Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

基础癌症生物学对纳米药物靶向给药的挑战和机遇

卷 19, 期 4, 2019

页: [257 - 276] 页: 20

弟呕挨: 10.2174/1568009618666180628160211

价格: $65

摘要

背景:由于肿瘤发生和肿瘤转移的复杂潜在机制以及通常与目前使用的癌症治疗选择相关的局限性,有效的癌症治疗仍然是现代医学研究的巨大挑战。纳米技术已经在癌症治疗中得到应用,具有改善癌症治疗的巨大潜力。目的:通过有关癌症标志近期进展的信息,我们可以全面了解药理作用,探索纳米材料之间相互作用的机制,为开发基于机制的纳米医学治疗人类癌症提供机会。 方法:我们从文章中收集了相关信息和数据。 结果:在这篇综述中,我们讨论了癌症的特征,包括肿瘤血管生成,肿瘤血管异常,不受控制的细胞增殖标志物,多药耐药,肿瘤转移,癌细胞代谢和肿瘤免疫系统,为纳米医学提供了机遇和挑战。针对特定的癌细胞,描绘了纳米技术在癌症治疗中的应用进展。 结论:本综述中提供的信息可为进一步研究开发有效的纳米药物治疗癌症提供有用的参考。

关键词: 纳米技术,纳米医学,癌症特征,癌症治疗,纳米医学,肿瘤血管生成。

图形摘要

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2015, 65(1), 5-29.
[2]
Jiang, Z.; Shao, J.W.; Yang, T.T.; Wang, J.; Jia, L. Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy. Pharmaceut. Biomed., 2014, 87, 98-104.
[3]
Vogl, T.J.; Farshid, P.; Naguib, N.N.N.; Zangos, S. Thermal ablation therapies in patients with breast cancer liver metastases: A review. Eur. Radiol., 2013, 23(3), 797-804.
[4]
Fernandez-Garcia, E.M.; Vera-Badillo, F.E.; Perez-Valderrama, B.; Matos-Pita, A.S.; Duran, I. Immunotherapy in prostate cancer: Review of the current evidence. Clin. Transl. Oncol., 2015, 17(5), 339-357.
[5]
Lyra-Gonzalez, I.; Flores-Fong, L.E.; Gonzalez-Garcia, I.; Medina-Preciado, D.; Armendariz-Borunda, J. Adenoviral gene therapy in hepatocellular carcinoma: A review. Hepatol. Int., 2013, 7(1), 48-58.
[6]
(a) Versteeg, K.S.; Konings, I.R.; Lagaay, A.M.; van de Loosdrecht, A.A.; Verheul, H.M.W. Prediction of treatment-related toxicity and outcome with geriatric assessment in elderly patients with solid malignancies treated with chemotherapy: A systematic review. Ann. Oncol., 2014, 25(10), 1914-1918.
(b) Hourdequin, K.C.; Schpero, W.L.; McKenna, D.R.; Piazik, B.L.; Larson, R.J. Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: A systematic review and meta-analysis. Ann. Oncol., 2013, 24(12), 2952-2962.
(c) Magge, R.S.; DeAngelis, L.M. The double-edged sword: Neurotoxicity of chemotherapy. Blood Rev., 2015, 29(2), 93-100.
(d) Saraswathy, M.; Gong, S.Q. Different strategies to overcome multidrug resistance in cancer. Biotechnol. Adv., 2013, 31(8), 1397-1407.
[7]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[8]
Dickherber, A.; Morris, S.A.; Grodzinski, P. NCI investment in nanotechnology: Achievements and challenges for the future. Wires Nanomed. Nanobi., 2015, 7(3), 251-265.
[9]
(a) Xu, X.Y.; Ho, W.; Zhang, X.Q.; Bertrand, N.; Farokhzad, O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol. Med., 2015, 21(4), 223-232.
(b) Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[10]
(a) Miklos, G.L.G. The human cancer genome project - one more misstep in the war on cancer. Nat. Biotechnol., 2005, 23(5), 535-537.
(b) Leaf, C. Why we’re losing the war on cancer and how to win it. Fortune, 2004, 149(6), 76-82.
[11]
Wang, S.L.; Lee, J.J.; Liao, A.T. Chemotherapy-induced neutropenia is associated with prolonged remission duration and survival time in canine lymphoma. Vet. J., 2015, 205(1), 69-73.
[12]
Mehanna, E.; Al-Kindi, S.G.; Ige, M.; Kumar, S.; Kattea, M.; ElAmm, C.; Deo, S.; Benatti, R.D.; Ginwalla, M.; Park, S.J.; Oliveira, G.H. Increased risk of cerebrovascular death in patients with chemotherapy-induced cardiomyopathy. J. Card. Fail., 2015, 21(8), S61-S62.
[13]
Gao, Y.; Yang, R.F.; Zhang, Z.W.; Chen, L.L.; Sun, Z.Y.; Li, Y.P. Solid lipid nanoparticles reduce systemic toxicity of docetaxel: Performance and mechanism in animal. Nanotoxicology, 2011, 5(4), 636-649.
[14]
Stone, J.B.; DeAngelis, L.M. Cancer-treatment-induced neurotoxicity--focus on newer treatments. Nat. Rev. Clin. Oncol., 2016, 13(2), 92-105.
[15]
Hennenfent, K.L.; Govindan, R. Novel formulations of taxanes: A review. Old wine in a new bottle? Ann. Oncol., 2006, 17(5), 735-749.
[16]
Wu, Q.; Yang, Z.P.; Nie, Y.Z.; Shi, Y.Q.; Fan, D.M. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[17]
(a) Lebellec, L.; Aubert, S.; Zairi, F.; Ryckewaert, T.; Chauffert, B.; Penel, N. Molecular targeted therapies in advanced or metastatic chordoma patients: Facts and hypotheses. Crit. Rev. Oncol. Hematol., 2015, 95(1), 125-131.
(b) Magee, L.R.A.; Tod, A.M.; Eisen, T.G.Q.; Burnet, K.L. The effects of the molecular targeted therapies in advanced lung and renal cancer focus group analysis. Lung Cancer, 2014, 83, S45-S45.
(c) Wong, H.; Yau, T. Molecular targeted therapies in advanced gastric cancer: Does tumor histology matter? Therap. Adv. Gastroenterol., 2013, 6(1), 15-31.
[18]
Lam, K.C.; Mok, T.S. Targeted therapy: An evolving world of lung cancer. Respirology, 2011, 16(1), 13-21.
[19]
(a) Sosnik, A. das Neves, J.; Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog. Polym. Sci., 2014, 39(12), 2030-2075.
(b) Ma, P.; Mumper, R.J. Anthracycline nano-delivery systems to overcome multiple drug resistance: A comprehensive review. Nano Today, 2013, 8(3), 313-331.
(c) Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J. Control. Release, 2013, 172(3), 1075-1091.
[20]
Cheetham, A.G.; Zhang, P.C.; Lin, Y.A.; Lock, L.L.; Cui, H.G. Supramolecular nanostructures formed by anticancer drug assembly. J. Am. Chem. Soc., 2013, 135(8), 2907-2910.
[21]
Tan, X.Y.; Lu, X.G.; Jia, F.; Liu, X.F.; Sun, Y.H.; Logan, J.K.; Zhang, K. Blurring the role of oligonucleotides: Spherical nucleic acids as a drug delivery vehicle. J. Am. Chem. Soc., 2016, 138(34), 10834-10837.
[22]
(a) Baek, S.; Singh, R.K.; Khanal, D.; Patel, K.D.; Lee, E.J.; Leong, K.W.; Chrzanowski, W.; Kim, H.W. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale, 2015, 7(34), 14191-14216.
(b) Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., 2012, 64, 206-212.
[23]
(a) Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2017, 535(1-2), 1-17.
(b) Feng, L.; Mumper, R.J. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett., 2013, 334(2), 157-175.
(c) Zaro, J.L. Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS J., 2015, 17(1), 83-92.
[24]
Li, Y.P.; Xiao, K.; Zhu, W.; Deng, W.B.; Lam, K.S. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv. Drug Deliv. Rev., 2014, 66, 58-73.
[25]
Lin, C.H.; Chen, C.H.; Lin, Z.C.; Fang, J.Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J. Food Drug Anal., 2017, 25(2), 219-234.
[26]
Cuong, N.V.; Hsieh, M.F. Recent advances in pharmacokinetics of polymeric excipients used in nanosized anti-cancer drugs. Curr. Drug Metab., 2009, 10(8), 842-850.
[27]
Dong, R.J.; Zhou, Y.F.; Huang, X.H.; Zhu, X.Y.; Lu, Y.F.; Shen, J. Functional supramolecular polymers for biomedical applications. Adv. Mater., 2015, 27(3), 498-526.
[28]
(a) Duro-Castano, A.; Movellan, J.; Vicent, M.J. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater. Sci., 2015, 3(10), 1321-1334.
(b) Zhou, D.; Xiao, H.; Meng, F.; Li, X.; Li, Y.; Jing, X.; Huang, Y. A polymer-(tandem drugs) conjugate for enhanced cancer treatment. Adv. Healthc. Mater., 2013, 2(6), 822-827.
[29]
(a) Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Gold nanoparticles and gold nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges. J. Mater. Chem. B , 2014, 2(27), 4204-4220.
(b) Gautier, J.; Allard-Vannier, E.; Munnier, E.; Souce, M.; Chourpa, I. Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J. Control. Release, 2013, 169(1-2), 48-61.
(c) Modugno, G.; Menard-Moyon, C.; Prato, M.; Bianco, A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br. J. Pharmacol., 2015, 172(4), 975-991.
[30]
(a) Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldofner, N.; Scholz, R.; Deger, S.; Wust, P.; Loening, S.A.; Jordan, A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperthermia, 2005, 21(7), 637-647.
(b) Li, J.; Wang, S.; Shi, X.; Shen, M. Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv. Colloid Interface Sci., 2017, 249, 374-385.
[31]
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res., 2009, 2(2), 85-120.
[32]
Sekhon, B.S.; Kamboj, S.R. Inorganic nanomedicine--part 1. Nanomedicine , 2010, 6(4), 516-522.
[33]
(a) Yezhelyev, M.V.; Gao, X.; Xing, Y.; Al-Hajj, A.; Nie, S.; O’Regan, R.M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol., 2006, 7(8), 657-667.
(b) Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol., 2017, 7(5), 738-746.
[34]
Kosaka, N.; McCann, T.E.; Mitsunaga, M.; Choyke, P.L.; Kobayashi, H. Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine (Lond.), 2010, 5(5), 765-776.
[35]
Gao, Y.; Xie, J.J.; Chen, H.J.; Gu, S.E.; Zhao, R.L.; Shao, J.W.; Jia, L. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv., 2014, 32(4), 761-777.
[36]
(a) Montana, M.; Ducros, C.; Verhaeghe, P.; Terme, T.; Vanelle, P.; Rathelot, P. Albumin-bound paclitaxel: The benefit of this new formulation in the treatment of various cancers. J. Chemother., 2011, 23(2), 59-66.
(b) Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane (R) ABI-007) in the treatment of breast cancer. Int. J.Nanomedicine, 2009, 4(1), 99-105.
[37]
Barenholz, Y. Doxil(R)--the first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[38]
Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 2010, 188(6), 759-768.
[39]
(a) Mehta, R.S.; Barlow, W.E.; Albain, K.S.; Vandenberg, T.A.; Dakhil, S.R.; Tirumali, N.R.; Lew, D.L.; Hayes, D.F.; Gralow, J.R.; Livingston, R.B.; Hortobagyi, G.N. Combination anastrozole and fulvestrant in metastatic breast cancer. N. Engl. J. Med., 2012, 367(5), 435-444.
(b) Greco, F.; Vicent, M.J. Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev., 2009, 61(13), 1203-1213.
[40]
(a) Siegel, R.A. Stimuli sensitive polymers and self regulated drug delivery systems: A very partial review. J. Control. Release, 2014, 190, 337-351.
(b) Cheng, R.; Meng, F.H.; Deng, C.; Klok, H.A.; Zhong, Z.Y. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34(14), 3647-3657.
[41]
Kievit, F.M.; Zhang, M.Q. Cancer nanotheranostics: Improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater., 2011, 23(36), H217-H247.
[42]
Huang, J.; Fairbrother, W.; Reed, J.C. Therapeutic targeting of Bcl-2 family for treatment of B-cell malignancies. Expert Rev. Hematol., 2015, 8(3), 283-297.
[43]
(a) Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
(b) Moriya, J.; Minamino, T. Angiogenesis, cancer, and vascular aging. Front. Cardiovasc. Med., 2017, 4, 65.
[44]
(a) Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 2003, 3(6), 401-410.
(b) Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol., 2009, 19(5), 329-337.
[45]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[46]
(a) Lockhart, A.C.; Braun, R.D.; Yu, D.; Ross, J.R.; Dewhirst, M.W.; Humphrey, J.S.; Thompson, S.; Williams, K.M.; Klitzman, B.; Yuan, F.; Grichnik, J.M.; Proia, A.D.; Conway, D.A.; Hurwitz, H.I. Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 2003, 9(2), 551-554.
(b) Lockhart, A.C.; Braun, R.D.; Yu, D.; Ross, J.R.; Dewhirst, M.W.; Humphrey, J.S.; Thompson, S.; Williams, K.M.; Klitzman, B.; Yuan, F.; Grichnik, J.M.; Proia, A.D.; Conway, D.A.; Hurwitz, H.I. Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 2003, 9(2), 586-593.
[47]
(a) Rundhaug, J.E. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med., 2005, 9(2), 267-285.
(b) Jablonska-Trypuc, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl. 1), 177-183.
[48]
(a) Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer, 2002, 2(3), 161-174.
(b) John, A.; Tuszynski, G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res., 2001, 7(1), 14-23.
[49]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[50]
Liu, Z.; Wang, F.; Chen, X. Integrin alpha(v)beta(3)-targeted cancer therapy. Drug Dev. Res., 2008, 69(6), 329-339.
[51]
Ronca, R.; Benkheil, M.; Mitola, S.; Struyf, S.; Liekens, S. Tumor angiogenesis revisited: Regulators and clinical implications. Med. Res. Rev., 2017, 37(6), 1231-1274.
[52]
Ferrara, N. VEGF as a therapeutic target in cancer. Oncology, 2005, 69(Suppl. 3), 11-16.
[53]
Samant, R.S.; Shevde, L.A. Recent advances in anti-angiogenic therapy of cancer. Oncotarget, 2011, 2(3), 122-134.
[54]
Chan, L.S.; Daruwalla, J.; Christophi, C. Selective targeting of the tumour vasculature. ANZ J. Surg., 2008, 78(11), 955-967.
[55]
(a) Felline, A.; Ghitti, M.; Musco, G.; Fanelli, F. Dissecting intrinsic and ligand-induced structural communication in the beta3 headpiece of integrins. Biochim. Biophys. Acta, 2017, 1861(9), 2367-2381.
(b) Paolillo, M.; Russo, M.A.; Serra, M.; Colombo, L.; Schinelli, S. Small molecule integrin antagonists in cancer therapy. Mini Rev. Med. Chem., 2009, 9(12), 1439-1446.
[56]
(a) Kerbel, R.; Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer, 2002, 2(10), 727-739.
(b) Medinger, M.; Passweg, J. Angiogenesis in myeloproliferative neoplasms, new markers and future directions. Memo, 2014, 7, 206-210.
[57]
Shojaei, F. Anti-angiogenesis therapy in cancer: Current challenges and future perspectives. Cancer Lett., 2012, 320(2), 130-137.
[58]
Yoncheva, K.; Momekov, G. Antiangiogenic anticancer strategy based on nanoparticulate systems. Expert Opin. Drug Deliv., 2011, 8(8), 1041-1056.
[59]
(a) Katanasaka, Y.; Ida, T.; Asai, T.; Maeda, N.; Oku, N. Effective delivery of an angiogenesis inhibitor by neovessel-targeted liposomes. Int. J. Pharm., 2008, 360(1-2), 219-224.
(b) Katanasaka, Y.; Ida, T.; Asai, T.; Shimizu, K.; Koizumi, F.; Maeda, N.; Baba, K.; Oku, N. Antiangiogenic cancer therapy using tumor vasculature-targeted liposomes encapsulating 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one, SU5416. Cancer Lett., 2008, 270(2), 260-268.
[60]
Kluza, E.; van der Schaft, D.W.; Hautvast, P.A.; Mulder, W.J.; Mayo, K.H.; Griffioen, A.W.; Strijkers, G.J.; Nicolay, K. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett., 2010, 10(1), 52-58.
[61]
Penate Medina, O.; Haikola, M.; Tahtinen, M.; Simpura, I.; Kaukinen, S.; Valtanen, H.; Zhu, Y.; Kuosmanen, S.; Cao, W.; Reunanen, J. Liposomal tumor targeting in drug delivery utilizing MMP-2-and MMP-9-binding ligands. J. Drug Deliv., 2010, 2011, 160515.
[62]
Danhier, F.; Le Breton, A.; Preat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm., 2012, 9(11), 2961-2973.
[63]
(a) Xie, H.; Diagaradjane, P.; Deorukhkar, A.A.; Goins, B.; Bao, A.; Phillips, W.T.; Wang, Z.; Schwartz, J.; Krishnan, S. Integrin alphavbeta3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int. J. Nanomedicine, 2011, 6, 259-269.
(b) Arosio, D.; Manzoni, L.; Araldi, E.M.; Scolastico, C. Cyclic RGD functionalized gold nanoparticles for tumor targeting. Bioconjug. Chem., 2011, 22(4), 664-672.
[64]
Graf, N.; Bielenberg, D.R.; Kolishetti, N.; Muus, C.; Banyard, J.; Farokhzad, O.C.; Lippard, S.J. alpha(v)beta(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano, 2012, 6(5), 4530-4539.
[65]
Jiang, X.; Xin, H.; Gu, J.; Xu, X.; Xia, W.; Chen, S.; Xie, Y.; Chen, L.; Chen, Y.; Sha, X.; Fang, X. Solid tumor penetration by integrin-mediated pegylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel. Biomaterials, 2013, 34(6), 1739-1746.
[66]
(a) Raemdonck, K.; Martens, T.F.; Braeckmans, K.; Demeester, J.; De Smedt, S.C. Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliv. Rev., 2013, 65(9), 1123-1147.
(b) Wagner, S.; Rothweiler, F.; Anhorn, M.G.; Sauer, D.; Riemann, I.; Weiss, E.C.; Katsen-Globa, A.; Michaelis, M.; Cinatl, J., Jr; Schwartz, D.; Kreuter, J.; von Briesen, H.; Langer, K. Enhanced drug targeting by attachment of an anti alphav integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials, 2010, 31(8), 2388-2398.
(c) Buschmann, M.D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Deliv. Rev., 2013, 65(9), 1234-1270.
[67]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Greenwald, D.R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 2010, 328(5981), 1031-1035.
[68]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[69]
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436(7050), 568-572.
[70]
Mukherjee, P.; Bhattacharya, R.; Mukhopadhyay, D. Gold nanoparticles bearing functional anti-cancer drug and anti-angiogenic agent: A” 2 in 1” System with potential application in cancer therapeutics. J. Biomed. Nanotechnol., 2005, 1(2), 224-228.
[71]
Arvizo, R.R.; Rana, S.; Miranda, O.R.; Bhattacharya, R.; Rotello, V.M.; Mukherjee, P. Mechanism of anti-angiogenic property of gold nanoparticles: Role of nanoparticle size and surface charge. Nanomedicine , 2011, 7(5), 580-587.
[72]
Hood, J.D.; Bednarski, M.; Frausto, R.; Guccione, S.; Reisfeld, R.A.; Xiang, R.; Cheresh, D.A. Tumor regression by targeted gene delivery to the neovasculature. Science, 2002, 296(5577), 2404-2407.
[73]
Wang, M.; Wang, J.; Li, B.; Meng, L.; Tian, Z. Recent advances in mechanism-based chemotherapy drug-siRNA pairs in co-delivery systems for cancer: A review. Colloids Surf. B Biointerfaces, 2017, 157, 297-308.
[74]
Prabha, S.; Sharma, B.; Labhasetwar, V. Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice. Cancer Gene Ther., 2012, 19(8), 530-537.
[75]
Morikawa, S.; Baluk, P.; Kaidoh, T.; Haskell, A.; Jain, R.K.; McDonald, D.M. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol., 2002, 160(3), 985-1000.
[76]
(a) Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41, 189-207.
(b) Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
(c) Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
(d) Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1), 271-284.
[77]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[78]
Du, B.; Yan, Y.; Li, Y.; Wang, S.; Zhang, Z. Preparation and passive target of 5-fluorouracil solid lipid nanoparticles. Pharm. Dev. Technol., 2010, 15(4), 346-353.
[79]
Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[80]
(a) Vicent, M.J.; Duncan, R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol., 2006, 24(1), 39-47.
(b) Xu, H.; Ma, H.; Yang, P.; Zhang, X.; Wu, X.; Yin, W.; Wang, H.; Xu, D. Targeted polymer-drug conjugates: Current progress and future perspective. Colloid Surface B, 2015, 136, 729-734.
[81]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[82]
Sadekar, S.; Ray, A.; Janat-Amsbury, M.; Peterson, C.M.; Ghandehari, H. Comparative biodistribution of PAMAM dendrimers and HPMA copolymers in ovarian-tumor-bearing mice. Biomacromolecules, 2011, 12(1), 88-96.
[83]
Maruyama, K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev., 2011, 63(3), 161-169.
[84]
Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.A.; Torchilin, V.P.; Jain, R.K. Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Res., 1995, 55(17), 3752-3756.
[85]
Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.), 2011, 6(4), 715-728.
[86]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[87]
Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018.
[88]
Chauhan, V.P.; Stylianopoulos, T.; Martin, J.D.; Popovic, Z.; Chen, O.; Kamoun, W.S.; Bawendi, M.G.; Fukumura, D.; Jain, R.K. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol., 2012, 7(6), 383-388.
[89]
Bertrand, N.W. J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[90]
Scallon, B.J.; Snyder, L.A.; Anderson, G.M.; Chen, Q.; Yan, L.; Weiner, L.M.; Nakada, M.T. A review of antibody therapeutics and antibody-related technologies for oncology. J. Immunother., 2006, 29(4), 351-364.
[91]
Kue, C.S.; Kamkaew, A.; Burgess, K.; Kiew, L.V.; Chung, L.Y.; Lee, H.B. Small molecules for active targeting in cancer. Med. Res. Rev., 2016, 36(3), 494-575.
[92]
Falagan-Lotsch, P.; Grzincic, E.M.; Murphy, C.J. New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: An assessment of active-targeting inorganic nanoplatforms. Bioconjug. Chem., 2017, 28(1), 135-152.
[93]
Xu, L.; Bai, Q.; Zhang, X.; Yang, H. Folate-mediated chemotherapy and diagnostics: An updated review and outlook. J. Control. Release, 2017, 252, 73-82.
[94]
Duthie, S.J. Folate and cancer: How DNA damage, repair and methylation impact on colon carcinogenesis. J. Inherit. Metab. Dis., 2011, 34(1), 101-109.
[95]
Zwicke, G.L.; Mansoori, G.A.; Jeffery, C.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev., 2012, 3.
[96]
(a) Cai, L.; Yu, R.; Hao, X.; Ding, X. Folate receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Res. Lett., 2017, 12(1), 509.
(b) Gaspar, V.M.; Costa, E.C.; Queiroz, J.A.; Pichon, C.; Sousa, F.; Correia, I.J. Folate-targeted multifunctional amino acid-chitosan nanoparticles for improved cancer therapy. Pharm. Res. Dordr., 2015, 32(2), 562-577.
[97]
(a) Wang, Y.; Yu, L.; Han, L.; Sha, X.; Fang, X. Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int. J. Pharm., 2007, 337(1-2), 63-73.
(b) Ming, Y.; Li, Y.; Xing, H.; Luo, M.; Li, Z.; Chen, J.; Mo, J.; Shi, S. Circulating tumor cells: from theory to nanotechnology-based detection. Front. Pharmacol., 2017, 8, 35.
(c) Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol., 2014, 5, 159.
[98]
(a) Shmeeda, H.; Mak, L.; Tzemach, D.; Astrahan, P.; Tarshish, M.; Gabizon, A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol. Cancer Ther., 2006, 5(4), 818-824.
(b) Wang, L.; Li, M.; Zhang, N. Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy. Int. J. Nanomedicine, 2012, 7, 3281-3294.
(c) Luong, D.; Kesharwani, P.; Alsaab, H.O.; Sau, S.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids Surf. B Biointerfaces, 2017, 157, 490-502.
(d) Tu, Q.; Zhang, Y.; Liu, R.; Wang, J.C.; Li, L.; Nie, N.; Liu, A.; Wang, L.; Liu, W.; Ren, L.; Wang, X.; Wang, J. Active drug targeting of disease by nanoparticles functionalized with ligand to folate receptor. Curr. Med. Chem., 2012, 19(19), 3152-3162.
[99]
(a) Foley, J.; Nickerson, N.K.; Nam, S.; Allen, K.T.; Gilmore, J.L.; Nephew, K.P.; Riese, D.J., II EGFR signaling in breast cancer: Bad to the bone. Semin. Cell Dev. Biol., 2010, 21(9), 951-960.
(b) Hsu, J.L.; Hung, M.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev., 2016, 35(4), 575-588.
[100]
da Cunha Santos, G.; Shepherd, F.A.; Tsao, M.S. EGFR mutations and lung cancer. Annu. Rev. Pathol., 2011, 6, 49-69.
[101]
Markman, B.; Javier Ramos, F.; Capdevila, J.; Tabernero, J. EGFR and KRAS in colorectal cancer. Adv. Clin. Chem., 2010, 51, 71-119.
[102]
Del Vecchio, C.; Giacomini, C.; Vogel, H.; Jensen, K.; Florio, T.; Merlo, A.; Pollack, J.; Wong, A. EGFRvIII gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms. Oncogene, 2013, 32(21), 2670-2681.
[103]
Stella, G.M.; Piloni, D. Exploring adjuvant epidermal growth factor receptor inhibition in non-small cell lung cancer. Minerva Med., 2017, 108(3)(Suppl. 1), 6-12.
[104]
Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 2009, 30(29), 5737-5750.
[105]
Yokoyama, T.; Tam, J.; Kuroda, S.; Scott, A.W.; Aaron, J.; Larson, T.; Shanker, M.; Correa, A.M.; Kondo, S.; Roth, J.A.; Sokolov, K.; Ramesh, R. EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS One, 2011, 6(11), e25507.
[106]
Ping, Y.; Jian, Z.; Yi, Z.; Huoyu, Z.; Feng, L.; Yuqiong, Y.; Shixi, L. Inhibition of the EGFR with nanoparticles encapsulating antisense oligonucleotides of the EGFR enhances radiosensitivity in SCCVII cells. Med. Oncol., 2010, 27(3), 715-721.
[107]
Satpathy, M.; Wang, L.Y.; Zielinski, R.; Qian, W.P.; Lipowska, M.; Capala, J.; Lee, G.Y.; Xu, H.; Wang, Y.A.; Mao, H.; Yang, L. Active targeting using HER-2-affibody-conjugated nanoparticles enabled sensitive and specifi c imaging of orthotopic HER-2 positive ovarian tumors. Small, 2014, 10(3), 544-555.
[108]
Zhang, J.; Dewilde, A.H.; Chinn, P.; Foreman, A.; Barry, S.; Kanne, D.; Braunhut, S.J. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Int. J. Hyperthermia, 2011, 27(7), 682-697.
[109]
Satpathy, M.; Zielinski, R.; Lyakhov, I.; Yang, L. Optical imaging of ovarian cancer using HER-2 affibody conjugated nanoparticles. Methods Mol. Biol., 2015, 1219, 171-185.
[110]
(a) Sun, T.; Wu, H.; Li, Y.; Huang, Y.; Yao, L.; Chen, X.; Han, X.; Zhou, Y.; Du, Z. Targeting transferrin receptor delivery of temozolomide for a potential glioma stem cell-mediated therapy. Oncotarget, 2017, 8, 74451-74465.
(b) Dixit, S.; Novak, T.; Miller, K.; Zhu, Y.; Kenney, M.E.; Broome, A.M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale, 2015, 7(5), 1782-1790.
[111]
Yang, X.; Koh, C.G.; Liu, S.; Pan, X.; Santhanam, R.; Yu, B.; Peng, Y.; Pang, J.; Golan, S.; Talmon, Y.; Jin, Y.; Muthusamy, N.; Byrd, J.C.; Chan, K.K.; Lee, L.J.; Marcucci, G.; Lee, R.J. Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol. Pharm., 2009, 6(1), 221-230.
[112]
Choi, C.H.; Alabi, C.A.; Webster, P.; Davis, M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 1235-1240.
[113]
Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Aberg, C.; Mahon, E.; Dawson, K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol., 2013, 8(2), 137-143.
[114]
Biedler, J.L.; Riehm, H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic, and cytogenetic studies. Cancer Res., 1970, 30(4), 1174-1184.
[115]
Singh, M.S.; Tammam, S.N.; Shetab Boushehri, M.A.; Lamprecht, A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol. Res., 2017, 126, 2-30.
[116]
Begicevic, R.R.; Falasca, M. ABC Transporters in cancer stem cells: Beyond chemoresistance. Int. J. Mol. Sci., 2017, 18(11), 2362.
[117]
Krishnan, S.; Khan, M.T.; Imran, S.; Soucier, R. Carvedilol +/- ACE/ARB prevents the progression of chemotherapy induced cardiomyopathy. J. Card. Fail., 2008, 14(6), S112-S112.
[118]
Moon, J.H.; Moxley, Jr J.W.; Zhang, P.; Cui, H. Nanoparticle approaches to combating drug resistance. Future Med. Chem., 2015, 7(12), 1503-1510.
[119]
Patel, N.R.; Rathi, A.; Mongayt, D.; Torchilin, V.P. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int. J. Pharm., 2011, 416(1), 296-299.
[120]
Dong, X.; Mumper, R.J. Nanomedicinal strategies to treat multidrug-resistant tumors: Current progress. Nanomedicine , 2010, 5(4), 597-615.
[121]
Wang, Y.; Guo, M.; Lu, Y.; Ding, L.Y.; Ron, W.T.; Liu, Y.Q.; Song, F.F.; Yu, S.Q. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro. Nanotechnology, 2012, 23(49), 495103.
[122]
Creixell, M.; Peppas, N.A. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today, 2012, 7(4), 367-379.
[123]
Li, B.; Xu, H.; Li, Z.; Yao, M.; Xie, M.; Shen, H.; Shen, S.; Wang, X.; Jin, Y. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int. J. Nanomedicine, 2012, 7, 187-197.
[124]
Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small, 2009, 5(23), 2673-2677.
[125]
Oskouian, B.; Saba, J.D. Cancer treatment strategies targeting sphingolipid metabolism. Adv. Exp. Med. Biol., 2010, 688, 185-205.
[126]
van Vlerken, L.E.; Duan, Z.; Seiden, M.V.; Amiji, M.M. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res., 2007, 67(10), 4843-4850.
[127]
Steeg, P.S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med., 2006, 12(8), 895-904.
[128]
Friedl, P.; Wolf, K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer, 2003, 3(5), 362-374.
[129]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[130]
Li, J.; King, M.R. Adhesion receptors as therapeutic targets for circulating tumor cells. Front. Oncol., 2012, 2, 79.
[131]
Fidler, I.J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer, 2003, 3(6), 453-458.
[132]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[133]
(a) Gao, Y.; Xie, X.; Li, F.; Lu, Y.; Li, T.; Lian, S.; Zhang, Y.; Zhang, H.; Mei, H.; Jia, L. A novel nanomissile targeting two biomarkers and accurately bombing CTCs with doxorubicin. Nanoscale, 2017, 9(17), 5624-5640.
(b) Gao, Y.G.S.; Zhang, Y.; Xie, X.; Yu, T.; Lu, Y.; Zhu, Y.; Chen, W.; Zhang, H.; Dong, H.; Sinko, P.J.; Jia, L. The architecture and function of monoclonal antibody-functionalized mesoporous silica nanoparticles loaded with mifepristone: Repurposing abortifacient for cancer metastatic chemoprevention. Small, 2016, 12(19), 2595-2608.
[134]
Murphy, E.A.; Majeti, B.K.; Barnes, L.A.; Makale, M.; Weis, S.M.; Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D.A. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9343-9348.
[135]
Sarfati, G.; Dvir, T.; Elkabets, M.; Apte, R.N.; Cohen, S. Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin. Biomaterials, 2011, 32(1), 152-161.
[136]
Villares, G.J.; Zigler, M.; Wang, H.; Melnikova, V.O.; Wu, H.; Friedman, R.; Leslie, M.C.; Vivas-Mejia, P.E.; Lopez-Berestein, G.; Sood, A.K.; Bar-Eli, M. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res., 2008, 68(21), 9078-9086.
[137]
Finlay, J.; Roberts, C.M.; Dong, J.; Zink, J.I.; Tamanoi, F.; Glackin, C.A. Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden. Nanomedicine , 2015, 11(7), 1657-1666.
[138]
Chandna, P.; Khandare, J.J.; Ber, E.; Rodriguez-Rodriguez, L.; Minko, T. Multifunctional tumor-targeted polymer-peptide-drug delivery system for treatment of primary and metastatic cancers. Pharm. Res., 2010, 27(11), 2296-2306.
[139]
(a) Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550.
(b) Lee, H.; Jang, Y.; Seo, J.; Nam, J.M.; Char, K. Nanoparticle-functionalized polymer platform for controlling metastatic cancer cell adhesion, shape, and motility. ACS Nano, 2011, 5(7), 5444-5456.
[140]
(a) Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
(b) Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[141]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[142]
Cheong, H.; Lu, C.; Lindsten, T.; Thompson, C.B. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol., 2012, 30(7), 671-678.
[143]
Przybytkowski, E.; Behrendt, M.; Dubois, D.; Maysinger, D. Nanoparticles can induce changes in the intracellular metabolism of lipids without compromising cellular viability. FEBS J., 2009, 276(21), 6204-6217.
[144]
Lin, W.; Huang, Y.W.; Zhou, X.D.; Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol., 2006, 217(3), 252-259.
[145]
Pumera, M. Graphene, carbon nanotubes and nanoparticles in cell metabolism. Curr. Drug Metab., 2012, 13(3), 251-256.
[146]
(a) Wang, B.; Chen, N.; Wei, Y.; Li, J.; Sun, L.; Wu, J.; Huang, Q.; Liu, C.; Fan, C.; Song, H. Akt signaling-associated metabolic effects of dietary gold nanoparticles in drosophila. Sci. Rep., 2012, 2, 563.
(b) Zong, W.X.R.; White, E. Mitochondria and cancer. Mol. Cell, 2016, 61(5), 667-676.
[147]
(a) Matherly, L.H.; Hou, Z.; Gangjee, A. The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer. Cancer Chemother. Pharmacol., 2018, 81(1), 1-15.
(b) Geng, F.; Song, K.; Xing, J.Z.; Yuan, C.; Yan, S.; Yang, Q.; Chen, J.; Kong, B. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 2011, 22(28), 285101.
[148]
Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Lopez, M.; Joseph, J.; Zielonka, J.; Dwinell, M.B. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol., 2017, 14, 316-327.
[149]
Wang, L.; Liu, Y.; Li, W.; Jiang, X.; Ji, Y.; Wu, X.; Xu, L.; Qiu, Y.; Zhao, K.; Wei, T.; Li, Y.; Zhao, Y.; Chen, C. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Lett., 2011, 11(2), 772-780.
[150]
De Berardis, B.; Civitelli, G.; Condello, M.; Lista, P.; Pozzi, R.; Arancia, G.; Meschini, S. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol. Appl. Pharmacol., 2010, 246(3), 116-127.
[151]
(a) Wang, F.; Ogasawara, M.A.; Huang, P. Small mitochondria-targeting molecules as anti-cancer agents. Mol. Aspects Med., 2010, 31(1), 75-92.
(b) Zhang, E.; Zhang, C.; Su, Y.; Cheng, T.; Shi, C. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov. Today, 2011, 16(3-4), 140-146.
[152]
Sistigu, A.; Di Modugno, F.; Manic, G.; Nistico, P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev., 2017, 36, 67-77.
[153]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489.
[154]
Silva, A.L.; Peres, C.; Conniot, J.; Matos, A.I.; Moura, L.; Carreira, B.; Sainz, V.; Scomparin, A.; Satchi-Fainaro, R.; Preat, V.; Florindo, H.F. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin. Immunol., 2017, 34, 3-24.
[155]
Sacchetti, C.; Rapini, N.; Magrini, A.; Cirelli, E.; Bellucci, S.; Mattei, M.; Rosato, N.; Bottini, N.; Bottini, M. In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes. Bioconjug. Chem., 2013, 24(6), 852-858.
[156]
Cho, N.H.; Cheong, T.C.; Min, J.H.; Wu, J.H.; Lee, S.J.; Kim, D.; Yang, J.S.; Kim, S.; Kim, Y.K.; Seong, S.Y. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol., 2011, 6(10), 675-682.
[157]
Wen, Z.S.; Xu, Y.L.; Zou, X.T.; Xu, Z.R. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar. Drugs, 2011, 9(6), 1038-1055.
[158]
Broos, S.; Sandin, L.C.; Apel, J.; Totterman, T.H.; Akagi, T.; Akashi, M.; Borrebaeck, C.A.; Ellmark, P.; Lindstedt, M. Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(gamma-glutamic acid) nanoparticles. Biomaterials, 2012, 33(26), 6230-6239.
[159]
Lin, A.Y.; Almeida, J.P.; Bear, A.; Liu, N.; Luo, L.; Foster, A.E.; Drezek, R.A. Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS One, 2013, 8(5), e63550.
[160]
Parry, A.L.; Clemson, N.A.; Ellis, J.; Bernhard, S.S.; Davis, B.G.; Cameron, N.R. Multicopy multivalent’ glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines. J. Am. Chem. Soc., 2013, 135(25), 9362-9365.
[161]
Roy, A.; Singh, M.S.; Upadhyay, P.; Bhaskar, S. Combined chemo-immunotherapy as a prospective strategy to combat cancer: A nanoparticle based approach. Mol. Pharm., 2010, 7(5), 1778-1788.
[162]
Kwong, B.; Liu, H.; Irvine, D.J. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials, 2011, 32(22), 5134-5147.
[163]
Park, J.; Wrzesinski, S.H.; Stern, E.; Look, M.; Criscione, J.; Ragheb, R.; Jay, S.M.; Demento, S.L.; Agawu, A.; Licona Limon, P.; Ferrandino, A.F.; Gonzalez, D.; Habermann, A.; Flavell, R.A.; Fahmy, T.M. Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater., 2012, 11(10), 895-905.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy