: Dilemmas and strategies. Int J Pharm 2012; 427(1): 3-20.
[107]
Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 1988; 85(18): 6949-53.
[108]
Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991; 1066(1): 29-36.
[109]
Hama S, Itakura S, Nakai M, et al. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J Control Release 2015; 206: 67-74.
[110]
Hattori Y, Nakamura A, Arai S, Kawano K, Maitani Y, Yonemochi E. Sirna delivery to lung-metastasized tumor by systemic injection with cationic liposomes. J Liposome Res 2015; 25(4): 279-86.
[111]
Dar GH, Gopal V, Rao NM. Systemic delivery of stable sirna-encapsulating lipid vesicles: Optimization, biodistribution, and tumor suppression. Mol Pharm 2015; 12(2): 610-20.
[112]
Nogueira E, Freitas J, Loureiro A, et al. Neutral pegylated liposomal formulation for efficient folate-mediated delivery of mcl1 sirna to activated macrophages. Colloids Surf B Biointerfaces 2017; 155: 459-65.
[113]
Pietralik Z, Kolodziejska Z, Weiss M, Kozak M. Gemini surfactants based on bis-imidazolium alkoxy derivatives as effective agents for delivery of nucleic acids: A structural and spectroscopic study. PLoS One 2015; 10(12): e0144373.
[114]
Cruz RQ, Morais CM, Cardoso AM, et al. Enhancing glioblastoma cell sensitivity to chemotherapeutics: A strategy involving survivin gene silencing mediated by gemini surfactant-based complexes. Eur J Pharm Biopharm 2016; 104: 7-18.
[115]
Kapoor M, Burgess DJ. Efficient and safe delivery of sirna using anionic lipids: Formulation optimization studies. Int J Pharm 2012; 432(1-2): 80-90.
[116]
Oliveira AC, Raemdonck K, Martens T, et al. Stealth monoolein-based nanocarriers for delivery of sirna to cancer cells. Acta Biomater 2015; 25: 216-29.
[117]
Gao J, Yu Y, Zhang Y, et al. Egfr-specific pegylated immunoliposomes for active sirna delivery in hepatocellular carcinoma. Biomaterials 2012; 33(1): 270-82.
[118]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the epr effect in macromolecular therapeutics: A review. J Control Release 2000; 65(1-2): 271-84.
[119]
Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2008; 25(1): 55-71.
[120]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[121]
Allen C, Dos Santos N, Gallagher R, et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 2002; 22(2): 225-50.
[122]
Li SD, Huang L. Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochim Biophys Acta 2009; 1788(10): 2259-66.
[123]
Braeckmans K, Buyens K, Bouquet W, et al. Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett 2010; 10(11): 4435-42.
[124]
Dakwar GR, Zagato E, Delanghe J, et al. Colloidal stability of nano-sized particles in the peritoneal fluid: Towards optimizing drug delivery systems for intraperitoneal therapy. Acta Biomater 2014; 10(7): 2965-75.
[125]
Buyens K, Lucas B, Raemdonck K, et al. A fast and sensitive method for measuring the integrity of sirna-carrier complexes in full human serum. J Control Release 2008; 126(1): 67-76.
[126]
Shi F, Wasungu L, Nomden A, et al. Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochem J 2002; 366(Pt 1): 333-41.
[127]
Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 2001; 8(15): 1188-96.
[128]
Sewell SL, Giorgio TD. Synthesis and enzymatic cleavage of dualligand quantum dots. Materials Science and Engineering: C. 2009; 29(4): 1428-32.
[129]
Rejman J, Wagenaar A, Engberts JB, Hoekstra D. Characterization and transfection properties of lipoplexes stabilized with novel exchangeable polyethylene glycol-lipid conjugates. Biochim Biophys Acta 2004; 1660(1-2): 41-52.
[130]
Buyens K, De Smedt SC, Braeckmans K, et al. Liposome based systems for systemic sirna delivery: Stability in blood sets the requirements for optimal carrier design. J Control Release 2012; 158(3): 362-70.
[131]
Rehman ZU, Zuhorn IS, Hoekstra D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J Control Release 2013; 166(1): 46-56.
[132]
Daniels TR, Bernabeu E, Rodriguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012; 1820(3): 291-317.
[133]
Xiang S, Tong H, Shi Q, et al. Uptake mechanisms of non-viral gene delivery. J Control Release 2012; 158(3): 371-8.
[134]
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010; 145(3): 182-95.
[135]
Young SW, Stenzel M, Yang JL. Nanoparticle-sirna: A potential cancer therapy? Crit Rev Oncol Hematol 2016; 98: 159-69.
[136]
Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 2002; 22(2): 129-50.
[137]
Zelphati O, Szoka FC. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA 1996; 93(21): 11493-8.
[138]
Farhood H, Serbina N, Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1995; 1235(2): 289-95.
[139]
Obata Y, Tajima S, Takeoka S. Evaluation of ph-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release 2010; 142(2): 267-76.
[140]
Kumar VV, Pichon C, Refregiers M, Guerin B, Midoux P, Chaudhuri A. Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: Evidence for histidine-mediated membrane fusion at acidic ph. Gene Ther 2003; 10(15): 1206-15.
[141]
Cho YW, Kim JD, Park K. Polycation gene delivery systems: Escape from endosomes to cytosol. J Pharm Pharmacol 2003; 55(6): 721-34.
[142]
Murphy EA, Majeti BK, Barnes LA, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 2008; 105(27): 9343-8.
[143]
Lu RM, Chang YL, Chen MS, Wu HC. Single chain anti-c-met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 2011; 32(12): 3265-74.
[144]
Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y. Folate-linked lipid-based nanoparticles for synthetic sirna delivery in kb tumor xenografts. Eur J Pharm Biopharm 2008; 70(3): 718-25.
[145]
Li L, Hou J, Liu X, et al. Nucleolin-targeting liposomes guided by aptamer as1411 for the delivery of sirna for the treatment of malignant melanomas. Biomaterials 2014; 35(12): 3840-50.
[146]
Simoes S, Slepushkin V, Pires P, Gaspar R, de Lima MP, Duzgunes N. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or ph-sensitive peptides. Gene Ther 1999; 6(11): 1798-807.
[147]
Yang C, Zhang C, Zhao Z, Zhu T, Yang B. Fighting against kidney diseases with small interfering rna: Opportunities and challenges. J Transl Med 2015; 13: 39.
[148]
Curtin JF, Candolfi M, Xiong W, Lowenstein PR, Castro MG. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics. Mol Cancer Ther 2008; 7(3): 439-48.
[149]
Youn H, Chung JK. Modified mrna as an alternative to plasmid DNA(pdna) for transcript replacement and vaccination therapy. Expert Opin Biol Ther 2015; 15(9): 1337-48.
[150]
Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-hbv activity of chemically modified sirnas. Nat Biotechnol 2005; 23(8): 1002-7.
[151]
Meng Z, Lu M. Rna interference-induced innate immunity, off-target effect, or immune adjuvant? Front Immunol 2017; 8: 331.
[152]
Corey DR. Chemical modification: The key to clinical application of rna interference? J Clin Invest 2007; 117(12): 3615-22.
[153]
Wittrup A, Lieberman J. Knocking down disease: A progress report on sirna therapeutics. Nat Rev Genet 2015; 16(9): 543-52.
[154]
Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for sirna therapeutics. Nat Mater 2013; 12(11): 967-77.
[155]
Coelho T, Adams D, Silva A, et al. Safety and efficacy of rnai therapy for transthyretin amyloidosis. N Engl J Med 2013; 369(9): 819-29.
[156]
Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of rna therapeutics: From concept to clinical reality. Genome Med 2017; 9(1): 60.
[157]
Silva JPN, Real Oliveira MECD, Coutinho PJG. Characterization of mixed dodab/monoolein aggregates using nile red as a solvatochromic and anisotropy fluorescent probe. J Photochem Photobiol Chem 2009; 203(1): 32-9.
[158]
Silva JP, Oliveira IM, Oliveira AC, et al. Structural dynamics and physicochemical properties of pdna/dodab:Mo lipoplexes: Effect of ph and anionic lipids in inverted non-lamellar phases versus lamellar phases. Biochim Biophys Acta 2014; 1838(10): 2555-67.
[159]
Oliveira IM, Silva JP, Feitosa E, Marques EF, Castanheira EM, Real Oliveira MECD. Aggregation behavior of aqueous dioctadecyldimethylammonium bromide/monoolein mixtures: A multitechnique investigation on the influence of composition and temperature. J Colloid Interface Sci 2012; 374(1): 206-17.
[160]
Carneiro C, Correia A, Collins T, et al. Dodab:Monoolein liposomes containing candida albicans cell wall surface proteins: A novel adjuvant and delivery system. Eur J Pharm Biopharm 2015; 89: 190-200.
[161]
Neves Silva JP, Coutinho PJ, Real Oliveira MECD. Characterization of monoolein-based lipoplexes using fluorescence spectroscopy. J Fluoresc 2008; 18(2): 555-62.
[162]
Silva JP, Oliveira AC, Lucio M, Gomes AC, Coutinho PJ, Real Oliveira MECD. Tunable pdna/dodab:Mo lipoplexes: The effect of incubation temperature on pdna/dodab:Mo lipoplexes structure and transfection efficiency. Colloids Surf B Biointerfaces 2014; 121: 371-9.
[163]
Silva JPN, Oliveira ACN, Lúcio M, Gomes AFC, Real Oliveira MECD. How multi-step versus one-step preparation method affects the physicochemical properties and transfection efficiency of DNA/dodab:Mo lipoplexes. J Appl Solut Chem Model 2014; 3(2)
[164]
Lopes I. A CNO, M PS, et al Monoolein-based nanocarriers for enhanced folate receptor-mediated rna delivery to cancer cells. J Liposome Res 2016; 26(3): 199-210.
[165]
Feitosa E, Barreleiro PC, Olofsson G. Phase transition in dioctadecyldimethylammonium bromide and chloride vesicles prepared by different methods. Chem Phys Lipids 2000; 105(2): 201-13.
[166]
Feitosa E, Karlsson G, Edwards K. Unilamellar vesicles obtained by simply mixing dioctadecyldimethylammonium chloride and bromide with water. Chem Phys Lipids 2006; 140(1-2): 66-74.
[167]
Feitosa E, Alves FR, Castanheira EMS, Real Oliveira MECD. Dodab and dodac bilayer-like aggregates in the micromolar surfactant concentration domain. Colloid Polym Sci 2009; 287(5): 591-9.
[168]
Feitosa E, Alves FR. The role of counterion on the thermotropic phase behavior of dodab and dodac vesicles. Chem Phys Lipids 2008; 156(1-2): 13-6.
[169]
Liu CK, Warr GG. Hexagonal closest-packed spheres liquid crystalline phases stabilised by strongly hydrated counterions. Soft Matter 2014; 10(1): 83-7.
[170]
Schulz PC, Rodriguez JL, Puig JE, Proverbio ZE. Phase behaviour of the dioctadecyldimethyl ammonium bromide - water system. J Therm Anal 1998; 51(1): 49-62.
[171]
Ganem-Quintanar A, Quintanar-Guerrero D, Buri P. Monoolein: A review of the pharmaceutical applications. Drug Dev Ind Pharm 2000; 26(8): 809-20.
[172]
Kulkarni CV, Wachter W, Iglesias-Salto G, Engelskirchen S, Ahualli S. Monoolein: A magic lipid? Phys Chem Chem Phys 2011; 13(8): 3004-21.
[173]
Qiu H, Caffrey M. The phase diagram of the monoolein/water system: Metastability and equilibrium aspects. Biomaterials 2000; 21(3): 223-34.
[174]
Real Oliveira MECD, Silva JPN, Coutinho PJG, Coutinho OMFP, Gomes AFC, Casal MPPA. Use of monoolein as a new auxiliary lipid for lipofection. 2015. WO2010/020935 1-15

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy